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Abstract

Background:
Impedance spectroscopy has been shown to be a candidate for noninvasive continuous glucose monitoring 
in humans. However, in addition to glucose, other factors also have effects on impedance characteristics of the  
skin and underlying tissue.

Method:
Impedance spectra were summarized through a principal component analysis and relevant variables were 
identified with Akaike’s information criterion. In order to model blood glucose, a linear least-squares model  
was used. A Monte Carlo simulation was applied to examine the effects of personalizing models.

Results:
The principal component analysis was able to identify two major effects in the impedance spectra: a blood 
glucose-related process and an equilibration process related to moisturization of the skin and underlying tissue. 
With a global linear least-squares model, a coefficient of determination (R2) of 0.60 was achieved, whereas 
the personalized model reached an R2 of 0.71. The Monte Carlo simulation proved a significant advantage of 
personalized models over global models.

Conclusion:
A principal component analysis is useful for extracting glucose-related effects in the impedance spectra of 
human skin. A linear global model based on Solianis Multisensor data yields a good predictive power for 
blood glucose estimation. However, a personalized linear model still has greater predictive power.
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Introduction

Diabetes is one of the most widespread global diseases 
(with approximately 246 million patients worldwide as 
estimated by the International Diabetes Federation in 
2007). Diabetes patients must measure their blood glucose 
level (BGL) regularly in order to control it. Therefore,  
a noninvasive continuous blood glucose measurement 
device would be highly desirable. It would reduce the 
patient’s discomfort associated with the invasive finger 
pricks and improve the information on trends of the 
BGL available to the patient.

It has been shown that noninvasive continuous glucose 
monitoring based on impedance spectroscopy (IS) is 
possible under controlled experimental conditions.1,2 
The BGL has an influence on the impedance spectra 
of the skin and underlying tissue (SUT) in a certain 
frequency range. However, the skin impedance spectra 
are also affected by many other factors that significantly 
perturb the glucose-related information, especially in 
daily-life situations. Relevant perturbing factors are 
temperature fluctuations, variations of skin moisture 
and sweat, changes in perfusion characteristics, as well 
as body movements affecting the sensor-skin contact.3-5 
These perturbing factors need to be compensated for to 
determine BGL in systems that use IS as the primary 
glucose-related signal.6 In order to be able to correct 
for such perturbing factors, a multisensor glucose 
monitoring system (MGMS) has been developed7 that 
measures BGLs both noninvasively and continuously. 
The bases for this MGMS are the measured effects of 
changes in the BGL on the impedance spectra that have  
been discussed in other work,8 as well as the ability of 
secondary sensors to track the perturbing effects.9

In this article, we address two important questions 
for this approach to noninvasive continuous blood 
glucose monitoring. First, we investigate how spectral 
measurements can be summarized into meaningful 
physiological information that can then be used for 
statistical modeling of the BGL. Second, we explore 
the merit of personalized models allowing for different 
coefficients for each patient. The work here does not 
represent a clinical validation of the multisensor concept. 
Using these selected data evaluation methods, a more 
advanced multisensor has been tested in an experimental 
study with a prospective global model application.10

Methods

Materials
The impedance spectra of SUT are determined with a 
capacitive fringing field sensor (Figure 1) by measuring 
the response of the SUT to an externally applied 
alternating electric field with frequencies in the range of 
0.1–100 MHz.

The sensor features the ability to achieve different 
penetration depths of the electromagnetic field (EMF) 
into the various tissue layers by utilizing three 
electrodes with different characteristic geometries. Each of  
these electrodes provides a spectrum of the complex 
dielectric impedance. The impedance is transformed into 
admittance (1/impedance) whose real [conductance (G)] 

Figure 1. Two Multisensors attached to the upper arm of a subject 
with a zoom of the Multisensor substrate holding sensors and 
electrodes. Fringing field sensors: (A) deep, (B) mid, and (C) shallow 
penetration of the electromagnetic field; (D) temperature sensor; 
(E) interdigitated sweat sensor (0.05 mm) for galvanic skin response 
for superficial sweat monitoring; (F) silicon wafer-based optical reflection 
sensor with three wavelengths (568/660/880 nm) and two differently 
shaped photodiodes for skin blood perfusion measurement;  
(G) humidity sensor, and (H) three-axes acceleration sensor.
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and imaginary [capacitance (C)] parts are treated separately. 
These signals can be associated with the physiological 
conductivity and permittivity of the SUT.11

The electrodes associated with the deep, mid, and shallow 
penetration range of the EMF are referred to as the long 
[A], middle [B] and short [C] electrodes, respectively  
(as shown in Figure 1). The EMFs of the long and 
middle electrodes penetrate the upper skin layers as  
well as the lower ones, which are well microvascularized 
and therefore affected by BGL changes. Thus, glucose 
variations are particularly seen in the long and middle 
signals, which are regarded as our primary signals. 
The short electrode penetrates only the upper skin  
layers. Their signals may still contain information about 
perturbing effects due to nonglucose-related variations 
of the dielectric properties of the upper skin layers, 
which also contribute to the long and middle signals.  
In principle, it can therefore be used to compensate these 
signals for the perturbing effects of the upper skin layers.

A silicon wafer-based optical reflection sensor with 
three light-emitting diodes (LEDs) at three wavelengths 
(568/660/880 nm) and two differently shaped photodiodes 
were used for skin blood perfusion measurement [F].  
Skin and superficial hydration levels, which also affect 
the primary signals, are monitored with a sweat/moisture 
sensor comprising an interdigitated electrode utilizing 
a galvanic skin response-based measuring technique [E]. 
The acceleration and position relative to the centre of 
gravity of the device are continuously monitored using 
an integrated accelerometer [H]. Finally, the skin surface 
temperature [D] and ambient humidity [G] close to the 
device are monitored as well. One set of sensor signals 
measured each minute are used in the analysis.

The Multisensor (Solianis Monitoring AG, Zurich, 
Switzerland) is attached to the upper arm of the patient 
with an elasticated cloth armband and is powered with 
a battery pack. Figure 1 shows two devices in use and a 
zoom of the substrate of the Multisensor to indicate the 
positions of the sensors and electrodes located on the 
sensor substrate.

Data
The data was acquired during an experimental clinical 
study that included four male patients with type 1 
diabetes mellitus (age 43 ± 9 years; body mass index 
26.1 ± 2.9 kg/m2, duration of diabetes 22 ± 14 years; 
hemoglobin A1c 7.4 ± 0.9%) and 4 male patients with 
type 2 diabetes mellitus (66 ± 2 years; 30.6 ± 1.8 kg/m2; 
10 ± 8 years; 6.9 ± 0.3%). The study protocol was approved 

by the local ethical committee and the patients gave 
informed consent for their participation in the study. 
Each patient performed up to four study visits (runs). 
There was data from 28 study visits available for the 
derivation of a predictive statistical model. One study 
visit (visit G4, see Figure 2) contained an incomplete 
dataset because of a data collection problem with the 
device after the first 4 hours of measurement.

The BGL of a patient was varied during a 10-hour study 
visit according to a predetermined target profile including 
one hyperglycemic event to a target level of 300 mg/dl 
(Figure 3), which was induced by a standardized meal 
(nutrition drink with 54% carbohydrates, 32% proteins, 
14% fat). Euglycemia was reestablished by subcutaneous 
insulin administration. Meal and insulin injections were 
varied from study visit to study visit in order to reach 
the target profile as accurately as possible. To ensure 
close monitoring of the BGL, it was measured from 
intravenous blood samples with a reference standard 
technique, HemoCue Glucose Analyzer (HemoCue AG, 
Wetzikon, Switzerland), approximately every 15  minutes 
and whenever necessary for medical purposes.

The study included several elements that stimulate 
perturbing effects. Ten-minute movement blocks were 
randomly distributed during the study visit. They included 
periods of cycling, walking, and regular deskwork.  
In addition, in every second study visit, the patients 
drank 3 liters of water over a 3-hour period of time in  
order to include potential dielectric effects from significant 
water intake into the model generation and data 
processing methods.

The measurements of the first 75 minutes after the 
Multisensor was attached to the skin were not taken into 
account for modeling and evaluation because they suffer 
from artifacts due to physiological adjustment of the 
skin to the presence of the Multisensor.

Statistical Analysis
The task of relating observed functions in spectra to a  
target variable belongs to the theme of functional data 
analysis.12 In principle, the function values—here the 
spectral values at many frequencies—can be used 
independently as potential predictors. This leads to a huge 
number of potential predictors. Because the spectral 
values at neighbouring frequencies are highly redundant, 
it is sensible to reduce the dimensionality while still 
preserving the spectral features. This can be achieved 
by expressing the functions (spectra) in terms of  
basis functions.
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Figure 2. Plots with results of all runs (study visits). Time series of the invasively measured BGL (dashed line) and the estimation of the 
BGL (solid line) of the global model. Letters were used to identify the different patients (A, B, …) and numbers to count the runs (study visits) of  
patients (A1, A2, …). The time is given in hours from the start of the run.

Figure 3. Proposed BGL profile of a patient during a study visit (run). 
The approximate profile was realized with a standardized meal and 
subcutaneous insulin administration.

A simple type of basis function is determined as follows: 
partition the range of frequencies into a small number of 
intervals; then, use the averages of the functional values 
over the respective intervals—also called bands—as 

coefficients of the basis functions. This is a simple version of 
a kind of wavelet basis. We have used three bands—low, 
medium, and high—for all spectra in our study.

A more sophisticated set of basis functions consists 
of principal components.13 The principal component 
analysis (PCA) is performed on the spectral data of each 
electrode, separately for G and C, but for all runs of all 
patients together.

The final goal is to estimate the target variable Y from 
a large set of potential predictors x(j). Since there is no 
quantitative theory to be used, a regression model for 
calculating the estimation Ŷ needs to be developed based 
on the data. The natural way to develop such a model 
is by finding a multiple linear regression model through 
dimension reduction and variable selection techniques.

The principal components of the various impedance 
spectra were chosen as basis functions for reducing the 
dimensionality of the spectra. Together with the other 
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signals from the Multisensor, they were taken as a set of 
potential explanatory variables for a linear regression. 
The BGL values of the reference method (HemoCue) 
were used as reference values Y.

When developing the model on the basis of the 
experimental dataset, it is important to avoid overfitting, 
which occurs when the coefficients of certain variables 
are overadjusted to the data and partly reflect 
peculiarities that are not useful for prediction in new  
data. Therefore, it is an important step to select a subset 
of the most relevant variables. We have applied one of 
the most popular criteria that measures the merit of  
any model that might be considered, namely Akaike’s 
information criterion (AIC),14 AIC = n log(SSE/n) + 2p, 
where SSE is the sum of squares error of the residuals 
(deviations Yi -Ŷi), n is the number of observations, and 
p is the number of variables in the model.

An additive constant (offset) per run was added to the 
model. Considering practical applications for estimation, 
this means that a baseline adjustment will be needed 
in practice for a real-time application of the model. 
Measurements of the BGL by traditional methods will be 
needed for each person and repeated in a regular time 
pattern to calibrate the model. A model that is calibrated 
for all patients (having the same set of coefficients for  
all patients) is called a global model.

In contrast to the global model, a personalized model 
can have different sets of coefficients for different  
patients, thereby accounting for individual physiological 
mechanisms or properties of each patient. In practice, the 
use of such a model would require a training period for 
each patient, during which the model would be calibrated. 
We have taken the global model and reestimated the 
coefficients for each patient separately to obtain a 
personalized model.

Using personalized coefficients, the model becomes more 
flexible and can adjust better to the data on which it is 
estimated. However, this additional flexibility does not 
necessarily increase the predictive power of a model 
(overfitting). In order to quantify the benefit of the 
personalized model, we compared its outcome with the 
outcome of models that had reestimated coefficients 
for randomly chosen subsets of runs, which do not 
correspond to the patients. We drew eight random 
subsets of runs 1000 times. We ensured that these 
subsets had equal numbers of runs as the personal 
subsets and estimated the model coefficients separately 
for these subsets. This ensemble of 1000 models was 

then compared to the personalized model. With this 
comparison, it was possible to distinguish between 
the random effects of a more flexible model and the 
improvements achieved by personalized coefficients.

Results

Basis Functions
The time series of the low and high band of two 
representative runs (study visits) for the conductance 
spectrum of the long electrode can be seen in Figure 4A, 
and the time series of the first two principal components  
of the same spectral data is given in Figure 4B. 
By comparing the relatively simple bands to the more 
sophisticated principal components, it can be seen that 
the principal components better extract glucose-related 
effects from the spectrum.

The principal components are weighted averages of the 
function values, and the weights can be displayed as a 
spectrum. Figure 5 shows the weights (loadings) obtained 
for the first two principal components of the long 
conductance in our study.

Linear Model
We have derived a model by selecting a subset of variables 
from the set of the principal components and other scalar 
variables with AIC variable selection. This led us to the 
following model:

Yi = β0 + β1 × lC.pc1i + β2 × mG.pc2i + β3 × sGlf.pc2i + εi

Yi            BGL

β0            additive constant per run

β1, β2, β3    coefficients to be determined

lC.pc1       first principal component (PC) of the 
capacitance of the long electrode  
(high frequencies)

mG.pc2      second PC of the conductance of the 
electrode (high frequencies)

sGlf.pc2     second PC of the conductance of the 
electrode (low frequencies)

εi             disturbance term
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Figure 4. Time series of (A) bands and (B) principal components of the conductance of the long electrode spectrum for two representative 
runs (study visits). The level of principal component 1 (solid line) depends on the attachment and placement of the device. Component 1 is related to  
dielectric changes of the skin tissue triggered by changes in the BGL. Component 2 (dotted line) reflects sweat and skin moisturization effects.

In fact, lC.pc1 (capacitance of the long electrode) is the 
main blood glucose information carrier. The numerical 
performance can be further improved with one variable 
of the middle electrode (mG.pc2) and with one variable at 
low frequencies (sGlf.pc2). Note that the study has been 
performed at a constant room temperature in the hospital 
(24.0 ± 1.1 °C). As a result, the skin temperature is not 
included in the model because no relevant temperature 
changes occurred.

Glucose estimations of the suggested global model (solid 
line) are compared with actual invasively measured BGL 
values of the target variable (dashed line) in Figure 2. 
The invasively measured BGL values have been linearly 
interpolated in Figure 2 for better readability.

An overall coefficient of determination (R2) of 0.60 and 
a root mean square error (RMSE) of 36.4 mg/dl are 
achieved. Further key indicators of the global model 
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are given in Table 1. The mean absolute difference is 
MAD = avgi[abs(Yi – Ŷi)] and summarizes the absolute 
deviations of the model estimations from the reference 
measurements. The mean absolute relative difference is 
MARD = avgi[abs((Yi – Ŷi)/Yi].

Personalized Model
Using personalized coefficients increases the model’s 
performance significantly and leads to an R2 of 0.71 and 

Figure 5. Weights of the first two principal components of the 
conductance of the long electrode spectrum.

Table 1.
Comparison of Key Indicators of the Global and 
Personalized Modelsa

Global model Personalized model

R2 0.60 0.71

MAD 28.6 mg/dl 24.2 mg/dl

MARD 21.5% 17.9%

RMSE 36.4 mg/dl 31.0 mg/dl

a R2, Pearson coefficient of determination; MAD, mean absolute 
difference; MARD, mean absolute relative difference; RMSE, 
root mean square error.

a RMSE of 31.0 mg/dl. The corresponding time series 
can be seen in Figure 6. Table 1 shows a comparison to 
the global model of the most important key indicators.

The Monte Carlo simulation15 with separate coefficients 
for random subsets of runs that are equivalent to the 
personal subsets provides a set of 1000 corresponding 
coefficients of determinations. These R2 values are higher 
than the R2 of the global model due to the increased 

Figure 6. As in Figure 2 but for the personalized model.
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flexibility (overfitting). However, Figure 7 shows that 
only 1.8% of the models obtained in the set of models 
with random subset of runs reached an R2 marginally 
higher than the personalized model (0.71).

Discussion

Basis Functions
Glucose-relevant and perturbing effects are closely related 
to the first and second principal component of the 
conductance spectrum of the long electrode. This can 
be seen clearly in the time series of the same two  
representative runs (Figure 4B). In fact, the second 
principal component tends toward zero for all runs. It is  
related to the process of the moisturization of the SUT. 
Moisturization can for instance be caused by the attach-
ment of the Multisensor on the skin surface and the 
relocation of fluids within the skin due to the well-known 
occlusion effect and the inhibition of transepidermal water 
loss from the skin.16,17

The first principal component appears to be related to the 
dielectric changes of the microvascularized skin layers and 
therefore contains glucose-relevant information. It shows 
different mean levels from run to run. These levels are 
assumed to be caused by different attachment pressure  
and placement of the device.

Linear Model
Only a few variables were chosen by the AIC to be relevant 
for blood glucose estimation. This proves that the PCA 
was able to concentrate the glucose-relevant effects in 
a few variables only. An adequate statistical agreement 
with the reference BGL was attained by the global model 
despite the perturbations introduced during the study 
visits. This has also been shown when different blood 
glucose profiles are realized.18

However, there were some episodes with larger discrep-
ancies in our data. Patient E had systematically worse 
model glucose estimations than the other patients. A global 
model was not able to adequately estimate the BGL in 
that case.

Personalized Model
The fitting of the personalized model improves, especially 
at the beginning of the runs when the model needs 
to correct for equilibration effects. Additionally, the 
amplitude of the personalized fit is in better agreement 
with invasively measured blood glucose.

The improvements of the fit obtained for the models 
with random subsets of runs are clearly inferior to 
the improvement obtained for the personalized model. 
Therefore, we conclude that the predictive power of 
glucose estimation with the presented device can be 
improved with personalized coefficients in linear regression 
models. This is explained by the interpersonal variations 
in the physical structure of the patient’s skin19 and 
metabolic sensitivity.

Conclusions
The presented data analysis is based on sensor signals 
from the Solianis Multisensor. The study included 
elements to trigger perturbations in the main glucose-
related signals (e.g., cycling, walking, regular deskwork, 
and drinking 3 liters of water). A data processing approach 
and model derivation procedure was suggested and 
successfully tested. It proved feasible to track the effects  
of blood glucose variations with the presented MGMS.

Preprocessing of the impedance spectra using PCA 
proved to be useful for our data. For the most important 
spectra, it separated well the dominating effects that 
contributed to the spectra. Furthermore, it provided 
meaningful physiological signals for subsequent modeling.

Figure 7. Simulated coefficients of determination (R2) of models with 
individual coefficients for randomly chosen subsets of runs (same 
sizes as the personal subsets). The vertical line shows the R2 of the 
personalized model (0.71). For the Monte Carlo simulated models,  
1.8% have a higher R2 than the personalized model.
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It is possible to use a global model with three explanatory 
variables to track the effects of blood glucose variations 
with the MGMS. Care is needed to avoid overfitting 
of the model to the experimental data and to achieve 
predictive power. Variable selection based on AIC leads  
to a robust and powerful model.

We have also shown that personalized coefficients in 
the model not only improve the fit but also increase the 
predictive power of the model with the technical setting  
of the Multisensor used for this study.

An improved attachment method of the sensor substrate 
to the skin as well as filtering and outlier detection is 
expected to further improve the model performance.  
In the next phase, improved optical sensors will also be 
incorporated into the Multisensor, which is a noninvasive 
CGM that employs IS technology to track changes in 
BGLs, in order to better account and compensate for 
perturbing effects associated with changes in skin blood 
perfusion. It will then be established whether further 
improvements can be achieved to move closer toward 
real-time noninvasive continuous glucose monitoring 
under conditions closer to daily life.
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