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Abstract

Chronic pain can be understood not only as an altered functional state, but also as a consequence of neuronal plasticity.
Here we use in vivo structural MRI to compare global, local, and architectural changes in gray matter properties in patients
suffering from chronic back pain (CBP), complex regional pain syndrome (CRPS) and knee osteoarthritis (OA), relative to
healthy controls. We find that different chronic pain types exhibit unique anatomical ‘brain signatures’. Only the CBP group
showed altered whole-brain gray matter volume, while regional gray matter density was distinct for each group. Voxel-wise
comparison of gray matter density showed that the impact on the extent of chronicity of pain was localized to a common
set of regions across all conditions. When gray matter density was examined for large regions approximating Brodmann
areas, it exhibited unique large-scale distributed networks for each group. We derived a barcode, summarized by a single
index of within-subject co-variation of gray matter density, which enabled classification of individual brains to their
conditions with high accuracy. This index also enabled calculating time constants and asymptotic amplitudes for an
exponential increase in brain re-organization with pain chronicity, and showed that brain reorganization with pain
chronicity was 6 times slower and twice as large in CBP in comparison to CRPS. The results show an exuberance of brain
anatomical reorganization peculiar to each condition and as such reflecting the unique maladaptive physiology of different
types of chronic pain.
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Introduction

Increasing evidence supports the idea that chronic pain could be

understood not only as an altered perceptual state, but also as a

consequence of peripheral and central neuronal reorganization.

Studies in animal models of chronic pain have demonstrated that

sustained pain is accompanied with molecular, neuronal, and

structural changes in the periphery and the spinal cord [1]. Recent

anatomical and functional imaging studies in humans are

beginning to provide insights into the brain reorganization

associated with chronic pain. Different chronic pain conditions

seem to evoke distinct brain activity patterns, which reflect not

only pain but also the clinical manifestations associated with the

disease [2,3]. In addition there is accumulating evidence that

chronic pain alters brain dynamics beyond pain perception by

distorting spatial and temporal properties of the brain default

mode network (DMN), first shown in chronic back pain (CBP)

patients for an attentional task [4], and now also seen during

resting state in multiple chronic pain conditions [5,6,7]. Moreover,

chronic pain is associated with distorted information flow in brain

reward/motivation circuitry [8].

Brain reorganization for chronic pain has also been investi-

gated by comparing its morphology between chronic pain and

healthy controls. Altered brain morphology was first shown for

CBP patients [9,10] and is now reported in many pain conditions,

including fibromyalgia [11,12,13,14], complex regional pain

syndrome (CRPS) [15], osteoarthritis (OA) [16,17], irritable bowl

syndrome [18,19,20], headaches [11,21,22,23], chronic vulvar

pain [24], in females suffering from menstrual pains [25], as well

as in animal models of chronic pain [26,27]. Across the human

studies the most consistent observation is regional decreases in

grey matter in the pain patients (although increases and no

change are also reported) and, even though many studies

emphasize involvement of brain regions associated with pain

processes, the data also suggests that unique brain regions are

impacted in different types of chronic pain. Most importantly, it

remains unclear whether morphological reorganization exclu-

sively impacts pain processing circuitry and whether the sites of

local reorganization mirror specific patterns of brain functional

states seen for distinct types of chronic pain (for differing views

see [2,17,28,29]).

Recent studies demonstrate that many of the gray matter

changes observed in pain patients subside with cessation of pain

[16,17,30]. In addition, it has been shown that the observed

morphological differences in chronic pain conditions often

correlate to the number of years of pain individuals have been

suffering with the condition as well as its intensity [9,12,15,28].

These results suggest that the brain morphological changes may

be reversible in nature and are a consequence of pain perception.

However, this pain perception is embedded in a larger

maladaptive context, wherein physical movement, daily function,

and mood are reshaped by the presence of pain. Within this
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framework we argue that brain morphological changes should

also reflect experience/learning dependent changes underlying

the specific pathology and consequent cognitive/behavioral cost

of the disease [31,32]. However, our understanding of the extent

and nature of morphological distortions and the specificity of

these changes in different chronic pain conditions may be

critically limited using the standard assessment methods. The

majority of human brain morphometric studies are based on

voxel-wise comparisons between groups. Implicit in such analyses

is the assumption that expected changes are local and do not

interact with each other. However, if brain morphometry is being

re-carved as a consequence of coping, suffering, and related

behavioral changes, then the interaction across brain regions

should also be distorted with chronic pain, which can be studied

when brain grey matter is viewed as an interconnected network.

Here we evaluate changes in brain structure using high-field

magnetic resonance imaging (MRI) in three chronic pain patient

groups: CBP, CRPS, OA, relative to healthy matched controls.

The primary hypothesis tested is that distinct brain morpholog-

ical changes are associated with different chronic pain types. We

examine the latter at the voxel level, and more grossly when the

brain is parceled into Brodmann areas-based subdivisions. We

also test for the impact of extent of chronicity of pain on brain

morphology by examining its influence commonly across chronic

pain types. Given that different chronic pain conditions seem to

underlie distinct brain functional networks and recent studies link

changes in brain functional connectivity to anatomical connec-

tivity [33,34], we advance and test the hypothesis that the brain

grey matter when viewed as a network will exhibit distinct

properties for different chronic pain conditions. Moreover, we

develop a novel approach for quantifying morphological changes

based on an index derived from within subject co-variation of

brain gray matter, and demonstrate that this approach accurately

classifies individuals to their respective clinical chronic pain

conditions. The latter index provides a measure with which we

could also quantify the time course and amplitude for re-

organization of the brain grey matter network with pain

chronicity.

Results

Total neocortical gray matter volume is lower only in CBP
Differentiating normal age-related changes from the effect of

disease on the total brain volume may potentially provide new

insights regarding mechanisms of chronic pain. Here we compare

total neocortical grey matter (GM) volume between the three

patient groups and controls, after correcting for intracranial volume,

gender, and age. Total neocortical GM volume showed a significant

difference across groups (F (4,128) = 4.19; p = 0.022) (Figure 1A).

Post-hoc comparisons showed that only the CBP patients exhibited

a significant decrease in neocortical GM volume when compared to

healthy controls (p = 0.008). Total ventricular volume (sum of 3rd

and 4th ventricle volumes) was also measured as a control and did

not differ across groups (F (4,128) = 1.08; p = 0.48).

Males and females did not differ in neocortical GM volume

(across all subjects) (F(1,128) = 1.54; p = 0.22) (Figure 1B). When

we examined the relationship of total neocortical GM volume to

age we observed a strong negative correlation for all groups

(healthy age dependent slope: 22.01, R = 0.77, p,0.01; CBP age

dependent slope: 22.43, R = 0.65, p,0.01; CRPS age dependent

slope: 22.15, R = 0.64, p,0.01; OA age dependent slope: 23.00,

R = 0.51, p = 0.02) (Figure 1B). These age-related decreases

were similar for all groups and matched previous estimates

[9,15,35,36].

Voxel-wise and gross regional analyses reveal specific
patterns of decreased gray matter density for each
chronic pain condition

VBM is a flexible voxel-wise whole-brain statistical analysis

technique that can be used to assess between-group differences in

local brain tissue content and to examine correlations between tissue

content and other measures of interest. To identify regional increases

or decreases in GM density for the different pain conditions, each

group was entered as a condition into a separate model, and linear

contrasts performed against age and gender matched healthy controls

(unpaired t-test, t-score .3.0, corrected for multiple comparisons

across space using permutation testing, clustering determined using

TFCE). Only significant decreases of GM density were observed in

the patients relative to healthy controls. The three VBM statistical

maps show distinct regional GM density decreases for each chronic

pain group (Figure 1C, Figure S1). CBP was associated with

decreased GM density in bilateral posterior insula, secondary

somatosensory cortices, pre- and post-central regions in addition to

hippocampus and temporal lobes. CRPS showed decreased GM

density primarily in the anterior insula and orbitofrontal cortex.

Decreased GM density in OA was localized to portions of the insula

and mid ACC in addition to the hippocampus, paracentral lobule

and regions of the inferior temporal cortex (Table S1).

It is interesting to note that GM decrease in density in chronic pain

patients showed distinct amounts of overlap between conditions. The

OA VBM map showed 89.7% overlap with that of CBP. The CRPS

was the most dissimilar of the 3 patient groups and it showed 8.7%

overlap with CBP and 9.l% with OA. In addition, GM density

decreases were not limited to regions that have been shown to be

involved in pain perception, representation, or modulation. For

example, all groups exhibited decreased GM density in the inferior

temporal gyrus, and CBP and OA also showed decreased GM

density in the hippocampus and visual cortex, brain regions that do

not receive direct input from the ascending nociceptive pathways and

are not implicated in processing painful information.

In addition to voxel-wise VBM, we examined GM density changes

at a more gross level by parceling the brain to 82 predefined ROIs

and computing mean GM density in each ROI, as derived from the

VBM analysis. The 82 regions comprised 41 cortical regions in each

hemisphere, corresponding approximately to classical Brodmann

areas. Similar to the voxel-wise VBM analysis, age, gender, and total

intracranial volume were regressed out. Differences in GM density

across the four subject groups for all ROI-s were tested using a 1-way-

ANOVA (corrected for multiple comparisons using the Holm-

Bonferroni correction). Results for the comparison are shown in

Figure 1D, and generally agree with the results obtained with voxel-

wise VBM comparisons. Regions that best differentiated GM density

between the groups included pain related areas such as secondary

somatosensory cortex, bilateral insula, and dorsal and orbital fontal

regions, in addition to regions not specifically related to pain

processing: the hippocampus and occipital cortex.

Relating grey matter density decreases to chronicity of
pain

To elaborate on the specificity of GM density changes in relation

to clinical pain parameters, we first performed a whole-brain voxel-

wise correlational analysis between GM density results obtained by

VBM and pain intensity, pain duration, and their interaction

independently for each group. Previous reports indicated that the

degree of GM density changes show a relationship with duration

and intensity of pain in different pain conditions [9,12,15,22]. In the

present study GM density did not show any significant correlations

with pain duration, intensity or their interaction for any group.

Anatomical Changes in Chronic Pain
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We also investigated the contribution of depression, anxiety and

drug usage to GM density changes. We performed a whole-brain

voxel-wise correlation analysis between GM density results

obtained by VBM and Beck Depression Inventory (BDI), Beck

Anxiety Inventory (BAI), and Medication Quantification Scale

(MQS) scores independently for each group. GM density did not

show any significant correlation with anxiety, depression or MQS.

In addition the relationship between GM density and pain

intensity and/or duration did not change when anxiety, depression

and medication use were used as covariates of no interest.

In contrast, when we examined the effect of chronicity of pain

irrespective of pain duration type (voxel-wise VBM contrast

between short duration.long duration for all patients; separated

by the median of pain duration = 5.1 years, Figure 2A, 2B), we

observe multiple brain areas distinguishing between short and long

duration chronic pain (Figure 2C), where we again observe only

Figure 1. Cortical gray matter changes in three chronic pain conditions assessed at multiple scales. A. Average total neocortical gray
matter (GM) volume for the three patient groups, CBP (n = 36), CRPS (n = 28) and OA (n = 30), and healthy controls (n = 46). Group effect was assessed
using an ANCOVA with age, gender and intracranial volume as confounds and was significant (F (4,128) = 4.19, P = 0.022). Planned pair-wise contrasts
between each chronic pain group and healthy controls showed that only CBP exhibited a significant decrease in total neocortical GM volume
(p,0.01). B. Bargraph shows that total neocortical GM volume did not differ by gender across the groups (F (4,128) = 1.54, P = 0. 22). Scatter plot
presents neocortical GM volume in relation to age for each subject, color-coded by group. All patient groups and healthy controls exhibit a significant
negative correlation between neocortical GM volume and age. Right panel shows the slopes computed independently for each group, which did not
differ from each other. C. Gray matter morphological changes assessed by voxel based morphometry (VBM). The three groups of patients were
contrasted separately to specifically matched healthy controls. Shown are the t-test statistics maps for patients,controls (t-score .3.0, corrected for
multiple comparisons across space by permutation testing, clustering determined using TFCE). The three patient groups exhibited distinct cortical
patterns of regional gray matter density decreases (CBP = red, CRPS = yellow, OA = blue). D. Gray matter morphological changes assessed by ROI
based GM density comparison. The cortex was subdivided into 82 predefined regions, which approximate the left and right hemisphere Broddmann
areas. Gray matter density was averaged across all voxels within each ROI and compared across groups after correcting for age, gender and global
brain volume. Plot shows the F-value for across group comparison, green line indicates significance threshold (F (1,124).2.7). Brain regions above
threshold are labeled and include multiple frontal regions, insula, secondary somatosensory cortex (SII), hippocampus, and occipital cortex.
doi:10.1371/journal.pone.0026010.g001
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decreased GM density and only in the long duration grouping.

The brain areas identified were mainly sensory and motor regions

as well as bilateral insula. As a case example, and a post-hoc

regional analysis, we extracted the peak GM density for the right

insula and compared its values between healthy subjects, and short

and long duration groupings for chronic pain patients. GM density

for the insula (healthy: 0.5360.06, short duration: 0.5460.05,

long duration: 0.4760.06; values expressed as mean6S.D) was

significantly lower in the long duration group compared to the

healthy (unpaired t-test, t = 22.56, p ,0.05) and short duration

groups (t,22.78, p,0.05) (Figure 2D). Moreover, the right

insula GM mean showed a tight correlation with individual

subjects’ pain duration (log scale), only for the group with long

duration chronic pain (R = 0.79, p,0.01; Figure 2E). These

Figure 2. Relationship between Gray matter density and duration of chronic pain. A) Distribution of pain duration for all patients. Patients
were divided into 2 subgroups (short duration and long duration) based on the median (median duration = 5.1 years, dashed line). B) Pie charts show
the frequency of each patient population for the 2 subgroups. C) Brain regions that exhibit significant decreased GM density for long duration
compared to short duration pain (voxel-wise VBM, unpaired t-test, t-score .3.0, corrected for multiple comparisons across space using permutation
testing, clustering determined using TFCE). Regions that showed significant decreases in GM density for longer pain duration included primary
sensory and motor regions, as well as insular cortex. D) Bargraph shows the mean +/- SD for GM density for the right insula for the short duration,
long duration and healthy groups. Insular mean GM density was significantly less for the long duration group when compared to short duration or
healthy groups. E) Scatter plots show the relationship between Insula GM density and duration for the short duration group (left panel, open circles)
and long duration (right panel, filled circles). The insula shows a significant relationship with pain duration only in the group when pain was
experienced for more than 5 years (R = 0.71, p,0.01).
doi:10.1371/journal.pone.0026010.g002
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results, therefore, imply that living with chronic pain, independent

of its type and past about 5 years, imparts GM decrease in

proportion to the pain duration within a common set of brain

regions.

Chronic pain specifically disrupts whole-brain
morphological structure of the brain

Here we tackle the issue of the influence of local morphological

disturbances on the inter-relationship of morphology in relation to

other brain regions. Specifically we address the issue, given that

the different chronic pain groups exhibit distinct regional GM

density decreases, how do these local changes relate to the

morphological structure of the whole cortex? Whole-brain

anatomical organization can be abstracted by compiling a matrix

of correlations between all pairs of regions, averaged for

appropriate subject groupings. As the gross 82 ROI based VBM

data dramatically compresses representational dimensionality, it

can be readily used to generate such a matrix of associations

between (VBM derived and corrected) gray matter density

estimates for each pair of ROIs, in each group separately. Four

correlation matrices for the four groups are illustrated in

Figure 3A. Qualitatively we observe that, compared to the

Figure 3. Cortical structural covariance is specific for different chronic pain groups. A) Structural covariance was studied by calculating
pair-wise correlation of GM density between the 82 ROI-s across subjects separately for healthy controls, CBP, CRPS, and OA, after correcting for age,
gender, and total intracranial volume. Resultant correlation matrix shows widespread increases in correlation strength in all three patient groups. B)
Scatter plots show the left hemisphere pair-wise correlations (for the 41 ROIs) plotted against mean distance between pairs. Healthy subjects show a
linear dependency on distance. This relationship is disrupted in unique ways in each chronic pain condition. Green dots indicate the correlation of
one example region to the rest of the brain. C) Bar plots are the same data as in (B) after binning distances into 6 ranges, 25 mm each. Mean +/- SD
for pair-wise correlation coefficients are shown for each bin, in each group. Patients show higher correlations between ROIs that are far apart
(.100 mm apart; asterisks p,0.01 comparing means for each bin to its counterpart in the healthy controls). D) Spatial illustration of changes in
correlation for a frontal cortex ROI (same area illustrated in green in B). Significantly strong connections (r.0.6, p,0.05) are plotted (green lines) on
standard brain (black marks are centers of ROIs). Strong connectivity is observed with neighboring regions in the healthy group, while all three
chronic pain patient groups show enhanced long distance connections.
doi:10.1371/journal.pone.0026010.g003

Anatomical Changes in Chronic Pain
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correlation matrix for healthy subjects (Figure 3A, left panel),
all three patient groups show increased correlation strengths

(positive and negative) for many pairs of ROI-s. To visualize the

spatial properties of these correlations, we displayed the strength of

the correlations as a function of the physical distance between any

given ROI pair, for each hemisphere. For the left hemisphere

(Figure 2B, left panel), healthy subjects showed a linear

relationship between correlation strength and distance (R = 0.67,

p,0.01). Thus, whole-brain GM density structure can be captured

by this simple linear rule, which shows that ROIs that are located

close to each other are more similar in GM density than those

farther apart, and the decrement in GM density similarity is

proportional to the distance separating the involved regions. Yet,

this rule may have local exceptions, as there are large scatter of

values away from the linear fit. This relationship was attenuated

for CRPS (R = 0.29, p,0.05) and disturbed for CBP (R = 0.12,

p = 0.18) and OA (R = 0.09, p = 0.31) (Figure 2B right three
panels). Comparison of the slopes of each pain group to that of

healthy controls yielded significant differences (p,0.01 for each

comparison). Qualitatively we observe that the shape of the cloud

of scatter of points is distinct for each chronic pain group. Within

the 2-dimensional correlation-to-distance space, CBP group shows

less observations in the right lower corner and increased points in

the right top corner; CRPS group shows more values throughout

the right half of the space; and OA group observations seem to

expand and fill all quadrants of the space. These distinct patterns

suggest that the whole-brain inter-relationship of GM density is

uniquely shifted in each chronic pain patient group. Some of these

between group structural differences can be captured quantita-

tively by binning the distances (Figure 3C, 6 bins of 25 mm each).

All three patient groups show significantly higher mean correlation

(mean of coefficients for all voxels within bin) compared to controls

for ROI-s that are physically separated by 100, 125 and 150 mm.

In addition OA patients exhibit the most variability in connectivity

strength for any distance (size of SD).

To illustrate the global disruption of correlations across the

brain, we examined a single (arbitrarily chosen) frontal ROI and

its strength of connectivity across the four groups. The distribution

of correlation values for this ROI closely mimic that seen across all

ROIs for each grouping (Figure 3B). By applying a significance

threshold (correlation values R.0.6, corrected for multiple

comparisons using Holm-Bonferonni) we can observe the spatial

distribution of the strongest correlations between GM density in

this region and the rest of the brain. Figure 3D illustrates these

connections on the left hemisphere, where again we observe

strengthening of long distance correlations in the three chronic

pain groups in contrast to the healthy subjects in which case strong

correlations are localized to the neighborhood of the ROI.

Subject classification based on gross brain morphology
Using three different approaches above we examined the

impact of chronic pain conditions on cortical morphology. Sum

total of these results suggest that the anatomy of the brain in

chronic pain is reorganized distinctly from that of healthy subjects,

and in a pattern unique for each of the pain conditions studied.

The latter implies that brain morphology may provide the means

by which individuals can be diagnostically classified to their

appropriate grouping. Here we devise a novel approach to identify

a ‘brain signature’ for the different conditions, and test its accuracy

in properly classifying individual brains. As the whole-brain

structural properties seem distinct for each chronic pain group, we

used GM density across all 82 ROI-s as the vector defining each

individual. Figure 4A shows the group average normalized GM

density for patients and healthy controls. Differences in the shape

of these vectors reflect average group brain regional distinctions of

GM density, which emphasizes within subject co-variation of GM

density. To further simplify this representation, these vectors were

binned into three categories (high GM density = +1, average GM

density = 0, and low GM density = -1). The threshold was selected

to optimize differences between groups while retaining the

maximum amount of information (Figures 4B). This approach

emphasizes divergence from mean by marking peak changes and

thus reducing noise. The resultant ‘barcodes’ for the 4 groups are

displayed in Figure 4C. The pairwise correlations of the group

barcodes with each other are shown in Figure 4D. All groups

exhibited negative correlations with each other, with OA and

healthy being the most different (R = 20.61) and OA and CBP the

most similar (R = 20.23). Individual subject barcodes were

generated with the same approach. Calculating correlations

between each subject’s barcode to the 4 group barcodes assessed

the similarity of each subject’s brain morphology to the four

groups. The highest correlation coefficient was used to classify any

given subject to the corresponding category (Healthy, CBP, CRPS

or OA). Using this method we were able to classify with high

specificity (Healthy: 86.2%, CBP: 94.2%, CRPS: 92.2%, and OA:

90.9%) and sensitivity (Healthy: 80.0%, CBP: 81.2%, CRPS:

90.5% and OA: 72.6%). We also tested two other classification

techniques, logistic regression and artificial neural networks, and

these resulted in similar performance accuracies as the simple

maximum correlation method (data not shown).

We also tested classification using a more restricted barcode by

including only ROI-s that exhibited largest differences in GM

density across groups (14 ROI-s that passed threshold,

Figure 1D). Using this 14 ROI barcode we were able to predict

each class with specificity (Healthy: 94.8%, CBP: 92.0%, CRPS:

96.9% and OA: 94.9%) and sensitivity (Healthy: 95.7%, CBP:

91.2%, CRPS: 94.1% and OA: 75.0%) (Figure 4E). The 14 ROI

based classification improves mainly sensitivity relative to the

whole-brain based results.

As the available data set remains relatively small, the above

classifications were based on average barcodes calculated across all

members of each group and then testing membership for each

individual. Thus it suffers from the bias of double dipping. To

overcome this bias we also tested classification, for the whole-brain

and 14 ROI barcodes, when subsets of subjects (5 and 10) were

used to determine the group barcode. The subset of subjects was

selected per group at random to generate the group barcode and

the sensitivity and specificity were computed using the rest of

subjects. This process was iterated 10 times resulting in mean+/-

S.D. sensitivity and specificity values for each condition and subset

size. Group average specificity and sensitivity values are shown in

Figure 4D. When the number of subjects was restricted to 5 to

generate group barcodes, for the whole-brain barcode we were

able to predict classes with high specificity (Healthy: 81.668.0%,

CBP: 80.868.9%, CRPS: 82.665.8%, and OA: 81.563.3%) and

sensitivity (Healthy: 39.6610.9%, CBP: 56.269.9%, CRPS:

38.6613.8% and OA: 46.568.2%), and for the 14 ROI barcode

we obtained better specificity (Healthy: 90.666.3%, CBP:

88.162.5%, CRPS: 91.065.1%, and OA: 85.064.0%) and

sensitivity (Healthy: 64.35612.45%, CBP: 82.9468.67%, CRPS:

60.00610.53% and OA: 50.0067.55%). When 10 subjects were

used to generate the group barcodes, for the whole brain barcode

we were able to predict the class with higher specificity (Healthy:

91.762.6%, CBP: 95.462.3%, CRPS: 92.364.0% and OA:

90.662.3%) and sensitivity (Healthy: 77.266.1%, CBP:

82.466.0%, CRPS: 78.266.2% and OA: 69.068.8%), and for

the 14 ROI barcode we did not improve specificity (Healthy:

92.264.0%, CBP: 94.962.8%, CRPS: 91.765.2% and OA:

Anatomical Changes in Chronic Pain
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Figure 4. The ROI based GM density profile can be transformed into a barcode and used to classify chronic pain patients with high
accuracy. A) The GM density for each ROI was normalized within subject and averaged for each group. The four groups show distinct variations of
GM across the brain. Dashed lines are thresholds implemented to tag ROIs to three different classes, high (+1), average (0), or low (21) GM values. B)
Threshold was selected to optimize the difference between groups. Black trace shows the relationship between the sum of R (the sum of the pair-
wise correlations coefficients between the barcodes for the 4 groups) and threshold implemented to generate the bar graphs. The green trace
represents the amount of information measured as joint entropy for the 4 groups as a function of threshold. The 4 groups showed the most
difference at a threshold of 0.56 (vertical dashed line). C) Group barcodes derived for the data in (A) using the selected threshold. D) Pair-wise
correlations across the four groups for the selected threshold. All between groups correlations are negative. E) Sensitivity and specificity of correctly
identifying individual subjects to their respective group based on the maximum correlation of each barcode with group barcodes. Left panel is when
the whole-brain barcode, shown in C, is used. Right panel is the result when 14 ROIs that best discriminate between the groups (shown in Figure 1C)
were used. The procedure shows very high specificity and sensitivity, as random classification would correspond to 25% sensitivity and specificity. F)
Dependence of sensitivity and specificity on number of brains used to calculate average barcodes. Whole-brain or 14 ROI-based barcodes derived
from a subset of subjects per group (5 and 10 respectively) and classification applied to the rest of the subjects. Shown are mean6S.D. of specificity
and sensitivity from 10 iterations for random choices of 5 and 10 subject group barcodes. Specificity exhibited robust results for both tests, while
sensitivity seemed to be more dependent on the number of subjects used and the specific group tested.
doi:10.1371/journal.pone.0026010.g004
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91.564.9%) or sensitivity (Healthy: 81.9563.97%, CBP: 86.946

5.58%, CRPS: 75.00612.14% and OA: 66.00611.25%) (Figure
4F). Overall, by increasing the number of subjects (from 5 to 10)

used to generate the average barcode we improve accuracy of

classification for both whole-brain and 14 ROI based barcodes,

and performance becomes similar to that obtained when barcodes

are derived from the complete data set. Interestingly, whole-brain

barcode performs better than 14 ROI based barcode when the

group averages are derived from the larger number of subjects.

The obtained accuracy of the approach is remarkable even when

very small numbers of subjects are used to generate the group

barcodes, attesting to the robust and homogeneous differences in

brain morphology between the groups.

To visualize the extent of the similarities and overlap between

groups and individuals, we computed a distance (d) between each

subject’s barcode and the 4 group barcodes, based on the

correlation coefficients. Figure 5 shows the relative distribution

of all subjects and the median and interquartile contours for each

group, for the whole-brain (Figure 5A) and 14 ROI barcodes

(Figure 5B). The groups are far more distinct for the 14 ROI

barcodes. This segregation implies that if we use a more complex

classification algorithm based on subdividing this 2-dimensional

space then we should be able to classify individual brains at even a

higher accuracy than shown above. This Figure also quantifies the

relative distances of brain morphology between groups and

individuals, and shows that CBP brains are most dissimilar to

healthy subjects’ brains, followed by OA, while CRPS brains have

the shortest distance to healthy subjects’ brains. Additionally, CBP

brains are far distant from CRPS or OA, and CRPS and OA are

much closer to each other than CBP brains.

Relating whole-brain morphological reorganization to
chronicity of pain

Here we investigate the relationship of the observed whole-brain

morphological changes to clinical characteristics. The relative

distance, Dd, for each individual patient from the mean

coordinates of healthy subjects (see Figure 5A) was computed

and submitted for correlation analysis with pain duration, intensity

and depression for each patient group independently. We found

that Dd, which signifies the degree of deviation of whole-brain

morphological co-variation from norm, is significantly related to

pain duration in all patient groups. Figure 6A shows the

relationship of Dd and duration of chronic pain in log scale.

The CRPS group showed the highest correlation (R = 0.84,

p,0.01) followed by CBP (R = 0.81, p,0.01) and OA (R = 0.64,

p,0.04). When we compare the slopes between groups, only the

CBP and CRPS showed a significant difference (CBP b= 0.087,

CRPS b= 0.043, t-score = 4.12, p,0.01). These results indicate

that pain duration and whole-brain gray matter reorganization are

interrelated, for durations spanning from 3 months to 42 years, for

all patient groups. In order to elucidate the temporal evolution of

this relationship, we investigate the linear relationship between Dd

and pain chronicity. We found that it significantly followed an

exponential growth function in CBP (R = 0.82, p,0.01) and

CRPS (R = 0.81, p,0.01), but not in OA (exponential and linear

fits do not differ in OA, yet it seems to have characteristics in

between CBP and CRPS) (Figure 6B). In addition the time

constant for the CBP was significantly larger in CBP compared to

CRPS (CBP t= 11.72 years, CRPS t= 1.71 years, t = 6.30,

p,0.01). These results directly link gross whole-brain reorganiza-

tion to the main clinical parameter, its chronicity, and indicate

that the deviation of the GM network from the normal brain is

about twice as large and 6 times slower in CBP than in CRPS. It is

worthy to note that Dd did not show any significant relationships

with pain intensity or depression.

Discussion

Our results show that different clinical chronic pain conditions

are associated with unique brain morphological changes, both

locally and grossly when GM is viewed as an interconnected

network. In addition, the impact of extent of chronicity of pain

imparts regional voxel-wise decreases in GM shared across the

groups investigated, and yet reorganizes the GM as a network to

distinct amounts and at distinct rates in some of the groups

studied. We utilized different approaches to quantify and compare

structural changes at different spatial scales: 1) we assessed whole-

brain cortical volume to examine global changes in brain

structure. This parameter was only reduced in CBP and is

consistent with our previous reports in which we observed

decreased whole-brain volume in CBP [9] but not in CRPS

[15]. 2) We used voxel-based morphometry (VBM) to assess

localized changes in GM density and observed only regional GM

decreases, which were more similar between CBP and OA, and

distinct in CRPS. 3) When VBM data was contrasted between

long and short duration chronic pain groupings, we observe

somatosensory, insular and motor regions exhibiting decreased

GM and specifically show that the insula GM decreases with a

characteristic time constant only when pain is maintained for .5

years. 4) We parceled the brain to 82 brain regions approximating

Brodmann Areas and generated a structural covariance to map

Figure 5. Individual brain and group GM interrelationships
based on barcodes. A) Whole-brain group-averaged barcodes
(Figure 4 C, D, E) were used to localize the relative relationship
between individual brains (left), and group averages (right). B) Same as
A except the barcode is derived from the 14 ROI barcodes (Figure 4 F).
The distance from the three poles and from the center (corresponding
to healthy controls) was computed from the correlation of individual
subject barcode with the 4 group barcodes. Left panels localize
individual brains relative to the center (healthy controls) and poles of
the equilateral triangle defining the three patient groups. Right panels
show the bi-median (cross) and 2-dimensional inter-quartile distances
(color contours) of each group relative to the center and poles of the
triangle. Different colors represent different groups. Outliers are shown
as stars (three CBP and one healthy control brains).
doi:10.1371/journal.pone.0026010.g005
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anatomical interrelationships within the cortex for each group.

The latter analysis showed that the OA brain is the most disrupted,

and that all three pain patient groups’ brains show distinct patterns

of reorganization relative to healthy controls. 5) We used the 82-

region parcellation to generate a barcode and demonstrated that

this measure can robustly classify individuals to their respective

groupings, and this approach demonstrated that CBP brain as a

co-varying network is most distinct from healthy subjects while OA

and CRPS are more similar to each other and to healthy brains. 6)

Finally, the barcode analysis also led to quantifying the extent and

rate of change of the brain GM network with pain chronicity.

Whole-brain VBM, where GM density is contrasted between

subject groups for each GM voxel, remains the most commonly

used tool to assess brain morphological changes in humans. Since

the first report of brain grey matter distortions in chronic back

pain [9], a rapidly accumulating literature has been documenting

evidence for brain morphological changes in diverse clinical pain

conditions (see above), all of which are based on voxel-wise

comparisons of either GM density or GM thickness. Here, using

voxel-wise VBM contrasts, we observe that all three patient groups

showed decreases in regional GM density compared to respective

matched healthy controls. The CBP group showed the most

spatially extended pattern. The OA patients exhibited voxel-wise

decreased GM density in many of the same regions as in CBP, and

the OA results agree with earlier observation regarding GM

decreases in the hippocampus [17], and insula and S2 [16].

Decreased gray matter in CRPS was restricted to anterior insula

and parts of the orbital frontal cortex, closely replicating our

previous observations [15]. Although a few studies have reported

regional increases in GM in some pain conditions [24,37,38], the

most common observation has been decreased GM density or

thickness, and the present results confirm the latter for three

chronic pain conditions.

Do chronic pain patients have a common brain GM distortion

signature? Based on the results of a meta-analysis of VBM changes

in 12 different patient cohorts, May [39] argues that chronic pain

conditions are associated with structural changes within a common

set of brain regions involved in pain perception and modulation,

with the cingulate and insular cortices exhibiting most consistent

decreased GM density in the cohort. Evidence for this claim is

supported partially by the results in this study. For example all

groups exhibited decreased GM in the insular cortex. In addition,

the CBP and OA groups exhibited similar GM density decreases

especially in the cingulum, S1, and S2 cortices. Furthermore

duration of chronicity of pain, examined across all patient

populations, was associated with additional GM decreases in

brain regions known to receive nociceptive inputs and involved in

pain perception and modulation, namely insula, S1 and S2 [2,3].

However, despite these similarities, our data also showed non-

overlapping GM density decreases in diverse brain regions.

Indeed, brain areas that exhibited the most change in GM density

across the three patient groups included the hippocampus,

multiple lateral frontal regions and portions of the occipital lobe,

demonstrating that morphometric changes are not limited to pain

specific regions, but may reflect specific behavior and physiological

changes associated with prolonged coping with persisting pain.

If, instead of using voxel-based contrast, we parcel the brain into

82 ROI-s and normalize ROI GM values relative to within subject

variability, then fourteen gross brain regions distinguish between

the four groups. Many of these ROIs coincide with the regions

Figure 6. Relating whole-brain GM reorganization to pain chronicity. A) Scatter plots show the relationship between relative bar-code
distances, Dd, for individual patients and duration of chronic pain in CBP (red), CRPS (yellow) and OA (blue). The relative distance was computed as
the Euclidean distance between individual patients’ location in the ternary plot from the center for the mean of healthy controls (Figure 5A), thus
reflecting extent of global gray matter reorganization, where larger distances indicate larger deviations form healthy. All patient groups exhibited a
significant correlation between the distance and duration of pain in log scale. B) Same data in A plotted as a linear function of pain duration. Distance
relationship to pain duration followed an exponential growth function in CBP (left plot, red circles) and CRPS (middle plot, yellow circles), but not in
OA (right) plot. Yellow and red traces in right plot show the best fitted curves for CBP and CRPS respectively.
doi:10.1371/journal.pone.0026010.g006
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identified by voxel-wise contrasts. This approach allows building a

group specific barcode, which enables using within subject

variability of gross GM values as a biomarker of chronic pain.

We demonstrate that, using whole-brain or 14-ROI based

barcodes we can accurately classify subjects to their respective

groups, and localize individual brains in relation to the group and

in relation to other groups. This approach has the potential of

being used in comparing between different disease states and

treatments, especially in chronic pain where large co-morbidities

are commonly assumed [40], as well as within and across various

neurodegenerative conditions.

The reduced dimensionality of the ROI based analysis provides

the means for examining across regional co-variations, a method

adapted from recent techniques used to analyze network

properties of GM [34,41,42]. With this approach we reveal that

the brain GM as a network shows a simple linear distance

dependence in healthy controls. To our knowledge, this is the first

demonstration that gross BA-based brain network organization

tightly reflects the distance separating pairs of BA-s from each

other, and this dependence is most likely a reflection of genetic and

developmental competitive processes underlying maturation of the

cortical mantle. The current study is also the first to examine

anatomical GM networks in chronic pain. All patient groups

exhibited changes in inter-regional connectivities compared to

healthy controls, and uniquely distorted distance dependencies,

especially between non-adjacent regions (more than 100 mm

apart). The observed increases in GM density across non-adjacent

regions may reflect physiological changes in wide-brain distributed

functional networks. This is supported by recent evidence which

showed that in healthy subjects nodes within each functional

network exhibited tightly correlated gray matter volumes [41].

Similar whole-brain reorganization was recently demonstrated

using a very different approach: the linear relationship between

white-matter anisotropy to total gray matter volume seen in

healthy subjects is disrupted in CRPS patients [15]. Recent

evidence shows that functional specialization can lead to related

anatomical changes and regions that are anatomically connected

exhibit strong correlations in cortical thickness [42], perhaps

because connectivity confers a mutually trophic effect on

reorganization of connected regions, based on Hebbian plasticity

rules [43,44]. Moreover, whole-brain anatomical networks seem to

possess a degree of organization consistent with brain functional

networks [33,34]. Furthermore, such anatomical networks exhibit

specific reorganization in schizophrenia (Bassett et al., 2008) and

neurodegenerative diseases [41]. As we demonstrate that the gross

GM network reorganization has characteristic time constants,

distinct patterns of reorganization, and distinct magnitudes of

deviation from the normal brain, we conclude that each condition

uniquely impacts on the brain. As we observe that regional

decrease in GM density, for example in the insula, also exhibits a

characteristic time constant (slope of log-linear plot), we infer that

the whole-brain time constants should reflect anatomical and

functional reorganization for local changes as well as related

functional and anatomical connectivity changes, each of which

most likely possesses specific time constants. Thus, we can

conclude that living with distinct chronic pain conditions confers

a brain anatomical network reorganization, reflecting at least in

part a physiological reorganization, that must be the result of the

sum total of experiential changes (coping and suffering that result

in novel associations and deficits in learning, in memories and

valuation [45], and in extinction of memories [2,31]), as well as

peripheral and spinal cord reorganization observed in animal

models [1]. Therefore, we conclude that GM distortions measured

locally or as a network can be considered not only as a robust

biomarker for chronic pain but also a specific biomarker that

differentiates between kinds of chronic pain, and as such may be

useful in disentangling between co-morbidities. Given that the

anatomy of the brain is uniquely re-organized for distinct chronic

pain conditions, one has to assume that the observed shifts reflect

unique cognitive abnormalities, which may be unraveled based on

the properties of the GM distortions. We have intentionally not

pursued the inter-regional connectivity differences between the

conditions studied, yet such contrasts would provide leads as to

underlying cognitive/emotional/sensory distinctions, as well as

suggest mechanistic differences regarding cortical plasticity for

various chronic pain conditions.

Technical issues
A notable concern is the reproducibility of VBM results for the

same patient population, within and across studies. The CBP

patients in this study showed a more spatially diverse pattern of

GM decreases compared to our previous report [9] and those from

another study[10]. We presume this difference is a consequence of

multiple small incremental improvements: higher strength magnet,

larger sample size, better quality control for acquired MRIs, better

matching of templates, corrections for confounds and other small

changes in analysis. Multiple investigators have examined brain

morphometry in fibromyalgia patients [11,12,13,14,46,47]. Most

show a regional decrease in grey matter density [12,46,47], one

shows an increase [11], and yet another finds no change at all [13].

Such variability of outcomes in a single chronic pain condition is

unlikely to be a reflection of the patients studied. Instead it is more

probably because of the fact that morphometric studies are

complicated and subtle technical differences can bias outcomes,

such as integrity of acquired MRIs, inadequate registration and/or

segmentation, and choice of statistical test (parametric or non-

parametric). We assume that the method we advance here, based

on parceling the brain to 82 ROI-s, will be more readily usable

across labs and might result in more reproducible outcomes, as the

technique may not even need high resolution MRIs and has the

potential of using MR images acquired in different labs and with

different scan parameters, all of this, however, remains to be tested

in the future.

An additional limitation of the study is the fact that chronic pain

patients use various analgesic drugs over many years, which might

confound observed brain morphological changes, as suggested

earlier [9,10] [15]. We quantified drug consumption using a

validated questionnaire [48], which reduces drugs used for

different durations and doses to a single scalar. This allowed us

to examine the effect of medication on grey matter changes using a

covariate analysis. No significant relationships in GM density with

drug use were observed.

Conclusions
We demonstrate that brain GM properties are distinct in three

chronic pain patient conditions at multiple spatial scales, locally

and globally: whole-brain, the brain parceled to 82 GM regions,

the brain as a network of 82 GM regions, and voxel-wise GM.

The regional GM values show highly specific group differences,

enabling classification of individuals to their conditions with high

accuracy. Additionally the impact of the extent of chronicity of

pain can be observed commonly for all conditions and as

characteristic time constants for reorganizing the brain GM

network. Specific distorted GM networks for each chronic pain

group studied suggests that the reorganization is related to the

disease properties and as such reflects the maladaptive physiology

of chronic pain. The profusion of brain anatomical reorganization

with chronic pain suggests that such conditions can be used as a
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tool for studying large-scale brain plasticity mechanisms in general.

Given the diverse spatial and temporal evidence presented here

and shown in animal models [26,27] for brain anatomical

reorganization with chronic pain, a multiplicity of mechanisms

should underlie these changes.

Methods

Subjects
The pool of subjects that participated in this study included 46

healthy subjects (26 females, 20 males; age: mean = 38.77,

s.d. = 12.50 years), 36 CBP patients (13 females, 23 males;

average age: mean = 48.20, s.d. = 11.38 years), 28 CRPS patients

(24 females, 4 males; average age: mean = 40.57, s.d. = 7.4 years)

and 20 OA patients (4 females, 16 males; average age:

mean = 53.50, s.d. = 7.4 years). All procedures for this study were

reviewed and approved by Northwestern University ethics and

IRB committee. All participants reviewed and signed written

consent forms approved by Northwestern University ethics and

IRB committee. All participants were right-handed. Healthy

subjects, CBP and OA patients were recruited by newspaper ads

in Chicago area, whereas CRPS patients were recruited from

local clinics in Chicago and a clinic in Toledo, OH. All patients

were diagnosed by a clinician and fulfilled the International

Association for the Study of Pain (IASP) criteria, and had to

satisfy a specific list of inclusion/exclusion criteria. Patients were

excluded if they reported other chronic painful conditions,

systemic disease, history of head injury or coma, or psychiatric

diseases. Depression is a common comorbidity of chronic pain.

Therefore, patients reporting more than mild to moderate

depression, as defined by Beck’s Depression Inventory (BDI,

global score .19) were also excluded. No cutoff threshold was

used for anxiety.

Pain parameters and medication
All patients completed the short-form of the McGill Pain

Questionnaire (SF-MPQ) which includes a visual analog scale

(VAS) (0 = no pain, 100 = maximum imaginable pain) and pain

duration. Depression scores for all subjects that participated in

the study were assessed using BDI. All questioners were given

1 hour prior to brain scanning. Drug consumption was quantified

using the Medication Quantification Scale (MQS) [48], which

reduces drugs used for different durations and doses to a single

scalar. The clinical and demographic data, as well as pain-related

parameters for the CBP, CRPS and OA patients are presented in

Table S2.

Scanning parameters
We used a 3T scanner (Siemens, Germany) to acquire high-

resolution T1-anatomical brain images. For all participants,

MPRAGE type T1-anatomical brain images were acquired using

the following parameters: voxel size 16161 mm; TR, 2500 ms;

TE, 3.36 ms; flip angle = 9u; in-plane matrix resolution, 2566256;

slices, 160; field of view, 256 mm.

Total gray matter volume estimation
All subjects were included for this analysis. The T1-anatomical

brain images were used to calculate cortical gray matter volume,

with skull normalized to a standard brain (to compensate for

body-mass variations), excluding the cerebellum, deep gray

matter and brainstem. T1-anatomical brain images were also

used to calculate skull-normalized lateral ventricular volumes (3rd

and 4th ventricles), using an in-house-made mask for this purpose.

SIENAX, (http://www.fmrib.ox.ac.uk/fsl/), was used to yield

estimates of volumes of interest [49,50], after automated brain

extraction and tissue segmentation. Statistical analysis to compare

group differences in total GM volume across groups was

performed using an ANCOVA in which the effects of intracranial

volume, age and gender were regressed out as covariates of no

interest.

Voxel based morphometry (VBM)
Regional gray matter density was assessed with VBM using

the optimized method and nonparametric statistical contrasts

[35,51]. The FSL 4.0 software was used for brain extraction

[50] and segmentation [52], and FMRIB’s Linear Image

Registration Tool (FLIRT) to spatially register the native

images. The protocol included the following steps: first, a left-

right symmetric study-specific gray matter template was built

from 80 gray-matter-segmented native images (20 images were

randomly selected from each group to minimize size of

population bias) and their respective mirror images that were

all affine-registered to a standard gray matter template (ICBM-

152). The gray matter volume images were then linearly

normalized onto this template. Finally, images were smoothed

with isotropic Gaussian kernel (sigma = 3.5, FWHM = 8 mm).

Subcortical regions, including the bilateral thalamus and basal

ganglia were excluded from the VBM and subsequent analyses

using an in-house-made mask since VBM can overestimate

periventricular volume loss due to spatial registration errors

[41,53].

To identify gray matter differences associated with each type of

chronic pain, each group was entered as a condition into a

separate model, and linear contrasts were performed against age

and gender matched healthy controls selected from the healthy

subject data pool. Significant changes in gray matter density were

assessed using permutation-based inference [54] to allow rigorous

comparisons of significance within the framework of the general

linear model with p,0.01. Group differences were tested against

5000 random permutations, which inherently and exactly

accounts for multiple comparisons. Age, gender and total

intracranial volume were used as variables of no interest. Group

contrast clusters were identified using threshold-free cluster

enhancement (TFCE) method, which bypasses the arbitrary

threshold necessary in methods that use voxel-based thresholding

and is more sensitive and interpretable than cluster-based

thresholding methods [55].

Regional based gray matter morphometry
We calculated GM density for 82 cortical regions in each

participant. Regions were defined anatomically by previous

template images (Pick-Atlas, Advanced Neuroscience Imaging

Research Core, http://www.fmri.wfubmc.edu; MRIcro, http://

www.sph.s.c.edu/comd/rorden/mricro.html) that were registered

with the gray matter volume maps by an affine registration. The

82 regions compromised 41 regions in each hemisphere

approximating classical Brodmann areas in addition to the

hippocampus and amygdala. A list of the regions is presented in

Table S3. The mean GM density for each ROI was computed as

the sum of GM density of all voxels within the ROI from the VBM

maps. We used linear regression to model the effects of age gender,

and total intracranial volume on the full set of individual GM

density measurements for each region. The residuals of this

regression, which represent the GM density measurements

corrected for age, gender, and total GM density, were used to

compare group differences for GM density for each ROI using 1-

way ANOVA.
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Covariate analysis (Inter-regional correlations)
We used Pearson correlation as the metric of association

between corrected GM density estimates for each possible pair of

the 82 regions in each group separately. For each pair of brain

regions i and j, we computed the correlation in corrected GM

density over subjects. This resulted in a 82682 correlation matrix

representing the specific associations in corrected GM density

between all possible pairs of regions for each group. We also

investigated the relationship between the GM density association

and distance for all pair of regions. The physical distance between

a pair of regions i and j was calculated as the Euclidean distance:

! ((xi-xj)
2 + (yi-yj)

2 + (zi-zj)
2), where x, y and z represent the

coordinates of the center of gravity of each ROI in standard

space.

Barcodes
Individual subject whole-brain barcodes were generated using

the corrected GM density across all 82 ROIs as a vector. First, the

GM density for each ROI was normalized for each subject (z

transformation to reflect the deviation of GM density for a given

ROI from the subject’s mean GM density). The resultant vector

was binned into three categories using high and low thresholds

(high GM density = +1, average GM density = 0, and low GM

density = 21). Threshold was calculated by maximizing mutual

information based on joint entropy (using Mutual Info 0.9 package

in Matlab). Group whole-brain barcodes for each condition

(Healthy, CBP, CRPS and OA) were generated in a similar

fashion using the mean GM density for each ROI per condition.

We also generated 14 ROI-based barcode using the regions that

showed significant differences in GM density across all groups.

Group barcodes were either generated from the mean GM density

of ROI-s using all subjects in each population, or from a subgroup

(n = 5 and n = 10) selected at random from the pool of subjects.

To classify individuals into groups, individual barcodes were

correlated to the group barcodes resulting in 4 group specific

Pearson correlation coefficients. Individual subjects’ brains were

then classified based on the highest correlation coefficient.

Distance plots
To visualize the extent of similarities and overlap between

groups, individual subjects’ barcode based distances were plotted

in a Cartesian space with coordinates (xi, yi), where xi = xcbp.dcbp+
xcrps.dcrps + xoa.doa+xnormals.dnormals)/(dcbp + dcrps + doa + dnormals) and

yi = ycbp.dcbp+ ycrps.dcrps + yoa.doa +ynormals.dnormals)/ (dcbp + dcrps + doa +
dnormals). Where xcbp ycbp, xcrps ycrps, xoa yoa and xnormals ynormals were

predetermined values and represent the coordinates of the 3 poles

of an equilateral triangle and its center respectively. dcbp, dcrps, doa

and dnormals represent the distance of any given individual barcode

from the respective group barcode and was derived from the

Pearson correlation coefficient of individual and group barcodes

(with spatial transformation d = (r+1)/2).

To determine the median and interquartile distances for each

group in the 2-dimensional space defined by the equilateral

triangle, we used the bagplot function (Matlab), which is a

bivariate generalization of the univariate boxplot where the half-

space location of a point is computed relative to a bivariate dataset

(an extension of the univariate concept of rank) [56].

To examine the relationship between the barcode and clinical

characteristics, we measured relative distance between individual

patient brains and the mean location for healthy subjects, Dd.

These values were correlated to pain chronicity in log scale, as well

as fitted to an exponential growth curve, Dd =Ddo+Dd1(1-exp(-t/

t)), where t = duration of chronic pain, t is characteristic time

constant, and Dd1 is the asymptotic maximum deviation from

healthy subjects. Their relationship was also examined for pain

intensity and depression outcomes.

Supporting Information

Figure S1 Decreased Gray matter density in patients.
Detailed maps for gray matter morphological changes assessed by

voxel based shown in Figure 1b. Red-yellow regions represent

areas that exhibited significant decrease in GM density for each

chronic pain condition compared to healthy. List of Foci are

presented in Table S1.

(TIF)

Table S1 Peak foci for decreased GM density in
patients. List of brain regions that exhibited significant decrease

in gray matter density in patients compared to healthy. R = right;

L = left; H = hemisphere; BA = Broddmann area; Sup = superior;

Inf = inferior; Mid = middle. Ant = anterior. Coordinated in mm.

(DOC)

Table S2 Demographic and pain clinical parameters in
patients. Listed are the pain, mood and demographic data for

patients participated in the study. VAS = visual analogue scale;

BDI = Beck’s depression inventory, BAI = Beck’s anxiety inven-

tory. MQS = medical quantification scale. The VAS was comput-

ed from the McGill short-form questionnaire (sf-MPQ).

(DOC)

Table S3 List of the ROIs for the automated parcella-
tion. Listed are the names of regions and standard space

coordinates of the center. Coordinated in mm.

(DOC)
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