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Abstract

The claim that the 6 kDa viral protein (VP) of Tobacco Etch Virus is a marker for ER exit sites (ERES) has been

investigated. When transiently expressed as a CFP tagged fusion construct in tobacco mesophyll protoplasts, this

integral membrane protein co-localizes with both the COPII coat protein YFP-SEC24 and the Golgi marker

Man1-RFP. However, when over-expressed the VP locates to larger spherical structures which co-localize with

neither ER nor Golgi markers. Nevertheless, deletion of the COPII interactive N-terminal D(X)E motif causes it to be

broadly distributed throughout the ER, supporting the notion that this protein could be an ERES marker. Curiously,

whereas brefeldin A (BFA) caused a typical Golgi-stack response (redistribution into the ER) of the VP in leaf

epidermal cells, in protoplasts it resulted in the formation of structures identical to those formed by over-expression.
However, anomalous results were obtained with protoplasts: when co-expressed with the non-cycling cis-Golgi

marker Man1-RFP, a BFA-induced redistribution of the VP-CFP signal into the ER was observed, but, in the presence

of the cycling Golgi marker ERD2-YFP, this did not occur. High resolution images of side-on views of Golgi stacks in

epidermal cells showed that the 6 kDa VP-CFP signal overlapped considerably more with YFP-SEC24 than with

Man1-RFP, indicating that the VP is proportionately more associated with ERES. However, based on a consideration

of the structure of its cytoplasmic tail, the scenario that the VP collects at ERES and is transported to the cis-Golgi

before being recycled back to the ER, is supported.
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Introduction

It is generally accepted that the endoplasmic reticulum (ER)

is the gateway to the secretory pathway in all eukaryotic
cells (Vitale et al., 1999; Osborne et al., 2005). After

undergoing a quality control to assess their export compe-

tence (Anelli et al., 2008), secretory proteins and membrane

proteins, destined for organelles downstream of the ER,

leave the ER through discrete domains known as ER export

(or exit) sites (ERES) (Budnik et al., 2009; Hanton et al.,

2009). In mammalian cells, ERES are characterized by the

presence of the recruiting GTPase Sar1, the dimeric COPII
proteins Sec23/24 and Sec13/31, as well as Sec16 (Watson

et al., 2006; Hughes et al., 2009). This is also true for yeast

(Connerly et al., 2005; Fromme et al., 2008) and higher

plants (Hanton et al., 2005; Marti et al., 2010). With the

exception of Sec16, the COPII proteins are capable of

forming a coat around 60 nm diameter ER-derived trans-

port vesicles (Barlowe et al., 1994; Miller et al., 2010).
COPII-coated vesicles have been demonstrated in vivo in

both yeast (Fromme et al., 2008) and mammalian cells

(Zeuschner et al., 2006). In addition, tubular, partially

COPII-coated carriers have also been reported to be

released from ERES in mammalian cells (Zeuschner et al.,

2006; Saito et al., 2009).

COPII-coated vesicles have not yet been isolated from

plants, nor have they successfully been induced in vitro from
ER-enriched membrane fractions. The depiction in the

electron microscope of vesicle budding events at the ER of

higher plant cells has also proved to be very difficult,

even when rapid freeze-fixation techniques are employed

(Robinson et al., 2007; Kang et al., 2008; Staehelin et al.,
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2008). On the other hand, an indication of ERES has been

possible through the localization of transiently expressed

fluorescently tagged COPII homologues (daSilva et al.,

2004; Yang et al., 2005; Hanton et al., 2007, 2009), and

through immunofluorescence with COPII antibodies (Yang

et al., 2005; Zhang et al., 2010). There is an extremely high

degree of co-localization between fluorescently tagged

COPII proteins and Golgi membrane proteins (e.g. Man1,
ERD2) when they are coexpressed in tobacco epidermal

cells (daSilva et al., 2004; Hanton et al., 2007, 2008). These

observations have led to the concept, that ERES and Golgi

stacks move together in a tightly coupled fashion, the so-

called ‘secretory unit’ (daSilva et al., 2004; Hawes et al.,

2008).

It is well known that infection with plant viruses leads

to significant cellular reorganization (Laliberte et al.,
2010). Depending on the virus, different organelles may

be affected but with one purpose: the production of viral

replication complexes (VRCs), which serve to protect the

replication machinery from host cell nucleases (Ding

et al., 2004; Schwartz et al., 2004). As with poliovirus in

mammalian cells (Belov et al., 2007), potyviruses appear

to high-jack the early secretory pathway in order to form

VRCs. One candidate for the modification of the host cell
ER in the case of Tobacco Etch Virus (TEV) is a 6 kDa

(53 amino acids) protein which has a putative short

luminal domain (11 aa), a 19 aa transmembrane domain,

and a 23 aa cytoplasmic domain (Fig. 1A). This is one of

eight proteins encoded by the TEV genome (Schaad et al.,

1997). According to Wei and Wang (2008), expression of

the 6 kDa viral protein (VP)-CFP in leaf epidermal cells

of Nicotiana benthamiana leads to the production of
two types of signal: punctae, which co-localize with the

COPII marker YFP-SEC24 and larger ring-like structures

which are not labelled with YFP-SEC24, nor with the

Golgi marker ERD2-CFP. The latter probably corre-

spond to the large VRCs described earlier by Schaad

et al. (1997). By using non-functional Sar1 and Arf1

mutants, Wei and Wang (2008) also showed that the

localization of the 6 kDa VP at putative ERES was
dependent upon active anterograde COPII and retrograde

COPI machineries.

It is shown here that, due to the extreme proximity of

Golgi stacks to the ER, especially in leaf epidermal cells, the

6 kDa VP-CFP signal overlaps with both YFP-SEC24, and

the cis-Golgi marker ManI-RFP. Nevertheless, examination

of side-on images of Golgi stacks in the CLSM confirms

that the majority of the 6 kDa VP-CFP and YFP-SEC24
label overlap and are separate from the greater portion of

the Man1-RFP signal. This confirms that the 6 kDa VP

localizes to the interface between ERES and cis-Golgi.

Being an integral membrane protein, rather than a COPII

coat protein, the 6 kDa VP could therefore have consider-

able potential as a tool for studies in ER–Golgi transport,

but there are drawbacks, especially when using brefeldin A:

its redistribution into the ER being dependent upon
whether the 6 kDa VP is expressed alone or with a cis-Golgi

marker protein.

Materials and methods

Plant material and cultivation

Wild-type Nicotiana benthamiana plants were grown from surface-
sterilized seeds on soil in a controlled room at 22 �C with a 16 h
day length. Plants of Nicotiana tabacum cv. Petit Havana, were
grown from surface-sterilized seeds on Murashige and Skoog
medium with 2% (w:w) sucrose in a controlled room at 25 �C with
cycles of 16 h light and 8 h darkness.

Transient expression in protoplasts

Preparation of tobacco leaf protoplasts was done exactly as
described in Foresti et al. (2006). A total volume of 500 ll of the
obtained protoplast suspension was pipetted into a disposable 1 ml
plastic cuvette and mixed with an appropriate amount of plasmid
DNA: RFP-p24 (Langhans et al., 2008); ERD2-YFP, ST-YFP
(Brandizzi et al., 2002a); 6 kDa-CFP (Wei and Wang, 2008);
Man1-RFP (Nebenfuehr et al., 1999); and Arf1-Q71L (Pimpl
et al., 2003) dissolved in a total of 100 ll of electroporation buffer.
The protoplasts were electroporated with stainless steel electrodes at
a distance of 3.5 mm, using a complete exponential discharge of
a 1000 lF capacitor charged at 160 V. After 30 min of absolute rest,
electroporated protoplasts were removed from the cuvettes and
transferred to 5 cm Petri dishes with 2 ml of TEX buffer.
Protoplasts were then incubated for 20–24 h at 25 �C in a dark
chamber. For CLSM analysis, protoplasts were harvested in 15 ml
Falcon tubes and allowed to float. For a-amylase assays protoplasts
were handled exactly as described in Foresti et al. (2006) and
Bubeck et al. (2008). All experiments were performed several times.

Agroinfiltration of markers into tobacco leaves

Four-to-six-week-old tobacco plants (wild type, N. benthamiana)
were used for transient expression mediated by Agrobacterium
tumefaciens. The relevant binary vectors were transformed into
GV3101 (+pSOUP) or ASE and infiltrated into leaf tissues using
a 1 ml syringe without a needle by gentle pressure through the
stomata on the lower epidermal surface. For leaf infiltration,
agrobacteria harbouring the relevant plasmids were grown for 1–2 d in
LB plus the appropriate antibiotics, collected by centrifugation,
and then resuspended in 1 ml water. The bacterial optical density
at 600 nm (OD600) used for plant transformation was 0.1–0.3 for
all constructs. Agroinfiltrated plants were incubated under normal
growth conditions for 2–3 d at 22–24 �C and small discs of
transformed leaf were excised for microscopy.

Treatments with inhibitors

Experiments were performed with 90 lM brefeldin A (BFA). BFA
was dissolved in a stock solution in DMSO, leading to a final
concentration of DMSO of 0.05%. As demonstrated in Langhans
et al (2007), this DMSO concentration is without cytological effect.
In our experiments, plant material was pretreated for 30–60 min
before observing under the CLSM.

Confocal microscopy

80 ll protoplast solution of N. tabacum var. SR1 was pipetted in
an area (10–15 mm) bordered with a frame of 100 lm thick
plastic isolating tape on a slide to protect the protoplasts from
pressure. The area was covered with a cover slip (24–32 mm).
Alternatively, leaves of N. benthamiana were transferred to slides.
Cells or plant material were observed under a Zeiss Axiovert
LSM510 Meta microscope using a Plan-Neofluar 253/0.8 Imm
corr DIC or a C-Apochromat 633/1.2 W corr water immersion
objective. Special settings were designed for observing single-,
double-, and triple expression with different XFP-constructs.
Fluorescence was detected by the metadetector using main beam
splitter HFTs 488/543 and 458/514. Fluorophores were excited by
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frame-switching in the multitracking mode of the microscope.
Detection of RFP was performed by excitation at 543 nm and an
emission at 593-635 nm. CFP and YFP were detected at 464–486
nm and 529–550 nm, respectively, after excitation with a 458 nm
or 514 nm LASER beam. Pinholes were adjusted to 1.3 Airy Unit
for CFP and to 1 Airy Unit for all other wavelengths. Images were
post-processed using the Zeiss LSM Image Browser (Version
4.2.0.121), Corel Draw X4 (Version 14.0.0.567) and ImageJ 1.44i.

a-Amylase assay and secretory index determinations

Preparation of protoplasts and determination of extracellular
(secreted) and intracellular a-amylase activities were performed as
described earlier (Crofts et al., 1999; Foresti et al., 2006). The

secretory index is defined as the ratio of extracellular to in-
tracellular activities (Bubeck et al., 2008).

Plasmid construction

All oligonucleotides were ordered from Sigma-Aldrich (Germany).
The expression of the gene of interest is under the control of the
35S promoter and is stopped by the NOS terminator or RBCS
terminator. Gateway technology (Invitrogen) was used to generate
constructs suitable for expression in tobacco leaves. To generate
the 6 kDa VP deletion mutant the 6 kDa VP-CFP (Wei and Wang,
2008) was used as the template. However, primers (forward: GGG
GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGT
GGC TAA GCA TCT G; reverse: GGG GAC CAC TTT GTA

Fig. 1. (A) Amino acid sequence of the 6 kDa VP-CFP with the ER export signal marked in red and the deleted amino acids (SDSE). (B–J)

Effects of 6 kDa overexpression in tobacco mesophyll protoplasts. (B) Punctate expression pattern obtained with 10 lg plasmid DNA after

24 h expression. (C) Large ring-like structures are seen with 20 lg plasmid DNA, in addition to a few punctate signals. (D) Expression of the

6 kDa VP is without effect on the intracellular transport of the secretory reporter a-amylase. Standard deviation is indicated by error bars in each

column. (E–J) Comparison of 6 kDA VP-CFP signals at low (10 lg, E–G) and high (20 lg, H–J) plasmid concentrations with ER (RFPp24) and

Golgi markers (Man1-RFP; ERD2-YFP). Note the lack of co-localization of the ring-like structures with the fluorescent markers. Bars¼5 lm.
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CAA GAA AGC TGG GTC TTG GAA ATA GAC TGG) were
designed to omit the first 12 nucleotides and cloned into the pJV-
113 vector (pGREEN-IIS vector series). Gene sequences were
amplified by PCR using Phusion DNA polymerase (Fermentas).
The resulting DNA fragments were purified and transferred by
recombination into the entry vector pDONR201 (Invitrogen) using
BP clonase II (Invitrogen) following the manufacturer’s protocol.
The insert was then transferred by recombination to the indicated
binary destination vector using LR clonase II (Invitrogen)
following the standard conditions and procedure recommended by
the supplier. RFP-p24 (Langhans et al., 2008) was subcloned into
the binary vector pBP33 (Nebenfuehr et al., 1999) using the
restriction sites SacI and KpnI. Inserts in the resulting destination
clones were verified by sequencing.

Results

6 kDa VP-CFP co-localizes with fluorescently-tagged Golgi

markers, but over-expression leads to the production of large

spherical membrane structures

In addition to small punctae, Wei and Wang (2008) also

observed numerous larger ring-like structures in agro-

infiltrated tobacco leaf epidermal cells which were trans-

formed only with the 6 kDa VP-CFP. Since such structures

were rarely seen in our agro-infiltrated leaves, it was

suspected that their presence in the study of Wei and Wang
(2008) might be due to over-expression. To test for this

under more controlled conditions, tobacco mesophyll pro-

toplasts were electroporated with increasing amounts of

plasmid encoding the 6 kDa VP-CFP construct and then

observed in the CLSM after a standard 20–24 h incubation

period. Under these conditions it was almost impossible to

detect a fluorescent signal with less than 5 lg DNA. A clear

punctate signal was first obtained with 10 lg DNA
(Fig. 1B); and with 20 lg DNA, in addition to small

punctae, there were large ring-like structures present

(Fig. 1C). Interestingly, even when higher plasmid concen-

trations were electroporated, the expression of the 6 kDa

VP-CFP had no inhibitory effect on the transport of the

secretory reporter a-amylase (Fig. 1D), indicating the non-

disruptive nature of short-term expression of the viral

protein on the early secretory pathway.
In an attempt to ascertain the nature of the large ring-like

structures, the ER marker (RFP-p24) and cis-Golgi markers

(Man1-RFP; ERD2-YFP) were co-electroporated with the

6 kDa VP at low (10 lg) and high (20 lg) plasmid concen-

trations. At the low concentrations, the 6 kDa VP-CFP signal

was detected in close proximity to the ER (Fig. 1E) and

showed a very high degree of co-localization with both Golgi

markers (Fig. 1F, G). Byn contrast, these markers were
conspicuously absent from the ring-like structures, which

appeared at high plasmid concentrations (Fig. 1H–J).

In response to BFA, the 6 kDa VP behaves like the cis-
Golgi marker Man1-RFP in leaves but not in protoplasts

When tobacco leaves were cotransformed with the 6 kDa

VP-CFP and either the ER marker RFP-p24 or the

cis-Golgi marker Man1-RFP, and then treated with brefel-

din A (BFA), the 6 kDa VP-CFP signal was redistributed,

like the Man1-RFP signal, throughout the ER network

(Fig. 2A–F). Such a re-distribution is typical for Golgi stack

markers, as shown on numerous occasions for tobacco leaf

epidermal cells (Boevink et al., 1998; Brandizzi et al., 2002b;

daSilva et al., 2004; Schoberer et al., 2010). This was not the

case with 6 k Da VP-CFP when expressed in protoplasts. In

response to BFA, the 6 kDa VP-CFP signal assumed the

form of large ring-like structures, very similar to those
observed when the 6 kDa VP was over-expressed (see

Fig. 1H–J, and Fig. 2J; compare before BFA treatment:

Fig. 2G–I). Again, these rings were bordered by, but did not

seem to part of the ER (Fig. 2K, L). The formation of these

rings was clearly time dependent, being quite small after

20 min BFA treatment (Fig. 3A–C).

In contrast to Man1-RFP, coexpressed 6 kDa VP
prevents the BFA-induced redistribution of ERD2-YFP
into the ER in protoplasts

When expressed singly in tobacco mesophyll protoplasts,
both the cis-Golgi markers Man1-RFP and ERD2-YFP and

the trans-Golgi marker ST-YFP typically redistribute into the

ER after BFA treatment (Fig. 3D–F; Langhans et al., 2011).

However, when co-expressed with 6 kDa VP-CFP there is

a clear difference between the behaviour of the two cis-Golgi

markers towards BFA. Together with Man1-RFP, the 6 kDa

VP-CFP signal redistributes into the ER (Fig. 3G–I). By

contrast, when coexpressed with ERD2-YFP, both the 6 kDa
VP and the Golgi marker remained as punctae (Fig. 3J–L).

ARF1-GTP mutant effects

Expression of the GTP-fixed ARF1(Q71L) mutant inhibits
COPI vesicle formation (Phillipson et al., 2001). Depending

upon the extent of its expression, it can therefore severely

reduce retrograde cargo transport from the Golgi, an effect

which was previously demonstrated using RFP-p24 which

rapidly cycles between the ER and the Golgi apparatus and

under steady-state conditions is mainly found in the ER

(Langhans et al., 2008). Thus, ARF1(Q71L) expression leads

to the retention of RFP-p24 in the Golgi which is reflected by
the appearance of fluorescent punctae. When this experiment

was performed in the presence of the 6 kDa VP, the VP-CFP

signals were seen to co-localize with the RFP-p24 punctae

(Fig. 4A–C). Using the same plasmid concentration, expres-

sion of the ARF1-GTP mutant did not affect the co-

localization of 6 kDa VP-CFP and Man1-RFP punctae

(Fig. 4D–F), indicating that the level of ARF1-GTP

expression was not sufficient to cause a complete collapse of
the Golgi into the ER. This was seen when double the

amount of ARF1(Q71L) was electroporated (Fig. 4G–I).

An N-terminal deletion mutant of the 6 kDa VP does not
exit the ER

The first four amino acids at the N-terminus of the 6 kDa

VP contain a classical D(X)E motif (Fig. 1A) for exiting the

ER (Hanton et al., 2005; Aniento et al., 2006). When this is

deleted, the 6 kDa VP-CFP no longer gives rise to discrete
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fluorescent punctae, but is distributed throughout the whole

of the cortical ER network labelled by RFP-p24 (Langhans
et al., 2008) when expressed in tobacco epidermal cells by

agroinfiltration (Fig. 4I–L).

6 kDa VP-CFP fluorescence in relation to ERES and
Golgi markers at high magnification

On the basis of the majority of the responses towards BFA

and the ARF1(Q71L) mutant expression just described, it

would seem that the 6 kDa VP acts like a cis-Golgi located

protein. However, since Wei and Wang (2008) came to

another conclusion, namely that the 6 kDa VP labelled
ERES, it was decided to look more closely at the signals of

the 6 kDa VP-CFP versus YFP-SEC24 (COPII), Man1-

RFP (cis-Golgi), and ST-YFP (trans-Golgi) in agro-

infiltrated tobacco leaf epidermal cells. In doing so, a search

was made for both end-on (looking perpendicularly at the

cis- or trans-faces), and side-on (looking horizontally at the

Golgi stack) views. The former are recognizable by their

almost circular profiles, the latter by their more stretched
profiles. To eliminate the possibility that the images

Fig. 2. Effects of BFA on distribution of 6 kDa VP-CFP. (A–F) In leaf epidermal cells after agroinfiltration. (G–L) In mesophyll protoplasts

after electroporation. (A–C) Co-expression with the ER marker RFP-p24. (D–F) Co-expression with the Golgi marker Man1-RFP. (G–I)

Control protoplasts co-expressing 6 kDa VP-CFP and RFP-p24. (J–L) Protoplasts treated with BFA. Note that the ring-like 6 kDa VP-CFP

positive structures do not overlap with the ER marker. Bars¼10 lm (A–F), 5 lm (G–L).
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obtained were a result of optical displacement during the
operation of the CLSM, checks were carried out with

0.5 lm and 4 lm TetraSpeck� fluorescent microspheres.

When viewed end-on, the images of the 6 kDa VP-CFP

overlapped more or less perfectly with the ERES marker

(YFP-SEC24) and the cis-Golgi marker Man1-RFP, but

less so with the trans-Golgi marker (ST-YFP) (Fig. 5A–H).

The situation was different for side-on images. The side-on

images for the 6 kDa VP-CFP and Man1-RFP showed little

co-localization: the two lying closely adjacent to one
another (Fig. 5I–L). This was also the case with and YFP-

SEC24 and Man1-RFP, corresponding to their functions as

ERES and cis-Golgi markers, respectively (Fig. 5M–P).

Most significantly, the side-one images of the 6 kDa VP-

CFP and YFP-SEC24 signals showed a high degree of

overlap (Fig. 5Q–T). From the side-on distribution of

signals, we can safely say that more 6 kDa VP is present in

ERES than in the cis-Golgi.

Fig. 3. Effects of BFA on the distribution of the 6 kDa VP in relation to Golgi marker proteins in tobacco mesophyll protoplasts. (A–C)

BFA causes the 6 kDa VP-CFP to form ring-like structures, when the latter is expressed alone. (D–F) The standard Golgi marker proteins

(Man1-RFP, ERD2-YFP, ST-YFP) are found in the ER with BFA treatment. (G–I) Both markers are redistributed into the ER after BFA

treatment when the 6 kDa VP-CFP is co-expressed with a non-cycling cis-Golgi marker (Man1-RFP). (J–L) BFA fails to relocate the 6 kDa

VP-CFP into the ER when co-expressed with the cycling Golgi marker ERD2-YFP. Bars¼5 lm.
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Discussion

Viral proteins as reporters of membrane trafficking

Viral glycoproteins, such as Vesicular Stomatitis Virus-G

protein (VSVG) and Semliki Forest Virus p62 protein, have

long been in use as markers to follow membrane trafficking

in mammalian cells (Simons et al., 1984; Hirschberg et al.,

1998). Although VSVG has been successfully expressed in

tobacco protoplasts (Galbraith, 1992) no further work has

been performed on plants with this membrane protein. Nor,

would it appear, have any attempts been undertaken to

exploit the temperature-sensitive mutants of VSVG which

Fig. 4. (A–I) Effects of low and high expression of the ARF1-GTP mutant ARF1(Q71L) on the 6 kDa VP-CFP and the Golgi marker Man1-

RFP, and the ER marker RFP-p24. (A–F) At low levels of expression (0.05 lg), the ARF1-GTP mutant causes a portion of the cycling ER

marker RFP-p24 to be retained in the Golgi which is then visible as punctae which co-localize with the 6 kDa VP (A–C). Under these

conditions, the 6 kDa VP and Man1-RFP Golgi signals remain punctate (D–F). (G–I) At high levels (0.1 lg) of ARF1-GTP mutant

expression both the 6 kDA VP-CFP and Man1-RFP signals redistribute into the ER. (J–L) Deletion of the four N-terminal residues SDSE,

causes the 6 kDa VP to be retained in the ER (labelled by RFP-p24). All images are from agro-infiltrated tobacco leaf epidermal cells.

Bars¼5 lm (A–I), 10 lm (J–L).
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have proved to be so useful in visualizing ER–Golgi
trafficking in mammals (Presley et al., 1997; Hirschberg

et al., 1998). In plants, the use of plant viral proteins as

secretory reporters has been minimal. This, in part, reflects

a major alternate interest in movement proteins (Benitez-

Alfonso et al., 2010; Niehl et al., 2011), but is also due to

the fact that plant viral proteins tend to induce the

formation of pleiomorphic structures, probably as a conse-

quence of their over-expression. This is certainly the case

with the Tomato Spotted Wilt Virus (TSWV) glycoproteins
Gn and Gc, which may be regarded as being analagous to

VSVG. They appear to use COPII vesicles to exit the ER in

tobacco mesophyll protoplasts, but also cause the forma-

tion of large ring-like structures, not unlike the ones

induced by over-expression of the TEV 6 kDa VP (Ribeiro

et al., 2008). However, in contrast to the ring-like structures

induced by the TSWV Gn protein which were clearly

derived from Golgi membranes (Ribeiro et al., 2008), there

Fig. 5. High resolution images of 6 kda VP-CFP labelling in relation to COPII (YFP-SEC24), cis-Golgi (Man1-RFP), and trans-Golgi (ST-

YFP) markers. (A–H) End-on views of Golgi stacks and ERES by three-colour imaging. The ‘additive colour model’ is included as an

insert in (D) for orientation purposes. Full co-localization between all three colours (blue, green, and red) results in a white colour. (I–P)

Side-on views of Golgi and ERES by two-colour imaging. (Q–T) Side-on views of 6 kDa VP and ERES by two-colour imaging. Bars¼1 lm

(A–D; I–T), 2 lm (E–H).
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was no clear relationship to either the ER or the Golgi

apparatus in the case of the TEV 6 kDa VP ring-like

structures. Nevertheless, as has been shown, it is possible to

avoid the formation of the ring-like structures by expressing

the TEV 6 kDa VP at low levels. Since the secretory

pathway is otherwise not perturbed, this viral protein could

become a useful tool in transient expression studies on

membrane traffic in the early secretory pathway of plants.

What is the structure labelled by the 6 kDa VP: ERES,
COPII/I vesicles, or the cis-Golgi?

In tobacco leaf cells and protoplasts, fluorescently tagged
COPII and cis-Golgi marker proteins co-localize. This has

been shown on numerous occasions (see above for litera-

ture), and is also the case for the 6 kDa VP. Does the 6 kDa

VP therefore reside in ERES or in the cis-Golgi, and if it

does enter the cis-Golgi does it remain there or does it

recycle via COPI vesicles to the ER?

The distribution of 6 kDa-CFP as against fluorescent

COPII and cis-Golgi markers in side-on views of Golgi
stacks in the CLSM is strongly in favour of its location at

ERES. This is supported by the existence of a di-acidic ER

export motif at the N-terminus certainly pointing to the

collection of the 6 kDa VP at ERES and to its insertion into

a COPII vesicle. However, a closer look at the rest of the

cytoplasmic domain of this protein (Fig. 1A) shows the

presence of four lysine and two histidine residues. While

these positively charged amino acids do not strictly
correspond to a canonical dilysine motif for COPI coat

binding (Letourneur et al., 1994), they are arranged within

a short stretch of 11 amino acids making an interaction with

coatomer a likely possibility. If this is indeed so, it would

mean that the 6 kDa VP of TEV is a type I membrane

protein that constitutively cycles between the ER and the

Golgi. This would explain why the 6 kDa VP is never found

downstream of the Golgi in the secretory pathway.
The behaviour of the 6 kDa VP towards BFA might be

taken as evidence for at least some of it entering the cis-

Golgi, although the 6 kDa VP does not behave as a classical

Golgi resident protein. Although BFA does give rise to the

same phenotype in protoplasts as for Man1-RFP (i.e.

redistribution into the ER), it only does so when the 6 kDa

VP is expressed together with Man1-RFP. Significantly, it

does not when expressed alone. Interestingly, this does not
hold for the other Golgi marker ERD2-YFP, which is

prevented from entering the ER in the presence of the

6 kDa VP. The reason for this difference may lie in the fact

that ERD2, unlike Man1 cycles between the Golgi and the

ER (Lee et al., 1993; Townsley et al., 1993), and could point

to possible differences in interaction between the 6 kDa VP

and the two cis-Golgi membrane proteins. That such

interactions must be taking place is, however, an indication
that the 6 kDa VP must enter the cis-Golgi, or possibly into

a new-subcompartment at the ER/cis-Golgi interface which

is created by the expression of the 6 kDa VP.

An unequivocal answer with regard to the location of the

6 kDa VP is probably only possible by immunogold

electron microscopy. At present, such data are difficult to

deliver. The standard objects previously used for CLSM

studies on ERES have been tobacco leaf epidermal cells

which, because of their large vacuoles, make them most

unsuitable for the preparation of high pressure frozen

samples for immunogold electron microscopy. This is not

a problem with Arabidopsis roots, and while there should be

no great problem in generating a stable transformed myc-
tagged 6 kDa VP Arabidopsis line (under the control of an

inducible promoter), there is an unexpected caveat: the

frequency of visualization of COPII budding events at the

ER in Arabidopsis root cells is so low that it makes

statistically reliable immunogold labelling virtually impossible

to perform.
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