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ABSTRACT We developed a novel, to our knowledge, technique for real-time monitoring of subunit exchange in homooligo-
meric proteins, using deuteration-assisted small-angle neutron scattering (SANS), and applied it to the tetradecamer of the pro-
teasome a7 subunit. Isotopically normal and deuterated tetradecamers exhibited identical SANS profiles in 81% D2O solution.
After mixing these solutions, the isotope sensitive SANS intensity in the low-q region gradually decreased, indicating subunit
exchange, whereas the small-angle x-ray scattering profile remained unchanged confirming the structural integrity of the tetra-
decamer particles during the exchange. Kinetic analysis of zero-angle scattering intensity indicated that 1), only two of the 14
subunits were exchanged in each tetradecamer and 2), the exchange process involves at least two steps. This study under-
scores the usefulness of deuteration-assisted SANS, which can provide quantitative information not only on the molecular sizes
and shapes of homooligomeric proteins, but also on their kinetic properties.
INTRODUCTION
Elucidation of the mechanisms underlying the structural
kinetics of proteins is one of the fundamental issues to be
addressed in biophysics. Kinetic analyses of hydrogen-
deuterium exchange observed by spectroscopic and mass
spectrometric methods have provided detailed information
on secondary structure formation during folding processes
and local and global conformational fluctuations of tertiary
structures (1,2). However, because of the lack of appropriate
methodology, the detailed formation mechanisms and
kinetics of quaternary structures remain largely unknown,
particularly in the case of homooligomeric proteins, which
are the major forms of proteins in living systems (3,4).
Here, we addressed this issue by complementary use of
small-angle x-ray scattering (SAXS) and deuteration-assis-
ted small-angle neutron scattering (SANS) focusing on the
subunit exchange kinetics of a homooligomeric protein.

SANS is a powerful method to describe protein quater-
nary structures in solution (5–7). A fascinating property of
this method is its ability to distinguish deuterium from
hydrogen because of the difference in their neutron scat-
tering lengths (bD ¼ 6.671 fm for deuterium and bH ¼
�3.7406 fm for hydrogen). This offers unique opportunities
for contrast variation by H2O/D2O exchange (8,9) as well as
for subunit labeling in complex or oligomeric particles.
Labeling of subunits in a homooligomer by selective deuter-
ation for a SANS study is noninvasive, and presents signif-
icant advantages in comparison to other subunit-marking
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methods such as chemical modifications, site-directed muta-
tions, and peptide/protein tagging (10–13). A quantitative
analysis of SANS profiles assisted by H2O/D2O contrast
variation has been applied to unravel the formation and
conformational changes of different protein-protein and
protein-tRNA complexes between amino-acyl tRNA syn-
thetases and tRNA (14), and, by using selective deuteration,
to examine subunit exchange (15). Because of the recent
progress in amplification of neutron beam intensity and
computer-assisted simulation technique, the SANS method
can now be applied to monitor subunit exchange processes
in a homooligomer, as the time-dependent changes in the
scattering profiles from a mixed solution of deuterated
and nondeuterated proteins can be measured in real time.
Herein, we developed the quantitative and experimental
aspects of this approach and apply it to a model system
consisting of the homotetradecamer of the proteasome a7
subunits.

The proteasome is a huge oligomeric protein operating
as a proteolytic machine in the ubiquitin-dependent pro-
tein degradation pathway in eukaryotic cells (16,17). This
large machine consists of a proteolytically active 20S core
particle and one or two regulatory particles. The 20S core
particle is composed of 28 subunits, i.e., two sets of a1,
a2, a3, a4, a5, a6, and a7 and two sets of b1, b2,
b3, b4, b5, b6, and b7, which are arranged in a cylindrical
shape of four heteroheptameric rings, a1�7b1�7b1�7a1�7

(18,19). It has recently been revealed that assembly of the
proteasome subunit is a chaperone-assisted and ordered
process and not a spontaneous self-organization (20,21).
However, among the proteasomal subunits, the a7 subunits
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spontaneously form a homotetradecamer in the absence of
the other subunits (22).

In a previous study, we have characterized the quaternary
structure of the a7 homo-tetradecamer in aqueous solution
by SANS (23). The analysis indicated a structure made up
of two homoheptameric rings stacked back-to-back to
form a double ring structure (Fig. 1 A). This suggested
that proteasome assembly involves some scrap-and-build
processes from homoheptameric a7 rings to the heterohep-
tameric ring composed of seven different subunits. To
provide insights into the mechanisms underlying these
processes, it is essential to understand the dynamics and
stabilities of the quaternary structure of this homooligomer.
Therefore, herein we assess the dynamic properties of the
homotetradecamer of proteasome a7 subunits with an
attempt to observe subunit exchange by using deuteration-
assisted SANS in conjunction with SAXS.

To observe a possible subunit exchange, we prepared two
isotopically distinct a7 tetradecamers: one consisted only of
deuterated a7 (d-a7) subunits and the other was composed
only of nondeuterated (natural abundance) a7 (h-a7)
subunits. These tetradecamers show large difference in their
neutron scattering length densities: rd ¼ 0.76 fm$Å�3 for
the d-a7 tetradecamer and rh ¼ 0.308 fm$Å�3 for the
h-a7 tetradecamer in D2O solution. Given that the mixture
of d-a7 and h-a7 tetradecamers results in subunit exchange
giving rise to isotopically mixed tetradecamers, they are
expected to exhibit scattering length densities between rh
and rd depending upon the ratio of d-a7 and h-a7 subunits
FIGURE 1 Three-dimensional (3D) structural model and neutron scat-

tering length densities of the tetradecamer of proteasomal a7 subunit

computed from the 3D structural model. (A) Top and side views of the

double-ring structure of the a7 tetradecamer derived from the SANS data

in conjunction with the crystal structure of the 20S core particle (19,23).

Each a7 heptameric ring with sevenfold symmetry is drawn in green or

cyan. The diameter and thickness are ~120 Å and 50 Å, respectively. (B)

Neutron scattering length densities of tetradecamers of proteasomal a7

composed of different numbers of h-a7 and d-a7 subunits computed

from its 3D structural model, shown with bars having color gradient.

Blue and red broken lines express the scattering length densities of h-a7

(rh) and d-a7 (rd) tetradecamers, respectively, whereas cyan, orange, and

purple solid lines express the scattering length densities of H2O, D2O,

and 81% D2O, respectively. The arrows indicate the scattering contrasts

of tetradecamers in 81% D2O solution.
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(bars in Fig. 1 B). Accordingly, in 81% D2O solution, of
which scattering length density is an intermediate value
between those of d-a7 and h-a7 tetradecamers, the scat-
tering contrasts of the h-a7 and d-a7 tetradecamers (defined
as the difference in scattering length density between solute
and solvent) are equal in absolute value but are opposite in
sign, and any subunit exchange causes a reduction in this
absolute value (arrows in Fig. 1 B). Therefore, when subunit
exchange proceeds in the mixture of both isotopic forms, the
SANS intensity (proportional to the square of the scattering
contrast) decreases in the low q-region by producing the
tetradecamers with a lower scattering contrast, while SAXS
(which is not isotope sensitive) is unchanged if the tetrade-
camer quaternary structure is maintained.
MATERIALS AND METHODS

Protein samples

The h-a7 and d-a7 subunits were separately produced as recombinant

proteins in Escherichia coli grown in H2O- and D2O-based minimal media

and assembled into tetradecamers. A detailed protocol for preparation of the

tetradecamer solutions used in SANS and SAXS experiments are provided

in the Supporting Material.
SANS experiments

SANS experiments were performed using the D22 instrument installed at

the Institut Laue-Langevin (ILL), Grenoble, France (24) and the SANS-U

instrument of the Institute for Solid State Physics (ISSP), University

of Tokyo, installed at the JRR-3M, Japan Atomic Energy Agency,

Tokai, Japan (25). The SANS intensities measured in the q-range

0.0085–0.13 Å�1 were accumulated at 15min intervals for 12 h at a constant

temperature of 25�C. The observed SANS intensity was corrected for back-

ground, empty cell, and buffer scatterings, and transmission factors, and

then converted to the absolute scale by dividing by the SANS intensity of

H2O (26).
SAXS experiments

SAXS experiments were performed on the small- and wide-angle x-ray

scattering instrument installed at the BL40B2 beamline of SPring-8,

Hyogo, Japan (27). The SAXS intensities in the q-range 0.005–2.2 Å�1

were measured for 1 s at eight time points in 12 h at a constant temperature

of 25�C. The observed SAXS intensity was corrected for background, cell,

buffer scattering, and transmission factors. The data correction details are

described elsewhere (28,29).
RESULTS AND ANALYSIS

Detection of subunit exchange

Before time-resolved SANS experiments, we checked the
structural stability of the a7 tetradecamers in 81% D2O
solution. The SANS profiles of h-a7 and d-a7 tetradecamers
before and after 12 h of incubation at 25�C were in excellent
agreement (Fig. 2 A), confirming that 1), the h-a7 and the
d-a7 tetradecamers have the same absolute value of scat-
tering contrast in 81% D2O solution and 2), they are
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FIGURE 2 Time evolution of scattering profiles. (A) SANS profiles just after dissolving into 81% D2O solutions (blue and red for h-a7 and d-a7 tetra-

decamers, respectively) and after 12 h (cyan and orange for h-a7 and d-a7 tetradecamers, respectively). (B) Time evolution of SAXS profile after mixing the

h-a7 tetradecamers with the d-a7 tetradecamers in 81% D2O solution. (C) Time evolution of SANS profile after mixing the h-a7 tetradecamers with the d-a7

tetradecamers in 81% D2O solution. (D) Time evolution of normalized zero-angle scattering intensity, NIð0; tÞ. Solid circles show the experimental result

calculated with the Guinier formula. Cyan line represents the result of the least-square fitting of the biexponential decay function, Eq. 1 (see text), whereas

green and blue lines show the best simulated results using the two-subunit-swapping model with (blue) and without (green) the assumption that the swappable

subunits are in equilibrium between active and inactive states (Fig. 3 B and see text).
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structurally stable in this solution at least for 12 h. The struc-
tural stability of the a7 tetradecamers in the mixture of both
isotopic forms was also confirmed by the time evolution of
the SAXS profile, which was unchanged for 12 h after mix-
ing under identical conditions (Fig. 2 B).

The SANS intensity in the low q-region gradually
decreased after mixing the h-a7 tetradecamer with the d-a7
tetradecamer in 81% D2O solution (Fig. 2 C). As demon-
strated by the results of the SAXS experiment, the observed
change in SANS profile cannot be attributed to a structural
change of the tetradecamers but is ascribed to the subunit
exchange between the h-a7 and the d-a7 tetradecamers.

We further analyzed the subunit exchange kinetics,
focusing on the time evolution of the zero-angle SANS
intensity Ið0; tÞ, which is directly proportional to the sum
of the square of scattering contrasts of tetradecamers
in the solution. The time evolution of the normalized
zero-angle SANS intensity, NIð0; tÞ, which is defined as
Ið0; tÞ against that at the starting point of the time-course,
NIð0; tÞhIð0; tÞ=Ið0; 0Þ, could not be expressed with a
monoexponential decay function, but was well reproduced
with the biexponential decay function:

NIð0; tÞ ¼ NIð0;NÞ þ ka exp

�
� t

ta

�
þ kb exp

�
� t

tb

�
:

(1)

The best result of the least-square fitting (cyan line in
Fig. 2 D) was obtained with the parameters, NIð0;NÞ ¼
0:7650:02, ka ¼ 0:0950:02, kb (¼ 1� ka � NIð0;NÞ) ¼
0:1550:03, ta ¼ 1:550:3 h, and tb ¼ 9:153:3 h, and the
normalized zero-angle SANS intensity reaches a nonzero
value of 0:7650:02.
Number of exchangeable subunits

For a quantitative interpretation of the previously mentioned
results, we first assumed that all subunits in the a7 tetrade-
camer had equal probability to exchange randomly with any
Biophysical Journal 101(8) 2037–2042
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FIGURE 3 Subunit exchange schemes of two kinetics models. (A)

Scheme of simple bimolecular exchange model. The tetradecamer constitu-

tion is expressed by H and D for 12 unswappable subunits, and h and d for

two swappable subunits. For simplicity, the exchange reactions, which do

not cause intensity change, such as Hhh þ Dhh4f Hhh þ Dhh (an italic

letter means an exchanging subunit), are not shown. Top, middle, and

bottom rows correspond to the a7 tetradecamers with zero, one, and two

differently labeled subunit(s), respectively. Typical a7 tetradecamers are

drawn on the left and right sides, where the blue and red spheres show

h-a7 and d-a7 subunits, respectively. k1 � k12 denotes the exchange prob-
abilities in the reactions, where k ¼ k ¼ k ¼ k ¼ 2k ¼ 2k ¼ 2k ¼
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subunit in another tetradecamer. Under this assumption, the
mixture of h-a7 and d-a7 tetradecamers eventually reaches
equilibrium between the isotopically mixed tetradecamers
with different numbers of the deuterated subunits. Consid-
ering the incidence of the individual isotopic forms of tetra-
decamer, NIð0;NÞwas calculated to be 0.0714 (Table 1),
which is considerably smaller than the experimentally esti-
mated value of 0:7650:02. This raises the idea that the
number of exchangeable subunits in one a7 tetradecamer
is limited. Hence, under the constrain of the number of
the swappable subunits n, we calculated the number ratio
with x deuterated subunits rnðx;NÞ and the corresponding
normalized zero-angle scattering intensities in the equilib-
rium states (t ¼ N) as follows:

rnðx;NÞ ¼
�
1

2

�ðnþ1Þ
ðnCx þ nCx�ð14�nÞÞ; (2)

aCb ¼ 0ða < b or b < 0Þ; (3)

1 4 9 11 5 6 7

2k8 ¼ 4k2 ¼ 4k3 ¼ 4k10 ¼ 4k12 (see text). (B) Extended exchange scheme

by the two-step exchange model assuming the transition between active and
N
X14 �

7� x
�2
inactive (*) states of the swappable a7 subunit. It is a modification of the

reaction scheme Hhh þ DddH #Hhd þ Dhd (boxed with dashed line in

panel A) and exemplifies the extension of the model. k13 is the rate constant

of the transition.
Inð0;NÞ ¼
x¼ 0

rnðx;NÞ �
7

: (4)

By inspection of the calculated NInð0;NÞ values (Table
1), we concluded that the number of the swappable subunits
is two in one a7 tetradecamer; NI2ð0;NÞ ¼ 0:745, which is
in good agreement with the experimental value of
0:76 5 0:02. This strongly suggests that one subunit could
be swappable in one heptameric ring. No more extensive
subunit-swapping was observed at least for 48 h (data not
shown).
Kinetics of subunit exchange

Given that the subunit exchange process can be described
as a simple bimolecular exchange model (Fig. 3 A), every
two swappable subunits in every tetradecamer have an
equal exchange probability meaning that every reaction
has four subreactions with an equal reaction probability.
For example, an exchange reaction between Hhd and
Dhd (at the center of the middle line in Fig. 3 A) includes
the following four subreactions with equal reaction
probabilities:
TABLE 1 Normalized zero-angle scattering intensity in the

equilibrium state NIn (0,N) calculated for varying numbers

of swappable subunits, n

n 0 1 2 3 4

NInð0;NÞ 1 0.867 0.745 0.633 0.531

n 5 6 7 8 9

NInð0;NÞ 0.439 0.357 0.286 0.224 0.173

n 10 11 12 13 14

NInð0;NÞ 0.133 0.102 0.0816 0.0714 0.0714
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Hhdþ Dhd/Hhdþ Dhd; (5)

k2

Hhdþ Dhd/Hddþ Dhh; (6)

k3

Hhd þ Dhd/Hhhþ Ddd; (7)

Hhd þ Dhd/Hhd þ Dhd; (8)
where H and D represent 12 unswappable subunits, and h,
(h) and d, (d) represent the exchangeable (exchanging)
subunits. Here, subreaction 6 yields Hdd and Dhh tetrade-
camers with probability k2, while subreaction 7 yields
Hhh and Ddd tetradecamers with probability k3ð¼ k2Þ.
The remaining two subreactions 5 and 8 can be ignored
because they do not affect the number ratio of the tetrade-
camers. On the other hand, the reaction of (Hhh þ Ddd)
with k1 or (Hdd þ Dhh) with k4 (at the top and bottom of
the middle line in Fig. 3 A, respectively) makes four sets
of (Hhd þ Dhd) without any branches. This means that
the probabilities of the subreactions 6 and 7 are one-quarter
of that of the reaction of (Hhh þ Ddd) or (Hdd þ Dhh).
Therefore, the exchange probabilities for the reactions in
Fig. 3 A are k1 ¼ k4 ¼ 4k2 ¼ 4k3. In the same manner, we
obtain k1 ¼ k4 ¼ k9 ¼ k11 ¼ 2k5 ¼ 2k6 ¼ 2k7 ¼ 2k8 ¼
4k2 ¼ 4k3 ¼ 4k10 ¼ 4k12.
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Here, the time evolution of the number ratio of each
tetradecamer is given as the solutions of a system of differ-
ential equations: in the following, as an example, the differ-
ential equation of [Hhd(t)] is shown,

d½HhdðtÞ�
dt

¼ k1½HhhðtÞ�½DddðtÞ�
�ðk2 þ k3Þ½HhdðtÞ�½DhdðtÞ�
þk4½HddðtÞ�½DhhðtÞ� � k5½HhdðtÞ�½DddðtÞ�
þk6½DhdðtÞ�½HddðtÞ� þ k7½DhdðtÞ�½HhhðtÞ�
�k8½DhhðtÞ�½HhdðtÞ� þ k11½HhhðtÞ�½HddðtÞ�
�k12½HhdðtÞ�2:

(9)

The differential equations of the number ratio of the other
tetradecamers are given in the same manner. The equations
were numerically solved starting from the initial state,
[Hhh(0)] ¼ [Ddd(0)] ¼ 0.5 and [Hhd(0)] ¼ [Hdd(0)] ¼
[Dhd(0)] ¼ [Dhh(0)] ¼ 0. In addition, NI2ð0; tÞ is also given
as follows (Eq. 4).

NI2ð0; tÞ ¼ ð½HhhðtÞ� þ ½DddðtÞ�Þ
�
7

7

�2

þð½HhdðtÞ� þ ½DhdðtÞ�Þ
�
6

7

�2

þð½HddðtÞ� þ ½DhhðtÞ�Þ
�
5

7

�2

:

(10)

By substituting the numerical solutions of the six tetrade-
camers in Eq. 10, we obtained the simulated NI2ð0; tÞ. This
time evolution is expressed with monoexponential decay
function (green line in Fig. 2 D), which does not reproduce
the experimental results, suggesting that the exchange
process involves at least two steps.

In general, proteins undergo conformational change to
express biological functions such as enzymatic reactions
and molecular recognition events. A typical example is
the induced-fit mechanism in enzymatic reactions, in which
enzymes change their conformations upon binding to
substrates to facilitate catalysis (30). In addition, growing
evidence indicates that proteins exhibit multiple conforma-
tions including those involved in the ligand-binding states
even in the absence of the ligands (31). In these cases,
ligand-binding processes cannot be expressed as a single
exponential process (31).

Such concepts may be applicable to the subunit exchange
process of homooligomeric proteins: in the two-step
exchange system, the swappable subunits are in equilibrium
between the active (or exchangeable) and inactive (or
resting) states as follows,

Xyz#
k13

k13
Xyz�; (11)

where * indicates an inactive state. The exchange occurs
when two homooligomers each containing the active
subunit(s) meet. Therefore, the interconversion given in
Eq. 11 is introduced to every exchange reaction with the
equal rate constant k13 as shown in Fig. 3 B. To obtain the
time evolution of the number ratios of tetradecamers in this
model, we improved our numerical calculation approach in
the iteration. That is, in every iteration we recalculated the
number ratios of active tetradecamer for every tetradecamer
and then calculated the system of differential equations. For
example, the active tetradecamer ratio of Hhh is calculated
using the following differential equation,

d½HhhðtÞ�
dt

¼ �k13ð½HhhðtÞ� � ½Hhh�ðtÞ�Þ: (12)

Subsequently, we preformed the calculation as indicated
in the simple bimolecular exchange model.

Thus, NI2ð0; tÞ is expressed with a biexponential decay
function, where the ratio of time constants depends upon
the ratio of k1 and k13. The best biexponential function for
NI2ð0; tÞ with k1=k13 ¼ 5:5 well reproduces the experi-
mental data (blue line in Fig. 2 D). According to this model,
the conformational transition can be a rate-limiting step in
the subunit exchange process.

In perspectives for future work to validate this model, the
subunit exchange rates should be measured at various
protein concentrations. The exchange reaction rate with
a bimolecular step must depend on the concentration of
the a7 tetradecamer while the conformational transition
rates do not. These experiments can be performed by using
a SANS spectrometer with a higher flux neutron beam.

In conclusion, the study demonstrated that only one
subunit is exchangeable among the seven a7 subunits
constituting one heptameric ring. This means that the a7
heptameric ring is probably not sevenfold symmetric,
although the previous structural studies could not predict
such an asymmetric property because of low spatial resolu-
tion (22,23). The kinetic asymmetry of subunit exchange of
the a7 tetradecamer not only provides important clues to
the underlying mechanisms of proteasome subunit assembly
but also offers general insights into the formation and
dynamics of quaternary structures of homooligomeric pro-
teins. Deuteration-assisted, time-resolved SANS has opened
up new opportunities for this unexplored field of research.
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