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Abstract

Eukaryotic cells use COPII-coated carriers for endoplasmic reticulum (ER)-to-Golgi protein transport. Selective
cargo capture into ER-derived carriers is largely driven by the SEC24 component of the COPII coat. The Arabidopsis

genome encodes three AtSEC24 genes with overlapping expression profiles but it is yet to be established whether

the AtSEC24 proteins have overlapping roles in plant growth and development. Taking advantage of Arabidopsis

thaliana as a model plant system for studying gene function in vivo, through reciprocal crosses, pollen

characterization, and complementation tests, evidence is provided for a role for AtSEC24A in the male gametophyte.

It is established that an AtSEC24A loss-of-function mutation is tolerated in the female gametophyte but that it

causes defects in pollen leading to failure of male transmission of the AtSEC24A mutation. These data provide

a characterization of plant SEC24 family in planta showing incompletely overlapping functions of the AtSEC24
isoforms. The results also attribute a novel role to SEC24 proteins in a multicellular model system, specifically in

male fertility.
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Introduction

The evolutionarily conserved COPII (coat protomer complex

II) generates intermediate carriers for protein export from the

endoplasmic reticulum (ER) to the Golgi apparatus (Barlowe
et al., 1994). The COPII coat is composed of two hetero-

dimeric subcomplexes, SEC23/SEC24 and SEC13/SEC31,

and the small GTPase SAR1. Activation of SAR1 by

SEC12, an ER membrane-anchored GEF, leads to recruit-

ment of the coat and selection of cargo into the COPII

carriers (d’Enfert et al., 1991). Among eukaryotic genomes,

there is a wide variation in the number of isoforms for each

of the COPII proteins (Robinson et al., 2007). The Arabi-

dopsis genome encodes a large number of COPII isoforms,

often outnumbering many other eukaryotes; there are two

SEC12, five SAR1, two SEC13, two SEC31, seven SEC23,

and three SEC24 isoforms (Vernoud et al., 2003; Robinson

et al., 2007). The significance of such diversification is not

completely understood. Arabidopsis also has a number of
putative COPII isoforms that might function in membrane

transport in chloroplasts, highlighting the possibility of

specific roles of COPII in plant-specific membrane traffic

events (Andersson and Sandelius, 2004; Brandizzi, 2011).

Studies in non-plant systems clearly show that COPII

isoforms have similar yet incompletely overlapping roles.

For example, in the unicellular yeast, Saccharomyces cerevi-

siae, several SEC24 isoforms exist, one of which is essential.
A knockout of the essential SEC24 gene can be partially

rescued by over-expression of the non-essential SEC24

homologue ISS1 (Kurihara et al., 2000). However, Lst1p,
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another yeast SEC24 homologue, is specifically required for

efficient traffic of Gas1p, a GPI-anchored protein, and

Pma1p, a plasma membrane proton-ATPase (Shimoni et al.,

2000; Peng et al., 2000). Similarly, using cell cultures, it has

been demonstrated that mammalian SEC24 isoforms share

a highly overlapping function in recognizing membrane

cargo proteins, but that SEC24A is selectively required for

the traffic of transmembrane proteins with a di-leucine (LL)
signal in their cytosolic tail (Wendeler et al., 2007). Evidence

is also emerging that plant COPII isoforms may have

incompletely overlapping functions. In particular, it has been

demonstrated that over-expression of fluorescent protein

fusions of two nearly identical Arabidopsis SAR1 isoforms

(AtSARA1A and AtSARA1B, 93% identical at the amino

acid level) in tobacco protoplasts leads to different levels of

inhibition of ER export of reporter-soluble cargo (Hanton
et al., 2008). Furthermore, the two proteins exhibited

a different localization in tobacco leaf epidermal cells, with

AtSARA1B being associated with membranes to a larger

extent than AtSARA1A (Hanton et al., 2008).

The availability of genetic tools and of sequenced genomes

is enabling progress in probing the roles of different COPII

coat proteins in intact metazoans and plants. For example,

a forward genetics screen in mice has demonstrated that
SEC24A, one of the three mammalian SEC24 isoforms, is

critical for neural tube closure (Merte et al., 2010; Wanslee-

ben et al., 2010). Similarly, a forward genetics screen in

Arabidopsis has highlighted the possibility that AtSEC24

proteins may have only a partially functional overlap. In

particular, an Arabidopsis mutant bearing a missense muta-

tion in a conserved arginine residue to a lysine residue in

position 693 of AtSEC24A has recently been isolated (Faso
et al., 2009; Nakano et al., 2009). This site is highly

conserved across SEC24 proteins from different organisms

(Faso et al., 2009; Nakano et al., 2009) and is believed to be

important for cargo selection in the process for ER export

(Miller et al., 2003). The AtSEC24R693K caused alterations

to the cortical ER network with the development of a large

globular structure composed of convoluted ER tubules and

entrapped organelles at the cell periphery, and with
localized disruption of ER protein export at such structures

(Faso et al., 2009; Nakano et al., 2009). These data were

interpreted as a manifestation of ER export defects of an as

yet unidentified AtSEC24A-specific cargo important for the

maintenance of the functional and morphological integrity

of the ER (Faso et al., 2009; Nakano et al., 2009). Lack of

selective export of cargo suggests incomplete overlapping of

function among the plant SEC24 isoforms, but, because the
specific AtSEC24A cargo is still unidentified, the degree of

functional overlap of the Arabidopsis SEC24 isoforms has

yet to be experimentally defined. Nonetheless, lending

support to the idea that AtSEC24 proteins may have unique

biological roles, genetic analyses have not led to the

identification of homozygous individuals bearing a T-DNA

insertion in the second exon of AtSEC24A (Faso et al.,

2009). Importantly, however, these data did not help to
explain the causes of this phenotype, nor were they

supported by complementation analyses that could exclude

the possibility that the phenotype could be due to a tightly

linked but unrelated mutation of AtSEC24A.

The functional role of the AtSEC24A isoform in planta has

been experimentally addressed here. Using genetic analyses,

pollen characterization, and complementation studies, it was

found that AtSEC24A is indispensable for pollen. These data

not only provide the genetic evidence that the AtSEC24A

isoform is essential, they also attribute a novel role to SEC24
in multicellular organisms, specifically in male fertility.

Materials and methods

Plant materials and growth conditions

Plants used in this work were Arabidopsis thaliana (ecotype
Columbia-0) either wild-type background or the atsec24a-1 mutant
(GK-172F03; GABI-KAT, Max Planck Institut, Cologne,
Germany). Seeds were surface-sterilized using 30% bleach plus
0.1% Triton-X 100 solution. Seeds were stratified onto 0.8% agar
in MS medium supplemented with Gamborg’s B5 vitamins and 1%
(w/v) sucrose, then vernalized for at least 12 h followed by
incubation at 21 �C under 16/8 h light/dark conditions. Two-
week-old plants were then transferred to soil for crosses.

Molecular cloning

Genomic DNA was extracted using CTAB (hexadecyltrimethylam-
monium bromide) buffer protocol. The entire genomic AtSEC24A
coding sequence was amplified from genomic DNA of wild-type
Col-0 plants using Phusion� High-Fidelity DNA Polymerase
(F530). The fragment was then subcloned in the binary vector
pMDC107-Lat52Pro. This resulted in the vector bearing the
Lat52::Atsec24A expression cassette for complementation analyses.

Bioinformatics analyses

GCOS-normalized absolute expression levels for At3g07100
(AtSEC24A), At3g44340 (AtSEC24B), and At4g32640 (AtSEC24C)
were extracted using the Arabidopsis eFP Browser (Winter et al.,
2007). Experimental data sets for pollen development (Honys and
Twell, 2004), pollen germination (Qin et al., 2009), and various
vegetative tissues (Schmid et al., 2005) were each separately
normalized to the AtSEC24 isoforms showing the highest expression
in each experimental set.

PCR analysis of the atsec24a-1(+/m) progeny

Genomic DNA was extracted using an established protocol
(Edwards et al., 1991). PCR experiments were performed in
standard conditions and were carried out using 0.2 mM dNTPs,
0.2 lM primers, and 1 unit of Taq polymerase (Promega).
Genotyping of the T-DNA insertion mutants was accomplished
by genomic DNA extraction followed by DNA amplification
with T-DNA (GABIo8409) and gene-specific primers
(GABI_172F03RP and GABI_172F03LP), as described earlier
(Faso et al., 2009). Two PCR products using GABI_172F03 RP
paired with GABI_172F03 RP or GABI_172F03 RP paired with
GABI_172F03 LP were sequenced to confirm the insertion site.
Primer sequences used in this work are listed in Supplementary
Table S1 at JXB online.

Arabidopsis stable transformation and complementation

Confirmed atsec24a-1(+/m) plants were transformed with
pMDC107-Lat52-AtSEC24A by the floral dip method (Clough
and Bent, 1998), and transformants were selected on Murashige
and Skoog (MS) media supplemented with hygromycin (final
concentration 50 lg ml�1) and 0.8% (w/v) agar.
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Pollen germination assays

Pollen from open flowers was dipped on to semi-solid germination
medium containing 1 mM MgSO4, 2.5 mM Ca(NO3)2, 2.5 mM
CaCl2, 0.01% boric acid, 18% sucrose, and 0.7% fine agar (Li et al.,
2008). The samples were then incubated at high humidity for 16 h,
in the dark at 25 �C. The pollen grains were imaged using a Leica
microscope.

Crosses, silique clearing, pollen staining, and microscopy analyses

Pollen from newly dehiscing flowers was deposited onto the
stigmas of surgically emasculated flowers. Entire siliques were
treated with a solution containing chloral hydrate:water:glycerol
(8:2:1, by vol.) and cleared for 1–4 h at room temperature or
overnight at 4 �C. Vitality stain was accomplished on pollen from
newly dehiscent flowers as described by Alexander (1969). Pollen
was observed with a Leica microscope. Electron microscopy
analyses were conducted on dehiscent wild-type and mutant
anthers fixed in 2.5% glutaraldehyde and 2.5% paraformaldehyde
in 0.1 M sodium cacodylate buffer, pH 6.9, washed 33 in buffer
and post-fixed in 2% aqueous osmium tetroxide for 90 min,
washed with 0.1 M sodium cacodylate buffer and dehydrated in
a graded acetone series. Samples were infiltrated and embedded in
Poly/Bed 812 resin (Polysciences,). Sections were obtained with an
RMC PowerTome XL (RMC, Boeckeler Instruments, Tucson,
AZ) and stained with 2% uranyl acetate and lead citrate. Sections
were observed using a JEOL 100CX (Japan Electron Optics
Laboratory, Japan) transmission electron microscope. PaintShop
Pro and Adobe Illustrator were used for further image handling.

Results

Although the AtSEC24 genes are ubiquitously
expressed, a T-DNA insertion in AtSEC24A does not
segregate with the expected Mendelian ratio

Microarray expression analyses of the pollen transcriptome

have shown that the three AtSEC24 isoforms are all expressed

in different stages of pollen development and germination

(Honys and Twell, 2004; Qin et al., 2009) (Fig. 1A, B).

Furthermore, the AtSEC24 proteins were also identified in
proteomic analyses of mature pollen grains (Grobei et al.,

2009). Analyses of microarray data from other experiments

and experimental validation, as well as proteomic analyses

indicate that the three isoforms are also expressed widely in

vegetative tissues (Fig. 1C; Schmid et al., 2005; Winter et al.,

2007; Baerenfaller et al., 2008; Faso et al., 2009). These data

suggest that AtSEC24 isoforms may have overlapping func-

tions in diverse developmental contexts. It has been shown,
however, that a T-DNA insertion line in a Columbia (Col-0)

background in the second exon of AtSEC24A (atsec24a-1)

was not recovered in homozygosis (m/m) (Faso et al., 2009);

thus, AtSEC24A may be essential for embryonic or reproduc-

tive development. Nonetheless, although these data suggest

that AtSEC24A might be essential, they do not explain the

causes of the phenotype. To exclude the possibility that

atsec24a-1(m/m) could be lost during the process of collecting
the seeds, due to various reasons including variations in

seed size and/or fragility, the germination rate of seeds

was examined from whole siliques from the progeny of the

selfing of the atsec24a-1 heterozygous (+/m) line. It was found

that all the seeds germinated comparably to wild-type (+/+)

Col-0 (Fig. 2). Individual seedlings of the atsec24a-1(+/m)

progeny populations were then genotyped by PCR, using

primer sets that annealed to DNA within the insert (i.e. the

T-DNA sequence) and on either side of the insertion site (see
Supplementary Table S1 and Supplementary Fig. S1 at JXB

online). Only heterozygous and wild-type individuals were

found at a ;50% ratio, rather than the expected 25(+/+):50(+/

m):25(m/m) Mendelian ratio (Table 1A). While this experi-

ment ensures that all the seedlings originating from seeds of

whole siliques were analysed, it also indicates a non-Mende-

lian segregation of the mutant allele, evidence that homozy-

gous atsec24a-1 mutants cannot be isolated (Faso et al., 2009).

Developing embryos and seeds of the atsec24a-1(+/m)
line are intact

In flowering plants, the egg develops within a haploid
embryo sac (female gametophyte) in the pistil. The haploid

pollen grain (male gametophyte) germinates a pollen tube

that carries two sperm cells to the embryo sac (Borg et al.,

2009; Kagi and Gross-Hardt, 2009). Mutations that affect

the function of the embryo sac or the pollen cannot be

Fig. 1. Transcript and protein expression profiles of SEC24

homologues in various tissues. (A) Transcript expression values of

SEC24 homologues in uninucleate microspores (UNMS), bicellular

pollen (BICP), immature tricellular pollen (TRCP), and mature pollen

grains (MPGR) were derived from the microarray experiments of

Honys and Twell (2004). Data are expressed relative to the

expression of SEC24A in UNMS (¼1). (B) Transcript expression

values of the SEC24 isoforms in dry pollen (DRYP), pollen

germinated in vitro for 30 min (IV30), pollen germinated in vitro for

4 h (IV4H), and pollen tubes harvested after growth through pistil

explants (PTPE) were derived from the microarray experiments of

Qin et al. (2009). Data are expressed relative to the expression of

SEC24B in PTPE (¼1). (C) Transcript expression values of the

AtSEC24 isoforms in various vegetative tissues including cauline

leaves (CLEF), cotyledons (COTY), roots (ROOT), leaf 7 petioles

(PETI), hypocotyls (HYPO), 2nd rosette leaves (ROSL), and second

internodes of stems (STEM) were derived from the microarray

experiments of Schmid et al. (2005). Data are expressed relative to

the expression of SEC24B in ROOT (¼1).
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transmitted through the defective gametes; thus, such

mutants can be carried only as heterozygotes. Because our

genetic studies showed that the mutant allele was not
transmitted to the progeny in the expected Mendelian ratio

(Table 1A), and that the progeny of atsec24a-1(+/m)

germinated similarly to wild-type Col-0 (Fig. 2), it was

reasoned that the absence of atsec24a-1(m/m) individuals

would be linked to defects in either the female or male

gametophyte. To distinguish between these two possibili-

ties, the first aim was to inspect the siliques, which form

upon successful egg fertilization, from the selfing of
atsec24a-1(+/m) plants. In particular, to check whether

the siliques of the atsec24a-1(+/m) line carried abnormal

seeds and/or empty spots that may form due to embryonic

defects or lack of egg fertilization, seeds inside developing

siliques were analysed. Similar to wild-type Col-0, non-

dehiscent siliques (7 d after pollination; DAP) showed no
obvious defects in the appearance of the maturing seeds

and no empty spots (Fig. 3A, B). To ensure that the

embryos in seeds of atsec24a-1(+/m) developed similarly to

wild-type Col-0, cleared siliques at 10 DAP were analysed

and no obvious defects were found in the embryos

(Fig. 3C, D). Together with the evidence that the seed

germination pattern of the progeny of atsec24a-1(+/m) was

similar to wild-type Col-0 (Fig. 2), these data strongly
suggest that the absence of atsec24a-1(m/m) individuals is

not linked to defects in the female gametophyte or in

embryonic development.

Fig. 2. Germination of seeds from intact atsec24a-1(+/m) siliques. Plates with 2-week-old seedlings germinated from seeds of an

individual silique of either a wild-type (A, WT) or an atsec24a-1(+/m) (B) plant. Seeds of an atsec24a-1(+/m) germinated similarly to the

wild type (B).

Table 1. Results of the self- and outcrosses of plants heterozygous for AtSEC24A (+/–). Number of progeny indicates the number of

seedlings that were genotyped from independent siliques developed upon successful crosses (No. of crosses). ++: Wild type; +/–:

heterozygote; m/m homozygous for the T-DNA insertion. Results of the Chi-square distribution (v2) analysis are indicated along with the

probability value (P).

Inheritance of AtSEC24A alleles

(A) Self-cross of
AtSEC24A(+/–)

atsec24a-1 No. of crosses No. of progeny Genotypes of progeny x2 P

+/+ +/m m/m

25% 50% 25% Expected

m 6 149 49.7% 50.3% 0% 73.51 <0.001

(B) Outcross of
AtSEC24A(+/–)

atsec24a-1 No. of crosses No. of progeny Genotypes of progeny x2 P

+/+ +/m m/m

Pollen source: +/+; 50% 50% – Expected

Pollen recipient: +/m m 6 96 50% 50% – 0 NSa

Pollen source: +/m; 50% 50% – Expected

Pollen recipient: +/+ m 5 31 100% – – 31 <0.001

NS, Not statistically significant.
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The atsec24a-1 phenotype is linked to a male-specific
transmission defect

To explore the possibility that lack of atsec24a-1(m/m) was

associated with male transmission defects, reciprocal crosses
of atsec24a-1(+/m) with wild-type Col-0(+/+) were per-

formed. When pollen from atsec24a-1(+/m) plants was used

for the crosses, no heterozygotes for the atsec24a-1 allele

were identified, instead of the expected 50% of the progeny

(Table 1B), suggesting that transmission of the mutation

through the male gametophyte was impaired. To confirm

that this was the case, the crosses with the atsec24a-1(+/m)

female parent with wild-type Col-0 pollen(+/+) were
analysed and it was found that 50% of the progeny were

heterozygous for the mutation (Table 1B), as would be

expected for a Mendelian segregation in crosses with

functional gametes. This confirms a defective male trans-

mission of the atsec24a-1 allele rather than a female defect.

The aberrant male transmission of the atsec24a-1 allele
is linked to defective pollen

The next aim was to establish whether the atsec24a-1 allele

could cause defects to the pollen. Newly dehiscent anthers

of atsec24a-1(+/m) and wild-type Col-0 were stained with

the Alexander stain that is commonly used to differentiate

aborted from non-aborted pollen (Alexander, 1969). In the

Alexander stain, two dyes are used: malachite green, which

stains the pollen walls, and acid fuchsin, which stains

cytoplasm and mitochondria (Alexander, 1969). It was

found that atsec24a-1(+/m) pollen grains did not show

obvious differences in staining compared with the wild type,
that is, the majority of the grains appeared purple (Fig. 4).

These data suggested that the atsec24a-1(+/m) pollen grains

contained cytoplasm and organelles; staining of completely

aborted pollen would appear light blue because only the

walls would be coloured (Alexander, 1969) (see also Fig. 6).

To characterize the pollen further and to establish whether

the pollen had subcellular abnormalities, which cannot be

distinguished with the Alexander stain, transmission elec-
tron microscopy analyses were conducted on newly de-

hiscent anthers from wild-type and atsec24a-1(+/m) plants.

Pollen from wild-type plants showed dense cytoplasm with

intact ER and Golgi (Fig. 5A, B). Pollen from atsec24a-1(+/

m) was uniform in size with clearly defined walls (see

Supplementary Fig. S2 at JXB online). However, while it

was found that half of the atsec24a-1(+/m) grains appeared

similar to the wild type (Fig. 5B, C; see Supplementary
Fig. S2 at JXB online) with clearly visible organelles, such

as the ER, Golgi, and mitochondria (Fig. 5D), the other

half had a semi-translucent appearance, vacuolated struc-

tures, and abnormal mitochondria; organelles such as the

ER and the Golgi were not clearly distinguishable (Fig. 5C,

E, F). These data indicate that, in newly dehiscent anthers,

Fig. 3. There are no visible defects in developing seeds and embryos of atsec24a-1(+/m) plants. Non-dehiscent siliques from wild-type (WT, A)

and atsec24a-1(+/m) (B) plants showing no appreciable differences in the gross morphology of the maturing seeds. Scale bar in (A) and

(B)¼0.5 mm. Clarified 10-d-old seeds from siliques of wild-type (C) and atsec24a-1(+/m) (D) plants showing similar morphology of the embryos

(arrows). Scale bar in (D) and (C)¼0.2 mm.
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half of the atsec24a-1(+/m) grains are abnormal although

not completely devoid of cellular content.

The evidence that half of the pollen appeared abnormal

at an ultrastructural level suggested that half of the

atsec24a-1(+/m) pollen could fail to germinate, thus
explaining the aberrant male transmission verified in the

crosses. To test this possibility, the ability of pollen to

germinate was followed. It was found that atsec24a-1 pollen

could germinate in vivo (Fig. 6), although it was not possible

to accurately establish the germination rate on the stigmas

because pollen grains were often released from the stigma

surface during the Alexander stain procedure. Therefore,

pollen germination was followed in vitro, which enables the
careful estimation of germination percentages (Fig. 7; Li

et al., 2008). The percentage of grains showing pollen tube

emergence and of grains developing an elongated tube was

recorded after 16 h of incubation on germination medium.

An aberrant pattern of germination in pollen grains from

atsec24a-1(+/m) anthers was found, with a germination rate

close to 50% compared with that of wild-type grains

(Fig. 7), indicating defects in the behaviour of half of the
atsec24a-1(+/m) pollen. These data led us to suggest that

the absence of viable atsec24a-1(m/m) mutants is most likely

linked to aberrant transmission of the male gamete due to

a pollen germination defect.

Absence of viable atsec24a-1(m/m) individuals is
specifically linked to the AtSEC24A mutation

Having established that the transmission of the atsec24a-1

allele was linked to male defects, it could now be tested

whether the lack of viable atsec24a-1(m/m) individuals was

indeed due to the mutation of AtSEC24A rather than to

a tightly linked but unrelated mutation. Therefore,

a complementation experiment was performed, with a con-

struct based on a fusion of the pollen promoter LAT52

(Twell et al., 1989) and the wild-type AtSEC24A coding
sequence (LAT52::AtSEC24A) cloned in a binary vector for

plant transformation. The construct was transformed into

atsec24a-1(+/m) plants. Pollen from independent atsec24a-

1-Lat52::AtSEC24A transformants, whose background was

confirmed as atsec24a-1(+/m) through genotyping for the

atsec24a-1 allele prior to the transformation (not shown),

was outcrossed to wild-type Col-0(+/+). Genotyping of the

progeny demonstrated complementation, with atsec24a-1

appearing in the progeny (Table 2). On the other hand,

the controls, based on crosses of the atsec24a-1(+/m) on to

Col-0, showed no transmission of the mutated atsec24a-1

allele, as expected (Table 2). These data allow us to

conclude that the atsec24a-1 can be transmitted through

the pollen of atsec24a-1(+/m)-Lat52::AtSEC24A plants, and

therefore, that lack of atsec24a-1 transmission in atsec24a-

1(+/m) individuals is specifically linked to the loss of
AtSEC24A function.

Discussion

Correct development of the male gametophyte, pollen
germination, tube growth, and delivery of the sperm cells

to the ovule are key factors for successful male fertility in

plants. Evidence gathered in this study based on reciprocal

crosses, pollen characterization, germination, and comple-

mentation tests demonstrates that lack of AtSEC24A is

Fig. 4. Pollen from atsec24a-1(+/m) plants shows cellular activities as deduced by the Alexander stain. (A) Whole anthers from wild-type

(WT) and atsec24a-1(+/m) dehiscent flowers showing similar pollen staining with the Alexander stain. Scale bar¼100 lm. (B) Higher

magnification images of the anthers of wild-type and mutant flowers, respectively. Scale bar¼20 lm.
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connected with defects in the male gametophyte that lead to

reduced pollen germination. Our data provide a functional

characterization in vivo of a plant SEC24, and provide

experimental evidence for incompletely overlapping func-

tions of the Arabidopsis SEC24 isoforms in plant growth

and development. They also uncover a role of SEC24

proteins in fertility in a multicellular model system.

Selective cargo capture into ER-derived carriers is driven
by the SEC24 component of the COPII coat (Aridor et al.,

1998; Kuehn et al., 1998). Structural analyses of the COPII

components and selective mutagenesis studies in vitro in

mammalian cell cultures and in the unicellular system

Saccharomyces cerevisiae have enabled much progress in the

understanding of the COPII assembly and cargo recruitment

processes (Miller et al., 2003; Mossessova et al., 2003; Miller

and Barlowe, 2010; Lee and Goldberg, 2010). With the
availability of genetic tools and sequenced genomes it is now

possible to gather important information on COPII in vivo.

Analysing the functions of various COPII isoforms in intact

animals and plants has the potential advantage to uncover

novel roles of COPII components in relation to tissue and

developmental specificity, which are hallmarks of multicellu-

lar organisms. For example, specific defects in multicellular

organisms have been described for the COPII subunits,
SAR1, SEC13, and SEC23, and suggested isoform-specific

roles in the mechanisms for export of cargo during organ and

tissue development (Jones et al., 2003; Boyadjiev et al., 2006;

Townley et al., 2008). Defects linked to the lack of an

isoform of SEC24 in plants are reported here and it is shown

that AtSEC24A has a role in pollen. Mounting evidence

gathered from experiments with the unicellular system in

yeast and mammalian cell culture suggests that eukaryotic
genomes express a diverse number of SEC24 isoforms, most

probably to ensure efficient and selective transport of

a variety of cargo proteins (Roberg et al., 1999; Peng et al.,

2000; Miller et al., 2002, 2003, 2005; Mossessova et al., 2003;

Wendeler et al., 2007). In multicellular organisms, the

combinatorial assembly of diverse SEC24 isoforms may

facilitate the export of cargo in defined developmental stages

Fig. 5. Pollen from atsec24a-1(+/m) plants has a heterogeneous

appearance at an ultrastructural level. (A, B) Transmission electron

micrograph of newly dehiscent wild-type anthers in which organ-

elles are clearly visible (arrow, Golgi; arrowhead, ER, stars,

mitochondria). Scale bars: 2 lm (A), 500 nm (B). (C–F) Analysis of

pollen from newly dehiscent anthers of atsec24a-1 plants shows

two types of grain. Although the pollen wall appears uniform

among the grains, half of the pollen is similar to the wild type while

the other half is more translucent (C). In the pollen grains that

appear similar to the wild type, organelles such as the Golgi

(arrows), ER (arrowhead), and mitochondria (star) are clearly visible

(D). The content of the translucent pollen grains (E) is characterized

by the presence of blebbing structures, including mitochondria

(arrows) and other structures of unknown nature (F). Scale bars: 5

lm (C), 500 nm (D), 2 lm (E, F).

Fig. 6. atsec24a-1 pollen can germinate in vivo. Alexander staining of wild-type and atsec24a-1 stigmas in contact for 4 h with the

respective pollen. That the pollen can germinate is shown by the presence of pollen tubes (black arrowheads). Ungerminated and newly

germinating grains (arrows) appear purple due to staining of the cytoplasm (Alexander, 1969). Fully germinated or aborted pollen grains

appear light blue coloured due to the absence of cytoplasm (white arrowheads). Scale bar¼40 lm.
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or tissues. This is supported by the findings in mice that loss
of SEC24b, one of the four mammalian SEC24 isoforms, is

critical for the incorporation in COPII carriers of Vangl2,

a component of the planar cell polarity-signalling pathway

(Merte et al., 2010; Wansleeben et al., 2010). Reduced export

of Vangl2 causes defects in neuron tube closure (Merte et al.,

2010; Wansleeben et al., 2010). It has been demonstrated

here that AtSEC24A isoform is essential in the male

gametophyte thus implicating a role of the COPII coat in
fertility. This role is specific to AtSEC24A isoform since it is

not compensated by the other two SEC24 isoforms.

Successful pollen tube germination requires the response

of pollen grains to germination signals, followed by the

generation and maintenance of polarized pollen tube

growth for successful egg fertilization. Mutants with pollen

germination defects can be identified in two broad catego-

ries: those that do not perceive signals for the receiving

stigma to initiate germination, and those that have a de-

fective response to these signals that result in the failure ofn

pollen tube growth. Signals that are received from the

stigma include hydration, which is mediated by proteins

secreted by the stigma and the pollen coat, as well as

downstream events mediated by proteins and secondary

messengers (Hiscock and Allen, 2008). Our complementation

tests with AtSEC24A expression driven by a pollen-promoter
prove that defects of the transmission of the mutant allele

are linked to the pollen. Defective germination in half of the

pollen grain population is consistent with a Mendelian

segregation of defects associated with one allele in 50% of

haploid cells. The Alexander stain indicated that most of

the pollen from atsec24a-1(+/m) plants has cellular activi-

ties; however, electron microscopy analyses showed sub-

cellular defects in half the pollen from dehiscent anthers.
Upon the second mitotic division, maturation of pollen

depends on crucial changes that include rearrangement of

the cytoplasmic content and development of storage

vacuoles; pollen that fails to germinate undergoes a process

of autolysis mediated by lysosomal structures with acid

phosphatases (Yamamoto et al., 2003). In our electron

microscopy analyses it was noted that the wild-type

organization of the cellular content of half of the atsec24a-

1(+/m) pollen is lost and that, in such pollen, the few

distinguishable organelles such as mitochondria have pro-

nounced blebbing profiles. The evidence that half of the

atsec24a-1(+/m) pollen has a wild-type appearance but

that the other half has an anomalous content indicates that

the abnormal pollen is not linked to a physiological

process of autolysis because this would occur in most of

the pollen grains which are synchronous in the same
anther. Rather, it is proposed that, in the absence of

a functional atsec24A, pollen undergoes degeneration of its

content, which may prevent both sensing and response to

germination stimuli.

Supplementary data

Supplementary data can be found at JXB online.

Supplementary Table S1. List of primers used in the work.

Supplementary Fig. S1. Schematic of the AtSEC24A

genomic fragment.

Supplementary Fig. S2. The appearance of the pollen of

atsec24a-1(+/m) is not homogeneous at an ultrastructural

level.
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Fig. 7 Pollen from atsec24a-1(+/m) plants has a reduced ability to

form pollen tubes. Percentage of germination on solid medium of

pollen grains from atsec24a-1(+/m) plants normalized to percent-

age of germination of wild-type pollen (WT) set to 100%. Data

represent the average of two independent experiments for a total

of counted pollen grains: 770 (wild type) and 2520 (atsec24a-1).

Table 2. Complementation test results. No heterozygous progeny

were produced in an outcross to a wild type using pollen from

atsec24a-1 heterozygotes (+/–). However, the atsec24a-1 allele

was recovered in the progeny from individual outcrosses using

pollen from an atsec24a-1(+/–) carrying a LAT52::AtSEC24A

construct (+/mc), demonstrating that the male defective trans-

mission of the atsec24a-1 mutant allele was complemented by the

presence of LAT52::AtSEC24A.

Inheritance of AtSEC24A alleles

atsec24a-1(+/–)
outcross

Allele No. of
crosses

No. of
progeny

Genotypes
of progeny (%)

Pollen source: +/m; m 5 31 +/+¼100 +/m¼0

Pollen recipient: +/+

Pollen source: +/mc;

Pollen recipient: +/+ mc 3 12 +/+¼83.3 +/mc¼16.7

m¼atsec24a-1, mc¼LAT52::AtSEC24A.

4934 | Conger et al.

http://jxb.oxfordjournals.org/cgi/content/full/err174/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err174/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err174/DC1
http://jxb.oxfordjournals.org/cgi/content/full/err174/DC1


References

Alexander MP. 1969. Differential staining of aborted and nonaborted

pollen. Stain Technology 44, 117–122.

Andersson MX, Sandelius AS. 2004. A chloroplast-localized vesicular

transport system: a bio-informatics approach. BMC Genomics 5, 40.

Aridor M, Weissman J, Bannykh S, Nuoffer C, Balch WE. 1998.

Cargo selection by the COPII budding machinery during export from

the ER. Journal of Cell Biology 141, 61–70.

Baerenfaller K, Grossmann J, Grobei MA, Hull R,

Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U,

Gruissem W, Baginsky S. 2008. Genome-scale proteomics reveals

Arabidopsis thaliana gene models and proteome dynamics. Science 320,

938–941.

Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S,

Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R.

1994. COPII: a membrane coat formed by Sec proteins that drive

vesicle budding from the endoplasmic reticulum. Cell 77, 895–907.

Borg M, Brownfield L, Twell D. 2009. Male gametophyte

development: a molecular perspective. Journal of Experimental Botany

60, 1465–1478.

Boyadjiev SA, Fromme JC, Ben J, et al. 2006. Cranio-lenticulo-

sutural dysplasia is caused by a SEC23A mutation leading to abnormal

endoplasmic-reticulum-to-Golgi trafficking. Nature Genetics 38,

1192–1197.

Brandizzi F. 2011. Is there a COPII-mediated membrane traffic in

chloroplasts? Traffic 12, 9–11.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for

Agrobacterium-mediated transformation of Arabidopsis thaliana. The

Plant Journal 16, 735–743.

d’Enfert C, Wuestehube LJ, Lila T, Schekman R. 1991. Sec12p-

dependent membrane binding of the small GTP-binding protein Sar1p

promotes formation of transport vesicles from the ER. Journal of Cell

Biology 114, 663–670.

Edwards K, Johnstone C, Thompson C. 1991. A simple and rapid

method for the preparation of plant genomic DNA for PCR analysis.

Nucleic Acids Research 19, 1349.

Faso C, Chen YN, Tamura K, et al. 2009. A missense mutation in

the Arabidopsis COPII coat protein Sec24A induces the formation of

clusters of the endoplasmic reticulum and Golgi apparatus. The Plant

Cell 21, 3655–3671.

Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R,

Roschitzki B, Basler K, Ahrens CH, Grossniklaus U. 2009.

Deterministic protein inference for shotgun proteomics data provides

new insights into Arabidopsis pollen development and function.

Genome Research 19, 1786–1800.

Hanton SL, Chatre L, Matheson LA, Rossi M, Held MA,

Brandizzi F. 2008. Plant Sar1 isoforms with near-identical protein

sequences exhibit different localisations and effects on secretion. Plant

Molecular Biology 67, 283–294.

Hiscock SJ, Allen AM. 2008. Diverse cell signalling pathways

regulate pollen–stigma interactions: the search for consensus. New

Phytologist 179, 286–317.

Honys D, Twell D. 2004. Transcriptome analysis of haploid male

gametophyte development in Arabidopsis. Genome Biology 5, R85.

Jones B, Jones EL, Bonney SA, et al. 2003. Mutations in a Sar1

GTPase of COPII vesicles are associated with lipid absorption

disorders. Nature Genetics 34, 29–31.

Kagi C, Gross-Hardt R. 2009. Analyzing female gametophyte

development and function: there is more than one way to crack an

egg. European Journal of Cell Biology 89, 258–261.

Kuehn MJ, Herrmann JM, Schekman R. 1998. COPII-cargo

interactions direct protein sorting into ER-derived transport vesicles.

Nature 391, 187–190.

Kurihara T, Hamamoto S, Gimeno RE, Kaiser CA, Schekman R,

Yoshihisa T. 2000. Sec24p and Iss1p function interchangeably in

transport vesicle formation from the endoplasmic reticulum in

Saccharomyces cerevisiae. Molecular Biology of the Cell 11, 983–998.

Lee C, Goldberg J. 2010. Structure of coatomer cage proteins and

the relationship among COPI, COPII, and clathrin vesicle coats. Cell

142, 123–132.

Li S, Gu Y, Yan A, Lord E, Yang ZB. 2008. RIP1 (ROP Interactive

Partner 1)/ICR1 marks pollen germination sites and may act in the

ROP1 pathway in the control of polarized pollen growth. Molecular

Plant 1, 1021–1035.

Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R,

Ginty DD. 2010. Sec24b selectively sorts Vangl2 to regulate planar

cell polarity during neural tube closure. Nature Cell Biology 12, 41–46.

Miller E, Antonny B, Hamamoto S, Schekman R. 2002. Cargo

selection into COPII vesicles is driven by the Sec24p subunit. EMBO

Journal 21, 6105–6113.

Miller EA, Barlowe C. 2010. Regulation of coat assembly: sorting

things out at the ER. Current Opinion in Cell Biology 22, 447–453.

Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S,

Orci L, Schekman R. 2003. Multiple cargo binding sites on the COPII

subunit Sec24p ensure capture of diverse membrane proteins into

transport vesicles. Cell 114, 497–509.

Miller EA, Liu Y, Barlowe C, Schekman R. 2005. ER-Golgi

transport defects are associated with mutations in the Sed5p-binding

domain of the COPII coat subunit, Sec24p. Molecular Biology of the

Cell 16, 3719–3726.

Mossessova E, Bickford LC, Goldberg J. 2003. SNARE selectivity

of the COPII coat. Cell 114, 483–495.

Nakano RT, Matsushima R, Ueda H, Tamura K, Shimada T, Li L,

Hayashi Y, Kondo M, Nishimura M, Hara-Nishimura I. 2009.

GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are required for

maintenance of endoplasmic reticulum morphology in Arabidopsis

thaliana. The Plant Cell 21, 3672–3685.

Peng R, De Antoni A, Gallwitz D. 2000. Evidence for overlapping

and distinct functions in protein transport of coat protein Sec24p

family members. Journal of Biological Chemistry 275, 11521–11528.

Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S,

Vasic B, Johnson MA, Palanivelu R. 2009. Penetration of the

stigma and style elicits a novel transcriptome in pollen tubes, pointing

to genes critical for growth in a pistil. PLoS Genetics 5, e1000621.

Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA.

1999. LST1 is a SEC24 homologue used for selective export of the

AtSEC24A plays an essential role in pollen | 4935



plasma membrane ATPase from the endoplasmic reticulum. Journal of

Cell Biology 145, 659–672.

Robinson DG, Herranz MC, Bubeck J, Pepperkok R,

Ritzenthaler C. 2007. Membrane dynamics in the early secretory

pathway. Critical Reviews in Plant Science 26, 199–225.

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M,

Vingron M, Scholkopf B, Weigel D, Lohmann JU. 2005. A gene

expression map of Arabidopsis thaliana development. Nature Genetics

37, 501–506.

Shimoni Y, Kurihara T, Ravazzola M, Amherdt M, Orci L,

Schekman R. 2000. Lst1p and Sec24p cooperate in sorting of the

plasma membrane ATPase into COPII vesicles in Saccharomyces

cerevisiae. Journal of Cell Biology 151, 973–984.

Townley AK, Feng Y, Schmidt K, Carter DA, Porter R,

Verkade P, Stephens DJ. 2008. Efficient coupling of Sec23-Sec24

to Sec13-Sec31 drives COPII-dependent collagen secretion and is

essential for normal craniofacial development. Journal of Cell Science

121, 3025–3034.

Twell D, Wing R, Yamaguchi J, McCormick S. 1989. Isolation and

expression of an anther-specific gene from tomato. Molecular and

General Genetics 217, 240–245.

Vernoud V, Horton AC, Yang Z, Nielsen E. 2003. Analysis of the

small GTPase gene superfamily of Arabidopsis. Plant Physiology 131,

1191–1208.

Wansleeben C, Feitsma H, Montcouquiol M, Kroon C,

Cuppen E, Meijlink F. 2010. Planar cell polarity defects and defective

Vangl2 trafficking in mutants for the COPII gene Sec24b. Development

137, 1067–1073.

Wendeler MW, Paccaud JP, Hauri HP. 2007. Role of Sec24

isoforms in selective export of membrane proteins from the

endoplasmic reticulum. EMBO Reports 8, 258–264.

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ.

2007. An ‘electronic fluorescent pictograph’ browser for exploring and

analyzing large-scale biological data sets. PLoS ONE 2, e718.

Yamamoto Y, Nishimura M, Hara-Nishimura I, Noguchi T. 2003.

Behavior of vacuoles during microspore and pollen development in.

Arabidopsis thaliana. Plant and Cell Physiology 44, 1192–1201.

4936 | Conger et al.


