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Abstract

Nosocomial infections are increasingly being recognised as a major patient safety issue. The modern hospital environment
and associated health care practices have provided a niche for the rapid evolution of microbial pathogens that are well
adapted to surviving and proliferating in this setting, after which they can infect susceptible patients. This is clearly the case
for bacterial pathogens such as Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus
(VRE) species, both of which have acquired resistance to antimicrobial agents as well as enhanced survival and virulence
properties that present serious therapeutic dilemmas for treating physicians. It has recently become apparent that the
spore-forming bacterium Clostridium difficile also falls within this category. Since 2000, there has been a striking increase in
C. difficile nosocomial infections worldwide, predominantly due to the emergence of epidemic or hypervirulent isolates that
appear to possess extended antibiotic resistance and virulence properties. Various hypotheses have been proposed for the
emergence of these strains, and for their persistence and increased virulence, but supportive experimental data are lacking.
Here we describe a genetic approach using isogenic strains to identify a factor linked to the development of hypervirulence
in C. difficile. This study provides evidence that a naturally occurring mutation in a negative regulator of toxin production,
the anti-sigma factor TcdC, is an important factor in the development of hypervirulence in epidemic C. difficile isolates,
presumably because the mutation leads to significantly increased toxin production, a contentious hypothesis until now.
These results have important implications for C. difficile pathogenesis and virulence since they suggest that strains carrying a
similar mutation have the inherent potential to develop a hypervirulent phenotype.
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Introduction

C. difficile is the causative agent of a spectrum of gastrointestinal

diseases, collectively known as C. difficile infections, or CDI, that

are induced by treatment with antibiotics that disrupt the normal

gastrointestinal microbiota. CDI can range from mild diarrhoea,

through moderately serious disease, to severe life-threatening

pseudomembranous colitis, a chronic, often fatal, gastrointestinal

disease [1]. During the past decade, there has been an astonishing

increase in the rate and prevalence of C. difficile infections in many

parts of the world, including the UK, USA, Canada and Europe,

largely due to the emergence of a ‘‘hypervirulent’’ or epidemic

group of isolates belonging to the BI/NAP1/027 category [2,3].

These strains are highly resistant to fluoroquinolones [3] and are

associated with more severe disease and higher mortality rates [4–

7]. C. difficile now also causes disease in those previously not at risk,

such as children and pregnant women, with community-associated

C. difficile disease being increasingly common [8–10].

The reasons for the emergence of these strains, and for their

increased virulence, remain largely speculative. The use of

fluoroquinolones, and the emergence of fluoroquinolone resistant

strains, are undoubtedly driving factors in these new epidemics

[11], however, the reasons for the heightened virulence and

persistence of these strains are unknown. Genotypic and

phenotypic comparison of the hypervirulent BI/NAP1/027

isolates to historical strains has identified numerous differences

that may contribute to hypervirulence. Phenotypically, these

differences may include the production of a toxin known as

binary toxin, or CDT [3], and a higher sporulation rate [12].

Whole genome comparisons have identified numerous genetic

differences with BI/NAP1/027 strains having an additional 234

genes compared to the well characterised strain 630 [13],
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including five unique genetic regions that are absent from both

strain 630 and non-epidemic 027 strains [4]. Fundamentally,

however, the factors directly resulting in the development of

hypervirulence by these strains remain unknown.

The major virulence factors of C. difficile are two members of the

large clostridial cytotoxin family, toxin A and toxin B, encoded by

the tcdA and tcdB genes, respectively, which are potent mono-

glucosyltransferases that irreversibly modify members of the Rho

family of host regulatory proteins [14]. Two recent studies

definitively showed that toxin B plays a major role in the virulence

of C. difficile [15,16]. The role of toxin A in disease was less clear

however, with conflicting data concerning toxin A reported

[15,16].

Epidemic strains are reported to produce significantly more

toxin A and toxin B than other strains [2]. The tcdA and tcdB genes

are located on the chromosome within a region known as the

pathogenicity locus or PaLoc [17]. In addition to tcdA and tcdB, the

PaLoc encodes three additional genes designated tcdR, tcdE and

tcdC, which encode an alternative sigma factor, TcdR [18], a

putative holin, TcdE [19], and an anti-sigma factor, TcdC [20],

respectively. The expression of toxins A and B is controlled in a

complex manner by several factors, including TcdR and TcdC.

TcdC is thought to negatively regulate toxin production by

interacting with TcdR or with TcdR-containing RNA polymerase

holoenzyme or both [20], TcdR is essential for toxin production

[18]. BI/NAP1/027 C. difficile strains have a nonsense mutation in

tcdC, which results in the production of a truncated protein that no

longer negatively regulates TcdR. This mutation is postulated to

be responsible for the increased toxin production observed in vitro

in these strains [2]. Accordingly, this observation has prompted

debate over the importance of the tcdC mutation in the

hypervirulent phenotype. However, there is currently a lack of

experimental evidence to support this hypothesis, with inconsistent

reports in the published literature [20–22].

Despite their important impact worldwide on public health little

is known about the virulence factors of BI/NAP1/027 strains and

many important questions about the pathogenesis of disease

caused by these strains remain to be answered, especially the role

played by TcdC. BI/NAP1/027 isolates have proven difficult to

genetically manipulate, which has hampered our ability to study

these strains at the molecular level. To address these questions,

here we use a novel Tn916-based plasmid conjugation system to

facilitate the efficient transfer of plasmids into BI/NAP1/027

strains of C. difficile. Using this system, we have demonstrated

conclusively the role of TcdC as a negative regulator of toxin

production in C. difficile. Furthermore, using the hamster model of

infection, we provide evidence to show that the tcdC mutation

found in BI/NAP1/027 strains is an important factor in the

development of hypervirulence by these strains. This study is the

first to use isogenic strains to identify a factor involved in the

development of a hypervirulent phenotype in C. difficile, and also

represents the first in vivo demonstration of the role of TcdC in the

pathogenesis of C. difficile disease.

Results

Complementation of the tcdC mutation in a BI/NAP1/027
epidemic isolate in trans

To determine if mutation of the tcdC gene in C. difficile BI/

NAP1/027 isolates leads to the development of a hypervirulent

phenotype it was necessary to construct isogenic BI/NAP1/027

strains that only differed in their ability to produce a functional

TcdC protein. To construct the isogenic strains required for this

analysis, genetic manipulation of BI/NAP1/027 isolates was

required. The genetic manipulation of these strains has proved

difficult and attempts to transfer plasmids into BI/NAP1/027

strains using published methods, which rely on RP4-mediated

conjugation from Escherichia coli [23–27], were not successful, even

though transfer of plasmids into the genetically amenable strains

JIR8094, an erythromycin sensitive derivative of strain 630 [24],

and CD37 was readily achieved (Table S1). To overcome this

barrier and to facilitate DNA transfer into the strains of interest,

we developed a novel plasmid transfer system that exploits the

conjugation apparatus encoded by the broad-host range transpo-

son Tn916.

The oriT region of Tn916 (oriTTn916) [28] was cloned into the

catP-containing C. difficile shuttle plasmid pMTL9361Cm [29],

generating pDLL4. This plasmid was introduced into C. perfringens

strain JIR4225, which contains five copies of Tn916 [30] and plate

matings were performed between this donor strain and several C.

difficile strains, including a BI/NAP1/027 strain, M7404, which is

a Canadian epidemic isolate [29]. Transconjugants from these

matings were isolated on medium supplemented with thiamphe-

nicol and cefoxitin. The efficiency of plasmid transfer into strain

M7404 was 1.26102–46104 transconjugants/ml of plated culture.

Analysis of transconjugants using PCR specific for the catP gene

together with restriction analysis confirmed that all putative

colonies carried pDLL4 (data not shown), verifying successful

plasmid transfer into the BI/NAP1/027 strain M7404. Similar

plasmid transfer efficiencies were obtained for numerous other C.

difficile strains (Table S1), highlighting the utility of this

methodology for the genetic manipulation of clinically relevant

strains.

To complement the tcdC mutation in a BI/NAP1/027 strain the

intact tcdC gene from strain VPI10463, together with 300 bp of its

upstream region, was cloned into the shuttle plasmid pDLL4,

generating pDLL17. This plasmid was transferred by Tn916-

mediated conjugation from C. perfringens strain JIR4225 to C.

difficile strain M7404 as before. PCR was subsequently used to

confirm the presence of plasmid pDLL17 in representative

transconjugants (data not shown).

Author Summary

Hospital infections are increasingly being recognised as a
major patient safety issue with the hospital environment
providing a niche for the rapid evolution of microbial
pathogens that are well adapted to infecting susceptible
patients. The spore-forming Clostridium difficile is one such
bacterium, which causes disease in patients undergoing
antibiotic therapy. Since 2000, there has been a striking
increase in C. difficile infections due to the emergence of
hypervirulent isolates that appear to possess extended
antibiotic resistance and virulence properties. Here we use
a genetic approach to identify a factor linked to the
development of hypervirulence in C. difficile. This study
shows that a naturally occurring mutation in a negative
regulator of toxin production, the anti-sigma factor TcdC,
is an important factor contributing to the development of
hypervirulence in epidemic isolates, presumably because it
leads to significantly increased toxin production. These
results have important implications for C. difficile patho-
genesis since they suggest that strains carrying a similar
mutation have the inherent potential to develop a
hypervirulent phenotype. This study has increased our
understanding of how these new variant strains cause
disease and why they are more harmful, which is critical for
the development of improved strategies for preventing
and treating these infections.

TcdC Modulates Hypervirulence in C. difficile
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To determine whether the presence of pDLL17 complemented

the TcdC deficiency of M7404, Western immunoblots using

TcdC-specific antibodies were performed. Lysates were collected

from the wild-type M7404, the pDLL4-carrying vector control

strain M7404(VC) and the pDLL17-tcdC+ strain M7404(tcdC+), as

well as strains VPI10463 and the PaLoc-deficient strain

VPI11186, which served as positive and negative controls,

respectively. An additional control strain, M7404(cured), was

generated by serially passaging strain M7404(tcdC+) on non-

selective growth medium and curing the plasmid from this strain.

Loss of the plasmid was confirmed by sensitivity of the strain to

thiamphenicol followed by PCR analysis to verify the absence of

several plasmid encoded genes (data not shown). As Figure 1A

shows, whilst no TcdC could be detected in the lysates of the

negative control strain, the wild-type M7404, M7404(VC) and the

plasmid-cured strain M7404(cured), a 34-kDa protein that reacted

with TcdC-specific antibodies was detected in lysates from the

tcdC+-complemented strain M7404(tcdC+). This band was the same

size as the immunoreactive TcdC protein produced by the positive

control strain VPI10463, confirming that the tcdC mutation in the

BI/NAP1/027 epidemic isolate M7404 was efficiently comple-

mented in trans. Since complementation was performed using a

multicopy plasmid, we also quantified TcdC production levels

from strain M7404(tcdC+) in comparison to strain VPI10463 using

a time-course assay. Previous studies involving transcriptional

analysis of PaLoc genes during different growth phases showed

that tcdC is expressed in early exponential phase but not in

stationary phase, whereas the other PaLoc genes show the opposite

expression pattern [31]. VPI10463 (Figure 1B) and M7404(tcdC+)

(Figure 1C) exhibited similar TcdC expression patterns, with

higher levels of TcdC observed in early exponential phase and

negligible amounts detected beyond 16 hours, suggesting that the

regulatory regions governing tcdC expression have been retained

on the tcdC-carrying fragment used to construct pDLL17. In

addition to the kinetics of TcdC expression in strain M7404(tcdC+)

mirroring that of VPI10463, a similar amount of protein was also

detected at each time point with VPI10463 producing 1.3- to 1.6-

fold more protein (Figure 1B) than M7404(tcdC+) (Figure 1C).

Therefore, although tcdC complementation was achieved using a

multicopy plasmid vector, a physiologically relevant amount of

TcdC protein was expressed during the appropriate growth phases

in strain M7404(tcdC+).

TcdC-mediated repression of toxin production in C.
difficile

To determine the effect of TcdC on toxin production in strain

M7404, a combination of Western immunoblots and cytotoxicity

assays were performed using supernatants collected from strain

M7404 and isogenic M7404 derivatives carrying the vector

pDLL4, pDLL17, the cured strain M7404(cured) and the

PaLoc-negative control strain CD37. To assess toxin A produc-

tion, Western immunoblotting was performed using TcdA-specific

antibodies (Figure 2A). The results showed that the presence of the

tcdC+ plasmid pDLL17 resulted in a dramatic decrease in the

amount of toxin A produced by M7404(tcdC+) when compared to

the wild-type strain. By contrast, M7404(cured) produced

qualitatively similar levels of toxin A to wild-type, as did M7404

carrying the vector plasmid, whereas the PaLoc-negative strain

CD37 produced no detectable toxin A, as expected.

Vero cell cytotoxicity assays, which predominantly measure

toxin B activity [15], were then performed to quantitatively

determine the effect of TcdC on toxin production from these

strains. As previously observed with toxin A, the amount of toxin

produced from strain M7404 was significantly reduced when

functional TcdC was restored (Figure 2B). The amount of toxin

produced in the TcdC-complemented strain was approximately

16–32-fold less, and therefore significantly lower (p = 0.0001;

unpaired t-test, 95% confidence interval), than in the vector

control-carrying M7404 derivative. There was, however, no

significant difference in toxin activity levels between strains

M7404, the vector control strain M7404(VC) or M7404(cured)

(Figure 2B). A kinetic analysis of toxin production also clearly

showed that the presence of TcdC delayed the onset of toxin

production in M7404(tcdC+) in comparison to M7404 carrying the

vector plasmid, mirroring the delayed toxin production observed

from the tcdC+ 630-strain derivative JIR8094 (Figure 2C).

We also determined if TcdC-mediated repression of toxin

production was at the transcriptional level and evaluated the effect

of tcdC complementation on the expression of the other PaLoc-

encoded genes, tcdR and tcdE. Quantitative real-time PCR (qRT-

PCR) analysis using RNA extracted from the wild-type strain and

its isogenic derivatives was performed to ascertain the relative

transcription levels of the tcdA, tcdB, tcdR and tcdE genes. As shown

in Figure 2D, an approximate 13- and 23-fold reduction in tcdA-

and tcdB-specific mRNA levels, respectively, in strain M7404(tcdC+)

was observed compared to M7404. Similar observations were

made for tcdR and tcdE expression levels, with 33-fold and 21-fold

less tcdR and tcdE mRNA, respectively, in the tcdC-complemented

strain compared to the wild-type. No significant differences in the

expression levels of these four genes were detected when M7404,

the vector-carrying derivative or the cured strain were compared.

These data conclusively demonstrate that TcdC negatively

regulates toxin production in C. difficile and show that repression

occurs at the transcriptional level.

Reduction of the virulence of a BI/NAP1/027 isolate via
complementation with TcdC

To define the role of TcdC in the virulence of a BI/NAP1/027

C. difficile isolate, female Golden Syrian hamsters were infected

with spores of strain M7404 carrying either the vector control or

the tcdC+ plasmid (n = 10 and n = 12, respectively). For compar-

ative purposes, a group of hamsters (n = 14) was also infected with

strain 630, a strain previously characterised as being less virulent

than other clinical isolates [32]. Following infection, all C. difficile

strains were found to be equally efficient at colonising the hamsters

(data not shown). Infection of colonised hamsters was allowed to

proceed and animals were monitored by telemetry. The end point

of infection was achieved when the core body temperature of the

hamsters dropped to 35uC. This parameter has previously been

shown to be a reliable indicator of non-recoverable disease [33].

At this point, the animals were immediately culled for animal

ethics reasons. Bacteria were then isolated from the culled

hamsters, the bacterial load quantified and isolates subjected to

MVLA analysis [33] to confirm that these isolates were the same

strain as originally used for infection.

Hamsters infected with the M7404(tcdC+) derivative showed a

significant delay (p = 0.0003; Logrank (Mantel-Cox) test; 95%

confidence interval) in the mean time taken to reach non-

recoverable disease (2370 minutes or 39.5 hours) in comparison to

the vector-carrying M7404 group (M7404(VC)), with a mean time

of 1869 minutes or 31.15 hours (Figure 3). In one of the hamsters

colonised with the M7404(VC) strain, the time taken to reach the

end point of infection was substantially longer than the other

hamsters in this group (2814 minutes or 46.9 hours). This hamster

was shown by statistical analysis (p = 0.0405; Grubbs test; 95%

confidence interval) to be an outlier and was therefore excluded

from the experimental analysis. Note that statistical significance

would be retained upon inclusion of this outlier. Interestingly,

TcdC Modulates Hypervirulence in C. difficile
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whilst the mean time to the end point of infection in the strain 630

group of hamsters (2701 minutes or 45.02 hours) was significantly

longer than that of hamsters infected with M7404(VC)

(p = 0.0001; Logrank (Mantel-Cox) test; 95% confidence interval),

there was no significant difference in the mean time taken to

achieve non-recoverable disease in the 630 group compared to the

M7404(tcdC+) derivative, indicating that the virulence of the TcdC-

complemented strain was equivalent to that of strain 630.

It is apparent from these virulence experiments that the

expression of TcdC in a BI/NAP1/027 isolate has an important

effect on virulence, resulting in a significant delay in the time

needed to reach non-recoverable disease. These data therefore

provide compelling evidence that the naturally occurring

mutation of tcdC in BI/NAP1/027 isolates is an important

factor in the development of a hypervirulent phenotype by these

strains.

Figure 1. Western blot analysis of TcdC production by wild-type and complemented C. difficile strains. (A) Qualitative analysis of TcdC
production. VPI10463 is the positive control strain; VPI11186 is the negative control strain; M7404 is a wild-type Canadian BI/NAP1/027 strain;
M7404(VC) is the wild-type strain carrying the shuttle plasmid pDLL4; M7404(tcdC+) is the wild-type strain carrying the tcdC expression plasmid
pDLL17 and M7404(cured) is the M7404(tcdC+) strain cured of pDLL17. (B) Time course analysis of TcdC production by the positive control strain C.
difficile VPI10463. Samples were taken at the indicated times shown in hours. 60 ng of purified recombinant his-tagged TcdC protein (rTcdC) was
used as the positive reference sample. (C) Time course analysis of TcdC production by C. difficile strain M7404(tcdC+). Samples were taken at the
indicated times shown in hours. 300 ng of purified recombinant his-tagged TcdC protein (rTcdC) was used as the positive reference sample. Western
blots were performed with rabbit TcdC-specific antibodies. Size standards are shown (kDa).
doi:10.1371/journal.ppat.1002317.g001

TcdC Modulates Hypervirulence in C. difficile
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TcdC status of clinical isolates does not predict toxin
production level

The results presented here show that a BI/NAP1/027 strain

complemented with tcdC is not as virulent as its isogenic vector-

carrying control, suggesting that any C. difficile strain that acquires

a null TcdC phenotype has the potential to develop a

hypervirulent phenotype. Furthermore, phylogenetic studies have

shown C. difficile to be a genetically diverse species, with disease-

causing isolates seemingly arising from multiple lineages, suggest-

ing that virulence in these strains may have evolved independently

[4,34]. The tcdC status of a diverse group of clinical isolates was

therefore determined in parallel to the genetic studies described

Figure 2. Analysis of the effect of TcdC complementation on toxin production and PaLoc gene expression by C. difficile. CD37 is the
negative control strain; M7404 is the wild-type BI/NAPI/027 strain; M7404(tcdC+) is the wild-type strain carrying the tcdC expression vector pDLL17;
M7404(VC) is the wild-type strain carrying shuttle plasmid pDLL4 and M7404(cured) is the M7404(tcdC+) strain cured of pDLL17. JIR8094 is a derivative
of strain 630. (A) Western blot using toxin-A-specific antibodies. Size standards are shown (kDa) (B) Toxin cytotoxicity assays using Vero cells. Strains
are as described above. Lined bars represent the wild-type strain M7404; white bars represent M7404(tcdC+); grey bars represent M7404(VC) and
black bars represent M7404(cured). Data represent the mean 6 s.e.m. (n = 3). (C) Time course of toxin production measured using Vero cell
cytotoxicity assays. Strains are as described above and are represented as follows: M7404(tcdC+) (&), M7404(VC) (N) and JIR8094 (m). Note that CD37
was included in this analysis but displayed no toxin production; the line representing this strain is therefore not visible. Data represent the mean 6
s.e.m. (n = 3). (D) PaLoc gene specific qRT-PCR. Bars correspond to strains as before and PaLoc genes are indicated. Data represent the mean fold-
expression 6 s.e.m. (n = 3), compared to the M7404(tcdC+) strain.
doi:10.1371/journal.ppat.1002317.g002
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above. One hundred Australian clinical isolates were initially

analysed by toxinotyping, a typing method which categorises

strains according to variation in the PaLoc region; BI/NAP1/027

strains belong to toxinotype III [35]. Approximately 5% of these

strains were found to belong to a toxinotype associated with a tcdC

mutation. PCR and sequence analysis was then used to confirm

the presence of tcdC mutations in each of these isolates. A single

BI/NAP1/027 was identified in this survey, designated strain KI

[36]. One other strain, DLL3053, was particularly interesting

since it belonged to toxinotype group III but was not a BI/NAP1/

027 isolate. This strain harboured the well documented single base

pair deletion at nucleotide position 117 of tcdC, and the 18 base

pair in-frame deletion from nucleotide 330 to 347 [37]. Two

strains, DLL3054 and DLL3055, were toxinotype V strains with a

nonsense mutation at nucleotide position 184 (C184T) and a 39

base pair deletion from nucleotides 341 to 379 [37] whereas strain

DLL3056 was toxinotype XIV and possessed a nonsense mutation

at nucleotide position 191 (C191A) and an in-frame 36 base pair

deletion from nucleotide 300 to 336.

To examine the impact of tcdC mutations on toxin production in

these clinical isolates, Vero cell cytotoxicity assays were performed.

These assays, which predominantly detect toxin B, determine the

relative amounts of toxin produced by each strain since the

expression of toxins A and B is coordinately regulated [23,31].

Strains JIR8094, a derivative of strain 630 [24], and VPI10463

[38], which both possess intact tcdC genes, were used as positive

reference controls, and the PaLoc-negative strain CD37 was used

as a negative control. Strains were grown in glucose-free medium

since glucose has previously been shown to repress toxin

production [23]. As shown in Figure 4A, the relative amount of

toxin produced by the tcdC clinical isolates varied over approx-

imately a 10-fold range. In agreement with the work of others

[12,22], these results show that the presence of mutations within

tcdC was not directly correlated with high level toxin production.

Strain DLL3053 for example, did not produce levels of toxin

significantly different from that of strain JIR8094, which is

considered to be a low toxin producer [39]. Of all the isolates with

tcdC mutations, strain KI [36] produced the most toxin, and at

significantly (p = 0.0406; unpaired t-test, 95% confidence interval)

higher levels that were approximately 10-fold more than strain

DLL3053 even though both strains have identical tcdC alleles.

In comparison to the TcdC-positive reference strains, all of the

tcdC-deficient clinical isolates produced more toxin than strain

JIR8094 apart from strain DLL3053 (Figure 4A). Conversely,

however, all strains produced significantly less toxin than

VPI10463 (p = 0.0099–0.0202; unpaired t-test, 95% confidence

interval), including the BI/NAP1/027 strain KI. VPI10463

produced over 100-fold more toxin than strains JIR8094 and

DLL3053 and over 30-fold more than KI (Figure 4B). This

observation is in agreement with recently published findings,

which showed that VPI10463 produced significantly more toxin

than other strains [12]; however, in that study, strains were grown

using glucose-rich BHI medium so differential effects of glucose on

toxin production by each strain could not be ruled out. In

agreement with other studies [12,22,37], our data therefore

suggest that the tcdC-status alone of C. difficile isolates is not an

accurate predictor of high-level toxin production.

Discussion

The hypothesis that the naturally-occurring tcdC mutation in

epidemic BI/NAP1/027 isolates contributes to hypervirulence is

widely accepted, despite a lack of supportive experimental

evidence. Indeed, the exact role of TcdC in the pathogenesis of

C. difficile disease has remained controversial with conflicting

findings reported in the literature [20–22]. As a result, several

published studies have suggested that there is a need to assess

isogenic tcdC strains in order to conclusively determine the role of

this gene in the virulence of C. difficile [12,22,40]. We have now

constructed such isogenic strains and compared them in an animal

model. The results conclusively show that TcdC negatively

regulates toxin production in C. difficile. Most importantly,

complementation of the tcdC mutation in the BI/NAP1/027

epidemic isolate M7404 clearly showed that this mutation is an

important factor in the development of hypervirulence by this

strain since the genetic complementation of tcdC reduced virulence

in comparison to the wild-type strain.

To elucidate the role of TcdC in hypervirulence, it was

necessary to construct an isogenic panel of BI/NAP1/027 strains

Figure 3. Virulence of C. difficile wild-type and tcdC-complemented strains in hamsters. Kaplan-Meier survival curve demonstrating time
from infection with C. difficile to death. M7404(VC), wild-type M7404 carrying shuttle plasmid pDLL4 (N); M7404(tcdC+), wild-type M7404 carrying tcdC
expression plasmid pDLL17 (&); and strain 630, a C. difficile isolate with known low virulence (m). Hamsters were infected intragastrically with 10,000
spores from each strain; M7404(VC) (n = 9), M7404(tcdC+) (n = 12) and strain 630 (n = 14).
doi:10.1371/journal.ppat.1002317.g003
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that were identical except for the presence or absence of the wild-

type tcdC gene. Despite the publication of studies describing the

successful transfer of plasmids into the BI/NAP1/027 isolate

R20291 [25,26,41], this group of strains has remained difficult to

work with at the molecular genetic level. As such, a new system

that utilised the conjugation apparatus of Tn916 was developed in

this study and used successfully to genetically manipulate a

number of clinically relevant isolates, including a BI/NAP1/027

strain of C. difficile. Tn916 is a broad host-range conjugative

transposon that was recently used to transfer plasmids into

genetically intractable strains of Enterococcus faecium [28] and has

been shown to transfer into C. difficile [42,43]. C. perfringens was

chosen for use as a donor strain in anticipation that it may be more

proficient for the transfer of plasmids into C. difficile in comparison

to the more distantly related E. coli. The addition of oriTTn916 onto

the shuttle vector pMTL9361Cm facilitated the efficient transfer

of this plasmid into strain M7404 from a Tn916-carrying C.

perfringens strain. Furthermore, this system has been successfully

used to transfer shuttle plasmids into every C. difficile isolate tested

so far (Table S1). Most importantly, this new technology facilitated

the complementation of the tcdC mutation in strain M7404

enabling the role of TcdC in the virulence of BI/NAP1/027

strains of C. difficile to be investigated.

Previous in vitro studies have shown that TcdC is able to

sequester the TcdR sigma factor, preventing its association with

core RNA polymerase and blocking toxin gene expression [20].

These experiments suggested that TcdC was important in the

regulation of toxin production by C. difficile, but the in vivo role of

this protein was not determined. Conversely, several studies on C.

difficile clinical isolates [22,37] showed that the absence of a

functional tcdC gene was not an accurate predictor of high level

toxin production or increased disease severity, indicating that

TcdC may not play an important role in virulence in these strains

[22,37]. The analysis of Australian clinical isolates in the present

study is in accordance with these latter studies in that isolates with

naturally occurring tcdC mutations were found to produce toxin at

a range of different levels that were not necessarily high. However,

since these strains, and those in the other studies [22,37], are not

isogenic it is not possible to draw conclusions about the

importance of tcdC in the context of toxin yield or virulence. By

contrast, the isogenic tcdC strains studied here clearly show that

TcdC is a negative regulator of toxin production since the tcdC

complemented BI/NAP1/027 C. difficile strain produced signifi-

cantly less toxin A and B than the non-complemented control

strains. The finding that TcdC-status is not correlated with toxin

production in clinical isolates highlights the limitation of accurately

assigning gene function by studying non-isogenic strains, partic-

ularly in a highly heterogeneous species such as C. difficile. In this

context, it might be of interest to study the function of tcdC in

isogenic strains generated in a different genetic background such

as a ribotype 078 isolate.

Analysis of PaLoc gene expression by qRT-PCR demonstrated

that TcdC exerts regulatory control of toxin production at the

transcriptional level, and this is in keeping with its proposed role as

an anti-sigma factor [20]. The observation that the expression of

tcdR and tcdE is reduced in the tcdC-complemented strain, together

with tcdA and tcdB, is probably because of autoregulation of tcdR

since TcdR upregulates its own expression and that of the other

PaLoc genes [23].

The virulence of strain M7404 was reduced upon complemen-

tation of tcdC, clearly demonstrating that the tcdC mutation in BI/

NAP1/027 strains has a significant impact on virulence and is

likely to be an important factor in the development of

hypervirulence by these strains. Surprisingly, the virulence of

M7404(tcdC+) was found to be equivalent to that of strain 630,

which has been shown in other studies to be reduced in virulence

in comparison to other isolates, including three other BI-type

strains [32]. These findings have important implications for C.

Figure 4. Comparative analysis of toxin production by naturally occurring tcdC clinical isolates. Vero cell cytotoxicity assays were used to
determine toxin production levels. (A) Strain JIR8094 is a tcdC+ control strain, CD37 is a PaLoc-negative control strain and KI is an Australian BI/NAPI/
027 isolate [36]. All other strains (DLL3053-DLL3056) are clinical isolates carrying naturally occurring tcdC mutations, collected from Australian
hospitals. (B) Toxin production by the tcdC+ control strain VPI10463 is shown on a separate bar chart due to the much higher levels of toxin produced.
For comparative purposes strain KI is represented on both bar charts. Data represent the mean6s.e.m. (n = 3).
doi:10.1371/journal.ppat.1002317.g004
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difficile virulence since they suggest that strains carrying tcdC

mutations have the inherent potential to develop hypervirulence.

The recent emergence of a new class of hypervirulent strains,

ribotype 078 [44], may be one such example. These isolates

encode a non-functional TcdC protein [37], produce significantly

more toxin than non-epidemic strains, are associated with more

severe disease as well as higher rates of mortality and are

increasingly being identified as the causative agent of CDI [44,45].

Although these experiments show that TcdC-status alone can

modulate virulence it is probable that multiple factors working

synergistically are necessary for the development of hypervirulence

in the BI/NAP1/027 strains. It is likely that the accumulation of

multiple genetic changes in addition to the tcdC mutation has

enabled BI/NAP1/027 strains to become the predominant

disease-causing isolates in numerous countries. Of particular

importance might be variations in the functional activity of the

encoded toxins since these isolates were recently shown to produce

a toxin B that shows variation across the C-terminal receptor

binding domain of the protein [46], resulting in more potent

activity across a wider range of cell lines in comparison to toxin B

from the historical, non-epidemic strain 630 [4]. Furthermore,

using the zebrafish embryo model of intoxication, the BI/NAP1/

027 toxin B was recently shown to have pronounced in vivo

cytotoxic activity in comparison to toxin B from VPI10463,

another historical non-epidemic isolate, with greater tissue tropism

and more extensive tissue destruction observed [47]. Since toxin B

is thought to be one of the major virulence factors of C. difficile

[15,16] these observations suggest that TcdB variations might play

an important role in the hypervirulent phenotype.

There are other factors that may influence C. difficile

hypervirulence. The BI/NAP1/027 strains encode an additional

toxin known as binary toxin or CDT [2]. The role of this toxin in

CDI remains to be elucidated but a recent study showed that CDT

induces the formation of microtubule-based protrusions on the

host cell surface thereby increasing C. difficile adherence to

epithelial cells. Moreover, intestinal colonisation of gnotobiotic

mice with a BI/NAP1/027 C. difficile strain was significantly

reduced in mice treated with CDT-neutralising antibodies in

comparison to control mice [48]. These findings suggest that CDT

may be an important colonisation factor, enhancing the ability of

BI/NAP1/027 strains to initiate infection as well as causing

adjunctive tissue damage during later stages of infection,

potentially leading to more severe disease. Many BI/NAP1/027

strains are also more proficient at sporulation than non-epidemic

C. difficile strains [12,49]. C. difficile spores are highly infectious [50]

and play a critical role in the transmission of CDI and perhaps in

disease relapse, which is a serious problem in patients with CDI

[51]. In this context, enhanced sporulation is ostensibly an

important adaptation by BI/NAP1/027 isolates, which would

result in larger numbers of spores being shed from infected

patients and an increased environmental spore load, ultimately

leading to higher transmission rates. Finally, the development of

fluoroquinolone resistance, in particular to moxifloxacin and

gatifloxacin, is unquestionably a major factor in epidemics caused

by BI/NAP1/027 strains [3,11]. In this regard, the hypothetical

co-evolution of enhanced virulence traits and antibiotic resistance

in C. difficile mirrors trends seen with other significant nosocomial

pathogens such as Methicillin Resistant Staphylococcus aureus

(MRSA) [52] and Vancomycin Resistant Enterococcus (VRE) species

[53]. In summary, it is clear that our findings represent an

important breakthrough in our understanding of the development

of hypervirulence in prevailing C. difficile isolates and will provide a

significant reference point for future studies on epidemic strains

and their control.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the United Kingdoms Home Office Animals

(Scientific Procedures) Act of 1986 which outlines the regulation of

the use of laboratory animals for the use of animals in scientific

procedures. The experiments described were subject to approval

by the University of Glasgow Ethics Committee and by a

designated Home Office Inspector (Project Number 60/4218).

All experiments were subject to the 3 R consideration (refine,

reduce and replace) and all efforts were made to minimize

suffering.

Bacterial strains and growth conditions
The characteristics and origins of all recombinant strains and

plasmids are shown in Table 1 and Table S2, respectively. All

bacteriological culture media were obtained from Oxoid. C. difficile

strains were cultured in BHIS [54] or TY medium [15], unless

otherwise stated, in an atmosphere of 10% H2, 10% CO2, and

80% N2 at 37uC in a Coy anaerobic chamber. Escherichia coli was

cultured in 26YT medium aerobically at 37uC, with shaking for

broth cultures. All antibiotics were purchased from Sigma-Aldrich

and were used at the following concentrations: cycloserine (Cs,

250 mg/ml), cefoxitin (Cf, 8 mg/ml), thiamphenicol (Tm, 10 mg/

ml) or tetracycline (Tc, 10 mg/ml), chloramphenicol (Cm, 25 mg/

ml).

Molecular biology and PCR techniques
Plasmid DNA was isolated using a QIAprep spin miniprep kit

(Qiagen). Genomic DNA was prepared using a DNeasy tissue kit

(Qiagen). Standard methods for the digestion, modification,

ligation, and analysis of plasmid and genomic DNA were used

[55]. Nucleotide sequence analysis was carried out using a PRISM

BigDye Terminator cycle sequencing kit (Applied Biosystems) and

detection was performed by Micromon at Monash University.

Oligonucleotide primer sequences are listed below. Unless

otherwise stated, all PCR experiments were carried out with

Phusion DNA polymerase (New England Biolabs) and the 26
Failsafe PCR buffer E (Epicentre) according to the manufacturer’s

instructions.

Construction of recombinant plasmids
For construction of the Tn916 transferrable clostridial shuttle

vector, PCR was performed using primers DLP33 (59-G-

AATTCGCCCTTTTTTATACTCCCCTTG-39) and DLP34

(59-GAATTCGCCCTCAAAGGACGAATATGTCGC-39) and

chromosomal DNA extracted from Clostridium perfringens strain

JIR4225 [30]. The resulting 700 bp DNA fragment, which

contained the oriT region of Tn916, was TOPO-cloned into

pCR-Blunt II-TOPO according to the manufacturer’s instructions

(Invitrogen). The fragment was then excised from pCR-Blunt II-

TOPO using EcoRI and cloned into the equivalent sites of plasmid

pMTL9361Cm [29], resulting in plasmid pDLL4.

For construction of the tcdC-carrying plasmid, PCR was

performed using primers DLP35 (59-CTGCAGCCACCTCTA-

AATCACTGAGTCACTTAATTAC-39) and DLP36 (59-CTGC-

AGAGCCTTGTAACTGTTTATTTGC-39) and C. difficile strain

VPI10463 genomic DNA in order to amplify a 1085 bp fragment

encompassing the tcdC gene and upstream region. This fragment

was then TOPO-cloned into pCR-Blunt II-TOPO, before being

excised with PstI and subcloned into the equivalent site of plasmid

pDLL4, resulting in the final construct pDLL17.
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Transfer of plasmid DNA into C. difficile by conjugation
The conjugation procedure utilising E. coli HB101(pVS520) as

the conjugative donor was carried out as previously described [29].

Recombinant plasmids were introduced into C. perfringens strain

JIR4225 as before [56]. Conjugations utilising C. perfringens

JIR4225 were then performed as follows: separate 90 ml BHIS

broth cultures were inoculated with 1 ml aliquots from an

overnight C. difficile recipient strain or C. perfringens donor strain

starter culture and grown to mid-exponential phase. Approxi-

mately 1 ml was removed from each culture, mixed and

centrifuged. The cell pellet was then resuspended in phosphate-

buffered saline (PBS), spread onto a BHIS agar plate and

incubated overnight at 37uC. Bacterial growth was harvested in

sterile PBS before being spread onto BHIS agar supplemented

with thiamphenicol and incubated overnight as before. Bacterial

growth was again harvested with PBS and dilutions spread onto

BHIS agar supplemented with cefoxitin and thiamphenicol or

tetracycline, and the plates incubated under anaerobic conditions

for 24 to 72 h.

Toxin A-specific Western blots
The toxins were partially purified by ammonium sulphate

precipitation from culture supernatants harvested after growth for

72 hours and toxin A was then detected by Western blotting as

described previously [15].

TcdC-specific Western blots
For non-quantitative TcdC-specific Western Blots, crude

extracts of C. difficile were prepared by sonication of samples

taken from cultures that had been grown for 12 hours under

anaerobic conditions. The crude extracts from each strain were

then subjected to electrophoresis in a 15% SDS-PAGE gel and

transferred to a nitrocellulose membrane using standard methods

[55]. Membranes were treated with anti-TcdC antibody [57] and

detected following treatment with goat anti-mouse IgG-alkaline

phosphatase conjugated secondary antibody using standard

procedures. For quantitative TcdC-specific Western blots, cultures

of C. difficile VPI10463 and C. difficile M7404(tcdC+) were grown

under anaerobic conditions and samples were removed every

4 hours for 24 or 28 hours respectively. Each sample was

normalized to an optical density (600 nm) of 0.9 prior to lysis, to

ensure that the same number of cells was present. Lysates were

then prepared by sonication prior to SDS-PAGE gel electropho-

resis, transfer and detection, as described above. Following

detection, the amount of TcdC in each lysate was quantified by

densitometric analysis, using purified recombinant TcdC protein

(rTcdC) as the standard and the ImageJ software package,

according to published methods [58].

Vero cell cytotoxicity assays
Toxin B was detected in C. difficile culture supernatants

harvested after growth for 72 hours by Vero cell cytotoxicity

assays as described previously [15], except that each well was

seeded with 16105 cells.

RNA extraction and reverse transcription
Total RNA was extracted from C. difficile cultures grown for

12 h in TY media. Reverse transcription was performed using

Table 1. Bacterial strains.

Strain Characteristics Source/Reference

E. coli

DH5a F-w80D lacZdM15D(lacZYA-argF)U169 endA1recA1 hsdr17(tk
2mk

+)deoR thi-1 supE44 gyrA96 relA1 Life Technologies

TOP10 F- mcrA D(mrr-hsdRMS-mcrBC) w80lacZDM15 DlacX74 nupG recA1 araD139 D(ara-leu)7697
galU galK rpsL(StrR) endA1 l2

Invitrogen

HB101 thi-1 hsdS20(rB
2 mB

2) supE44 recAB ara-14 leuB5 proA2 lacY1 galK rpsL20 (Smr) xyl-5 mtl-1 [60]

C. perfringens

JIR4225 C. perfringens strain JIR325 with 5 chromosomal copies of Tn916 [30]

C. difficile

M7404 Canadian BI/NAP1/027 isolate [29]

630 Wild-type C. difficile strain; first C. difficile genome available [61]

JIR8094 Erythromycin sensitive derivative of strain 630 [24]

VPI10463 PaLoc-positive C. difficile isolate [38]

VPI11186 PaLoc-negative C. difficile isolate [38]

CD37 PaLoc-negative C. difficile isolate [62]

KI Australian BI/NAP1/027 isolate [36]

DLL3053 Australian toxinotype III clinical isolate This study

DLL3054 Australian toxinotype V clinical isolate This study

DLL3055 Australian toxinotype V clinical isolate This study

DLL3056 Australian toxinotype XIV clinical isolate This study

M7404(VC) DLL3001 (M7404 carrying shuttle plasmid pDLL4) This study

M7404(tcdC+) DLL3002 (M7404 carrying tcdC expression plasmid pDLL17) This study

M7404(cured) DLL3003 (M7404(tcdC+) cured of plasmid pDLL17) This study

doi:10.1371/journal.ppat.1002317.t001
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AMV Reverse Transcriptase (Promega) using random hexamer

oligonucleotides primers and 2 mg template RNA. The cDNA

samples were then purified using Qiaquick Columns (Qiagen).

qRT-PCR assay design and real time PCR
PaLoc gene specific primers were designed using Primer 3

software (Geneious Software). qRT-PCR was performed using an

AB7300 real-time PCR instrument (Applied Biosystems). Reac-

tions were carried out using the FastStart Universal SYBR Green

Master Mix (Roche) with 40 ng of cDNA as template. Standard

curves were generated for each primer pair using C. difficile

genomic DNA, and melt curve analysis was performed following

each qRT-PCR reaction to verify amplification specificity.

Samples were normalised using the C. difficile rrnA gene.

Preparation of spores for animal infection
Spores were prepared from C. difficile cultures grown in 500 ml

of BHI broth. Cultures were pelleted by centrifugation for 10 mins

and re-suspended in 50% ethanol. The material was then vortexed

every 10 min for 1 h before centrifugation for 10 mins. The pellet

was then treated with 1% Sarkosyl in PBS for 1 h at room

temperature and again pelleted by centrifugation, followed by

incubation overnight at 37uC with lysozyme (10 mg/ml) in

125 mM Tris-HCl buffer (pH 8.0). The sample was treated in a

sonicating water bath (3 pulses of 3 min each; 1510 Branson)

before centrifugation through a 50% sucrose gradient for 20 mins.

The pellet was incubated in 2 ml of PBS containing 200 mM

EDTA, 300 ng/ml proteinase K and 1% Sarkosyl for 30 mins at

37uC before centrifugation through a 50% sucrose gradient for

20 mins. The final pellet was then washed twice in sterile distilled

water before finally being resuspended in 1 ml of sterile water.

Spore preparations were stored at 280uC prior to use.

Hamster experiments
Female Golden Syrian hamsters purchased from Harlan Olac

UK were used for all animal experiments. Telemetry chips

(Vitalview Emitter) were inserted by laparotomy into the body

cavity of the animals at least 3 weeks before infection with C.

difficile. Animal experiments were then carried out as described

previously [33], except that animals received 16104 spores of C.

difficile. Animals were culled when core body temperature dropped

below 35uC. This study was carried out in strict accordance with

the recommendations in the United Kingdoms Home Office

Animals (Scientific Procedures) Act of 1986 which outlines the

regulation of the use of laboratory animals for the use of animals in

scientific procedures. The experiments described were subject to

approval by the University of Glasgow Ethics Committee and by a

designated Home Office Inspector (Project Number 60/4218). All

experiments were subject to the 3 R consideration (refine, reduce

and replace) and all efforts were made to minimize suffering.

Quantification of bacterial load
To estimate colonisation, hamsters were sacrificed and the gut

region from the caecum to the anus removed. The tissues were

homogenised in PBS using a Stomacher and viable counts were

performed on the homogenate as described previously [33].

Confirmation of infecting strains
To confirm that the bacteria isolated from the hamster were the

same strain as originally used for infection, genomic DNA was

isolated and subjected to MVLA as described previously [59].

Plasmid rescue was performed as previously described [29]

followed by restriction digest analysis to confirm plasmid integrity.

Supporting Information

Table S1 Efficiency of RP4 or Tn916-mediated plasmid
transfer to C. difficile strains. The efficiency of RP4 or

Tn916-mediated plasmid transfer from E. coli or C. perfringens

donors, respectively, to C. difficile recipient strains is shown,

calculated as described in Materials and Methods and expressed as

transconjugants per ml.

(DOC)

Table S2 Bacterial plasmids. Bacterial plasmids used in this

study, together with the genetic features relevant to this work, are

shown.

(DOC)
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