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Abstract
Stem cell therapies offer great promise for many diseases, especially those without current
effective treatments. It is believed that noninvasive imaging techniques, which offer the ability to
track the status of cells after transplantation, will expedite progress in this field and help to achieve
maximized therapeutic effect. Today’s biomedical imaging technology allows for real-time,
noninvasive monitoring of grafted stem cells including their biodistribution, migration, survival,
and differentiation, with magnetic resonance imaging (MRI) of nanoparticle-labeled cells being
one of the most commonly used techniques. Among the advantages of MR cell tracking are its
high spatial resolution, no exposure to ionizing radiation, and clinical applicability. In order to
track cells by MRI, the cells need to be labeled with magnetic nanoparticles, for which many types
exist. There are several cellular labeling techniques available, including simple incubation, use of
transfection agents, magnetoelectroporation, and magnetosonoporation. In this overview article,
we will review the use of different magnetic nanoparticles and discuss how these particles can be
used to track the distribution of transplanted cells in different organ systems. Caveats and
limitations inherent to the tracking of nanoparticle-labeled stem cells are also discussed.

THE IMPORTANCE OF TRACKING STEM CELLS
Stem cell therapies have great promise for treatment of many debilitating diseases. Clinical
trials evaluating the safety of cell-based therapies are currently under way. However, there is
still much to be learned about stem-cell-based approaches. One important aspect is to
identify transplantable cells that are capable of surviving, integrating with the host tissue,
and undertaking the desired cellular differentiation. Crucial to further therapeutic success is
the treating physician being able to answer the following questions: (1) what is the optimal
cell delivery route for a particular condition? (2) What is the initial engraftment and
distribution pattern of injected cells? and (3) How effectively do injected cells migrate
toward the affected pathological sites? In order to address these questions, noninvasive
cellular imaging is currently a very active field of research. It is far more efficient than
traditional histopathological techniques and it offers unique information about cell behavior
over time. The need for cellular imaging is even greater in the clinical setting where
information about the location and persistence of the cells can be acquired only through
invasive biopsy or postmortem analysis. Noninvasive imaging techniques are needed to
evaluate the migration and function of cells and to help guide treatment for maximized
therapeutic effect.
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Several imaging modalities are available for cell tracking including computed tomography
(CT), positron emission tomography (PET), magnetic resonance imaging (MRI), single
photon emission computer tomography (SPECT), optical imaging, and ultrasound imaging.
Advantages of MRI include its high spatial resolution, widespread availability in most
clinics, and that it does not expose the patient to ionizing radiation, which is present in CT,
PET, and SPECT. MRI is particularly useful in imaging transplanted stem cells since it can
provide additional anatomical and pathological information on the surrounding tissue,
including edema or inflammation surrounding the transplantation site,1,2 thus providing
further information for clinicians and helping to understand all aspects of the particular
cellular therapy.

In order to visualize transplanted stem cells by MRI, the cells need to be labeled with a
contrast agent prior to transplantation. There are several available magnetic nanoparticles
that can be used for cellular labeling and result in cell detection as positive or negative
contrast on MR images. There are two MR relaxation time constants, T1 and T2. T1
characterizes the relaxation of the nuclear spin to its longitudinal equilibrium following a
radiofrequency pulse. T2 measures the loss of coherency among adjacent nuclear spins.
Both time constants are affected by the local microenvironment, which may include
magnetic inhomogeneities leading to a new time constant T2*. Magnetic nanoparticle
contrast agents function by altering one or more of these time constants because of their
magnetic properties, in order to distinguish transplanted stem cells from endogenous tissue
so that their position can be visualized.

In this overview article, we will review the types of magnetic nanoparticles that are used for
cell labeling and tracking by MRI and we will elaborate on the different methods used for
cellular labeling. Applications of magnetically labeled cells transplanted into different organ
systems as well as in clinical studies will be discussed. Finally, we will outline the
limitations and difficulties associated with cell tracking by magnetic nanoparticles as well as
their future applications.

TYPES OF MAGNETIC NANOPARTICLES
Magnetic nanoparticles can be classified into a few groups—superparamagnetic,
paramagnetic, ferrimagnetic, and ferromagnetic nanoparticles. Elements such as iron,
manganese, and gadolinium have paramagnetic properties due to unpaired electrons and
have strong effects on the local magnetic field, which allows them to be utilized as contrast
agents for MRI. Normally, coupling forces in magnetic materials cause the magnetic
moments of neighboring atoms to align, resulting in very large internal magnetic fields. At
temperatures above the Curie temperature (or the Neel temperature for antiferromagnetic
materials), the thermal energy is sufficient to overcome the coupling forces, causing the
atomic magnetic moments to fluctuate randomly. Because there is no longer any magnetic
order, the internal magnetic field no longer exists and the material exhibits paramagnetic
behavior.

Superparamagnetism occurs when the material is composed of very small crystallites (1–10
nm). In this case, even though the temperature is below the Curie or Neel temperature and
the thermal energy is not sufficient to overcome the coupling forces between neighboring
atoms, the thermal energy is sufficient to change the direction of magnetization of the entire
crystallite. The resulting fluctuations in the direction of magnetization cause the magnetic
field to average to zero. The material behaves in a manner similar to paramagnetism, except
that instead of each individual atom being independently influenced by an external magnetic
field, the magnetic moment of the entire crystallite tends to align with the magnetic field.
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Ferromagnetic materials exhibit parallel alignment of all the individual moments and have a
net magnetic moment without the presence of an external field.3 Ferrimagnetism occurs in
ionic compounds such as oxides and is a complex form of magnetic ordering that results in a
net magnetic moment of two sublattices. Iron oxide nanoparticles have been widely used for
cellular imaging due to their strong T2* effects.4–7 There are several types of iron oxide
nanoparticles that are utilized to label stem cells including superparamagnetic iron oxide
(SPIO) nanoparticles, 50–200 nm diameter, ultra small superparamagnetic iron oxide
(USPIO) nanoparticles, approximately 35 nm diameter, and micron-sized paramagnetic iron
oxide nanoparticles (MPIO) that are approximately 1 μm. These particles locally reduce the
T2 and T2* relaxation by inducing strong field inhomogeneities. When imaged with T2 or
T2*-weighted pulse sequences, they produce a hypointense signal on the MRI, enabling the
visualization of labeled, transplanted cells. Iron oxide nanoparticles are usually synthesized
as an iron oxide core of inverse spinel structure containing mixed valence Fe+2 and Fe+3

ions (Figure 1), coated with different substrates, including dextran,8,9 carboxydextran,8,9

polyethylene glycol (PEG),10 polystyrene,11 or silica8 that aid in stability and solubility. The
substrates also keep the particles from aggregating together which may cause toxicity to the
cells.12 The magnetic and MRI contrast-enhancing properties of iron oxide nanoparticles can
be manipulated by controlling the size of the core and the coating surface,9 offering
flexibility in optimal design for particular applications.

Among the iron oxide nanoparticles, Feridex/Endorem (Berlex Pharmaceuticals, US/
Guerbet, France) has been the most commonly used contrast agent for cell labeling. Feridex
is an SPIO coated with dextran, and has a particle size of 50–180 nm with an overall
negative charge of about −70 mV. Dextran-coated iron oxide particles such as Feridex are
advantageous for animal and clinical studies as the particles are biocompatible and
biodegradable through normal biochemical pathways for iron metabolism through initial
uptake by Kupffer cells and macrophages.13 Feridex was Food and Drug Administration
(FDA)-approved for clinical use as a liver contrast agent in 1996. Feridex (or its equivalent
Endorem) is the only pharmaceutical-grade MR contrast agent that has been used for clinical
cell tracking.14,15 Unfortunately, Feridex and Endorem were discontinued from production
at the end of 2008 and are no longer commercially available. New types of iron oxide
nanoparticles have since then been explored, although they are currently not approved for
clinical use. BioPAL (Worcester, MA) produces several iron oxide nanoparticles including
FeREX (USPIO, 50–150 nm) and Molday ION products (approximately 30 nm) that are
available with different functional surface groups, including amino groups, carboxyl groups,
and fluorescent molecules, so that the particles can be directly visualized using fluorescent
microscopy.16–20

Several other types of SPIOs have been used for labeling stem cells. This includes Resovist
(Bayer Schering, Berlin, Germany), which has an iron oxide core coated with
carboxydextran.21,22 However, this formulation has now also been taken off the market.
Although MPIO particles are not clinically approved, they are the most sensitive MR label
due to their large size and high iron content.23,24 MPIOs are coated with polystyrene, which
is not biodegradable. In addition, the formulations cannot be purchased with a guarantee of
sterility, making clinical applications impossible.

Other groups of nanoparticle contrast agents used for cell tracking include manganese oxide
nanoparticles and particles containing gadolinium chelates. These paramagnetic agents
predominantly reduce the T1 relaxation time and are therefore called T1 agents. They create
a positive or bright signal on the MR images. Among the metal ions, gadolinium has the
most (7) unpaired electrons and therefore is the most effective paramagnetic contrast agent,
but its overall relaxivity is far less than that of SPIOs. Gadolinium contrast agents include
gadolinium diethylenetriamine pentaacetic acid (Gd-DPTA), gadolinium
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tetraazacyclododecanetertraacetic acid (Gd-DOTA), and trade names Vasovist (Bayer
Health-care, Wayne, NJ, USA), Gadovist (Bayer Healthcare), and Magnevist (Bayer
Healthcare).23,25–28 Manganese oxide also has been used to label cells with positive contrast
nanoparticles.29–31

TECHNIQUES FOR CELL LABELING WITH MAGNETIC NANOPARTICLES
Magnetic cell labeling relies on shuttling of the particles from the extracellular environment
to the intracellular compartments. The efficiency of magnetic labeling depends on cell
membrane properties as well as the size of the cells of interest. Some cell types allow for
efficient uptake of the nanoparticles and cell labeling is achieved by mere incubation with
the nanoparticles simply suspended in culture medium.32,33 Other cell types require
additional methods to take up the label. Initially, for these non-phagocytosing cells,
techniques such as viral capsid incorporation,34 where a virus envelope encapsulates the iron
oxide particles and then is used to infect cells, and antibody-mediated uptake, where the
SPIOs can be covalently attached to antibodies,35,36 were employed. Use of viral capsid
elements as well as antibody coating is quite complex and not versatile; therefore,
researchers sought alternative methods and found success with coating the negatively
charged SPIO nanoparticles with poly-cations to facilitate particle binding to the anionic cell
membrane, therefore increasing uptake.37–40 Poly-cationic transfection agents are now
widely used to increase the efficiency of nanoparticle cellular labeling. There are several
commercially available transfection agents that aid in the uptake of nanoparticles, including
poly-L-lysine (MW = 350–400 kDa), protamine sulfate, and lipofectamine (Figure 2). The
labeling procedure involves mixing the nanoparticle solution with the cell culture medium,
then adding the transfection agent, and allowing that mixture to incubate in order to form
stable complexes through electrostatic interactions. When the labeling solution is added to
the cells, the nanoparticle–transfection agent complexes electrostatically interact with the
cell membrane and facilitate endocytosis or macropinocytosis of the contrast agent
nonspecifically into endosomes within the cells over a 24–48-h labeling period.41,42

Alternative methods for cell labeling are based on temporary disruption of cell membrane
stability with the use of electroporation43,44 or ultrasound45,46 pulses. Transient changes of
cell membrane permeability allow for nanoparticles to pass through the membrane and into
the cytosol. The primary advantage of magnetoelectro-/sonoporation is that it is
instantaneous and does not require prolonged incubation of cells, which is of concern when
using some sensitive, primary cell types. However, cell death can be significant for this
method and the parameters need to be optimized for each cell type.

Regardless of the labeling method used, the efficiency of labeling must be verified for each
cell type prior to transplantation. The cells also must be thoroughly washed to remove all of
the excess nanoparticles as residual extracellular contrast agent may lead to false-positive
signals in vivo. It is also recommended that labeled cells are evaluated in vitro to ensure that
there is no or minimal impact on cell viability and function.

IMPACT OF MAGNETIC LABELING ON STEM CELLS
Several studies have been conducted to analyze the effects of magnetic nanoparticle labeling
on the viability and function of stem cells. Nearly all studies published so far have not
shown any detrimental effect of Feridex labeling at currently used incubation doses,
including the first clinical study using Feridex-labeled cells.47 However, this contrast agent
was found to inhibit chondrogenesis, although the adipogenesis and osteogenesis pathways
were not affected.48,49 In addition, a study of SPIO labeling with and without the use of
transfection agents reported that the labeling may cause a decrease in the migration capacity
and colony-formation ability of human MSCs.50 The decrease in migration capacity was
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only apparent in the first two passages, but the colony-formation ability effects remained.50

A study on human MSCs labeled with Ferucarbotran, an ionic SPIO, found that the SPIO
had an inhibitory effect on osteogenic differentiation and its signaling mechanism.51

Ferucarbotran SPIO caused a dose-dependent inhibition of osteogenic differentiation,
abolished the differentiation at high concentration, and promoted cell migration.51 However,
except for these rare cases, overall SPIO labeling appears safe, justifying its clinical use.14

In order to further support this claim, detailed gene expression profiling using micro-array
analysis and quantitative polymerase chain reaction (PCR) did reveal only minor early
changes in a small set of genes that largely returned back to normal levels over the course of
1 week post-labeling.52

APPLICATIONS OF STEM CELL TRACKING
Stem-cell-based therapy relies on the delivery of cells to organs that are affected by the
disease. Depending on the pathology, various routes of cell delivery are being considered,
including intraparenchymal injections, intravenous injections, and injections into natural
cavities (such as the peritoneal space or ventricular system of the brain). MRI is particularly
valuable for evaluating the cell distribution and migration and determining the best delivery
route for transplantation. There are many examples of tracking stem cells by MRI with
applications in different fields, including two key applications where stem-cell-based
therapies are widely studied, cardiovascular and neurological diseases.

Cardiovascular Applications
Stem-cell-based therapy is considered highly promising for treatment of heart infarct as well
as other cardiovascular diseases, such as peripheral arterial occlusive disease53 or heart
valve dysfunction.54 The heart muscle has limited regeneration capacity, so stem cells offer
the potential for regrowth of heart tissue and restoration of function. Several studies have
been performed involving tracking magnetically labeled stem cells in order to follow their
migration after transplantation in cardiac disease models. Cardiac imaging is highly valuable
in the clinic for diagnostic purposes, i.e., determining the extent of the infarct and for
performing interventional radiology procedures. The establishment of a method for
noninvasive imaging of transplanted stem cells will provide clinicians with more options in
treating heart disease. The beating heart is an inherently dynamic organ and motion artifacts
make MR imaging challenging.55 Nevertheless, both cardiac and respiration gating utilized
together make it possible to acquire high-quality images, allowing for visualization of SPIO-
labeled cells. Engraftment of MSCs and their distribution in cardiac tissue were successfully
imaged in rodents56,57 (Figure 3) and in swine models of myocardial infarction.58,59 Other
groups have transplanted embryonic stem cells (ESCs) or ESC-derived cardiac precursor
cells (ES-CPCs) labeled with iron oxide in a mouse model of myocardial infarction.55,57,60

Feridex and protamine sulfate labeled ES-CPCs were injected into the border zone of heart
infarct in mice. One week after transplantation, the graft distribution imaged by MRI
correlated well with histology.55 This study did not report on monitoring long-term
migration. Most importantly, transplantation of SPIO-labeled ESCs by direct intra-
myocardial injection to infarcted myocardium was reported to result in improvement of
heart function.60 This study showed the feasibility of in vivo ESC tracking using SPIO
labeling and cardiac MRI without altering the cardiac differentiation potential and functional
properties of the stem cells.

Neurological Applications
The central nervous system (CNS) is the most complex system in the body with very limited
regenerative abilities. Transplantation of exogenous cells offers an alternative with potential
to enhance restorative capacity of the brain. Due to the complexity of the CNS, cell-based
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therapy is challenging, and tools for monitoring and guiding these approaches are highly
desired. While tissue biopsies can be considered for evaluation of cell therapy in other
organs, it is rather not an option in the case of brain. Therefore, access to a method for
evaluating the status of transplanted cells and their contribution to therapeutic effect
noninvasively over time is critical. MR cellular imaging seems ideally suited for that
purpose as it can be used to monitor cell delivery as well as report on cell migration over
time. Imaging of SPIO-labeled cells is now widely used for monitoring cell-based therapy in
animal models of neurological disease. In the study by Kim et al., Feridex-labeled human
MSCs were transplanted into the brain of stroked rats and their migration was imaged using
a 4.7-T MRI scanner. Cells were shown to migrate extensively and were capable of reaching
the infarcted area from both ipsilateral and contralateral injections.61

Multiple sclerosis (MS) is another type of disease where cell therapy and cellular imaging
have been explored widely in animal models.62–65 It is expected that stereotaxically
transplanted cells will migrate toward lesion sites that emit inflammatory cues. In
experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, MRI has
visualized the migration of SPIO-labeled neurospheres from the ventricles into the
periventricular white matter.62 A recent study evaluated the effect of Feridex labeling on the
survival, differentiation, migration, and immunomodulatory properties of multipotential
neurospheres (Figure 4).64 Following intracerebroventricular (ICV) transplantation in EAE
mice, Feridex-labeled neurospheres responded to inflammatory cues in a similar fashion as
unlabeled cells. Labeled cells inhibited lymph node cell proliferation similar to unlabeled
cells, which suggests a preserved immunomodulatory function despite the presence of
intracellular Feridex. These labeled neurospheres also migrated over comparable distances
in white matter tracts and differentiated equally into the glial lineages. This study is an
important demonstration that labeling with magnetic nanoparticles does not affect the
function of the neurospheres, providing key evidence that these labels can be used to serially
track stem cells in an EAE model of demyelinating disease.

As for human cells, SPIO-labeled neural stem cells (NSCs) were followed up for 1 month
after transplantation into adult murine brains. The study found that the cell survival,
proliferation, self-renewal, and multipotency were not impaired by the intracellular presence
of SPIO.66 Human NSCs, labeled with Feridex and protamine sulfate and transplanted into
an adult rodent stroke model, were shown to migrate through an intraparenchymal migration
pathway from the cortical transplantation site.67 Labeled cells survived, migrated,
differentiated, and responded to microenvironment cues without altering the neuronal
electrophysiological characteristics.67 A recent study of Feridex-labeled NSCs transplanted
into normal adult rat brains described a quantitative method for determining the migratory
capacity of stem cells by co-registration of serial images and parametric analysis to
determine the migration speed.68 Quantification as well as location relative to key
anatomical features will be beneficial in clinical studies in determining the therapeutic effect
of stem cells.

Clinical Applications
Several clinical studies utilizing magnetic nanoparticles to label cells have been
conducted.15,47,69–71 The first report involving magnetically labeled stem cells was from a
patient with brain trauma who received an autologous transplant of Feridex-labeled NSCs
into the damaged temporal lobe.69 NSCs were isolated from exposed neural tissue (brain
injury region) from the patient. Cells were cultured to select for neural progenitor cells and
labeled with Feridex prior to stereotactical transplantation. The patient was then imaged with
a 3.0-T MR scanner weekly for 10 weeks after transplantation. Hypointense signals at the
injection sites were only observed after transplantation (Figure 5). This signal persisted for 7
weeks, after which it became undetectable, which the authors attributed to the dilution of the
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label during cellular proliferation. Although not directly proven, since the MRI also revealed
increased hypointensity at the periphery of the lesion over time, the authors believed that the
cells were migrating to the border of the damaged tissue. This validated another major goal
of magnetically labeled cells—not only to detect initial distribution of the cells, but also to
follow their migration. A control patient receiving unlabeled NSCs revealed only slight
hypointense signal at the injection site, which did not significantly change over time. This
initial clinical study involving two patients clearly demonstrates that MRI can be utilized for
the noninvasive detection of the engraftment and migration of stem cells. The findings are
consistent with the preceding data in animal models, and no unwanted side effects were
encountered in this preliminary study. A clinical study was conducted recently to evaluate
the feasibility, safety, and immunological effects of autologous MSCs in patients with MS
and amyotrophic lateral sclerosis (ALS).15 While several patients received unlabeled cells,
nine patients received Feridex-labeled MSCs administered intrathecally or intravenously.
Patients were followed for up to 25 months following administration of the cells, and MRI
was utilized to track the labeled cells and determine if there were other related pathology
changes. Hypointense signals in T2-weighted images indicated the presence of SPIO-
positive cells in the meninges of the spinal cord and nerve roots, in the sub-arachnoid space,
and in the spinal cord parenchyma. The study concluded that transplantation of MSCs into
patients with MS and ALS is clinically feasible and safe, while resulting in immediate
immunomodulatory effects.15 Other clinical studies on MRI cell tracking have used other
cell types, including dendritic cells in melanoma patients,47 bone marrow CD34+ stem cells
in chronic spinal cord injury patients,70 and pancreatic islets for type 1 diabetes patients.71

Limitations
There are several limitations to exogenous cellular labeling with magnetic nanoparticles for
long-term MR imaging. Immature cells such as stem or progenitor cells frequently continue
to proliferate after transplantation, as they are not terminally differentiated. In such cases,
the label is diluted as the cells divide. Dilution of the iron oxide label is a major limitation
for long-term tracking, as the MR signal is lost over time due to cellular proliferation,
especially with rapidly dividing cells.43,66,72–74 Upon staining, Prussian blue negative cells
have been detected as a result of dilution of the label following cellular division. Therefore,
tracking proliferating cells long term by MRI and nanoparticle labeling is challenging. There
are also concerns that stem cells may divide asymmetrically, leading to an unequal
distribution of label with one daughter cell receiving most of the nanoparticles.75 This
results in less gradual dilution of the contrast agent than if there was symmetric division.
Asymmetric division of stem cells would quickly dilute the label from some daughter cells,
leaving these cells undetectable by MRI even early on after transplantation. There are also
detection limits and difficulties in quantifying the number of iron-oxide-labeled cells that are
transplanted. The detection threshold for cells labeled with magnetic nanoparticles is
affected by a number of factors including field strength, signal-to-noise ratio, pulse
sequence, type of particle, and voxel size. In typical settings, detection limits are
approximately a few hundred cells. The quantification of SPIO-labeled cells by MRI is an
indirect technique. Signal change is the result of the overall concentration of magnetic
nanoparticles, and not the actual total number of cells.76 Another complication is that certain
endogenous conditions can also result in hypointense MR signals, which can be confused
with the presence of magnetic contrast agents. Macrophages loaded with hemosiderin from
hemorrhage can often be found in infarcted myocardium, and their hypointense signals may
be indistinguishable from labeled cells.56,77

Magnetic nanoparticles also do not allow for the discrimination by MRI between live and
dead cells. If the transplanted cells die, magnetic nanoparticles could persist in the tissue and
produce signal that is detected by MRI.78 Another potential difficulty with magnetic
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nanoparticle labeling is that endogenous cells such as macrophages can take up particles.79

Immune cells such as macrophages can engulf dead cells containing nanoparticles. In the
brain, microglia have been shown to co-localize with the nanoparticles. Recent studies in the
heart and leg indicate that the magnetic nanoparticles are not cleared quickly after cell death,
with the cellular viability being confirmed by other methods, indicating that in certain cases
the persistent MR signal may be misleading (Figure 6).80–82 If macrophages phagocytize
dead or dying SPIO-labeled cells, the endogenous macrophages can be mistaken for
transplanted stem cells. There can also be extracellular iron that remains in the tissue instead
of being removed or taken up by endogenous cells. Also, nanoparticles biodegrade over
time, which further hinders imaging over extended time periods.30,83 One option would be
to slow down the metabolism of iron oxides, such as that occurs in iron oxide nanoparticles
coated with phospholipids. After cellular internalization, the nanoparticles reach the
endosomes, where the chemoabsorbed phospho-lipid layer shields the core from
degradation, resulting in a persistent MRI signal for at least 1 month even in a continuously
proliferating cell culture like 3T3 fibroblasts.84 But MRI remains unable to discern whether
MR hypointensity is a result of live, transplanted cells or nanoparticles that are no longer
within transplanted cells.

Conclusion
Noninvasive MRI of tracking stem cells is likely to become an integral part of clinical
cellular therapies. In order to successfully monitor the accuracy of injection and the
distribution of cells throughout the course of treatment, the high-resolution cellular imaging
technology is of crucial importance. SPIO magnetic nanoparticles are biocompatible, have
low toxicity, high MR sensitivity without exposing the patient to radiation, and are clinically
applicable. The magnetic nanoparticles discussed in this article are valuable for labeling and
tracking of stem cells; however, there are certain limitations that cannot be ignored. The
ideal cellular MR contrast for labeling of cells has a low toxicity, is biocompatible, provides
stable contrast beyond the background level, provides high sensitivity allowing for single-
cell detection, does not dilute during cellular proliferation, and exhibits minimum transfer to
endogenous host cells. While currently available magnetic nanoparticles do not meet all of
these criteria, they are well suited for real-time, MR-guided delivery of stem cells into
patients. This will ensure that the initial transplantation and distribution of stem cells are
anatomically accurate to provide the desired treatment. For subsequent long-term stem-cell
tracking, an approach based on the use of MR reporter genes85–89 that can report on the
survival of transplanted cells and will not be diluted out with cellular divisions may become
ultimately the method of choice, or a combination of magnetic nanoparticles and reporter
genes may be utilized.
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FIGURE 1.
Schematic structure of a representative superparamagnetic iron oxide (SPIO) nanoparticle
that is composed of an iron oxide core, dextran coating, and rhodamine as fluorescent
marker.

Cromer Berman et al. Page 14

Wiley Interdiscip Rev Nanomed Nanobiotechnol. Author manuscript; available in PMC 2011 October 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 2.
Prussian blue staining of mesenchymal stem cells (MSCs) labeled with Feridex at 25 μg of
iron per milliliter of culture medium for 2 h (40× magnification): Feridex only (a); Feridex-
PLL (1200 ng/mL PLL) (b); Feridex-Superfect (2400 ng/mL Superfect) (c); Feridex-PLUS/
lipofectamine (1:1250/1:2500 dilution from stock solution, Invitrogen, Carlsbad, CA) (d).
Diamino-benzidine-enhanced Prussian blue staining of C17.2 mouse neural stem cells
labeled with Feridex (2 mg/mL) with (e) and without magnetoelectroporation (f). (a–d,
Reprinted with permission from Ref 38. Copyright 2003 Radiological Society of North
America. E–F, Reprinted with permission from Ref 43. Copyright 2005 John Wiley & Sons,
Inc)
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FIGURE 3.
Serial in vivo magnetic resonance (MR) tracking of Endorem-labeled MSCs (25 μg/mL iron
and 0.375 μg/mL PLL). (a) Injection of 2 × 106 SPIO-labeled MSCs 7 days after left
coronary artery ligation creates a wide intramural area of hypointensity (arrows) at the
anterior lateral ventricle (LV) wall. Positive signals are still visible after 28 days. (b) Similar
magnetic signals (arrows) were produced by labeled cells injected to normal hearts. (c)
Injection of unlabeled MSCs did not alter the magnetic signal of the myocardium.
(Reprinted with permission from Ref 56. Copyright 2007 American Heart Association, Inc)
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FIGURE 4.
Serial in vivo magnetic resonance imaging (MRI) tracking of intracerebroventricular (ICV)-
transplanted neurospheres in experimental autoimmune encephalomyelitis (EAE). Feridex-
labeled neurospheres were transplanted into the right ventricle of EAE mice (black arrow).
At day 1 after ICV transplantation (a), cells featuring hypointense (black) signals are found
exclusively within the cerebral ventricles and are absent within the corpus callosum (white
arrow). At 4 (b) and 7 (c) days after ICV transplantation, some cells had migrated into the
corpus callosum (white arrow). Ex vivo MRI at day 22 posttransplantation confirmed this
pattern of migration (d). (Reprinted with permission from Ref 64. Copyright 2009 John
Wiley & Sons, Inc)
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FIGURE 5.
MRI scans from a patient who received neural stem cells labeled with Feridex. The scan
obtained before implantation of the labeled neural stem cells (a) did not show a pronounced
hypointense signal around the lesion (asterisk) in the left temporal lobe, whereas circular
areas of hypointense signal were visible at the injection sites 1 day after implantation (b).
Four hypointense signals (black arrows) were observed at injection sites around the lesion
on day 1 (c), day 7 (d), day 14 (e), and day 21 (f). On day 7 (d), dark signals (white arrow)
posterior to the lesion were observed, a finding that is consistent with the presence of the
labeled cells. By day 14 (e), the hypointense signals at the injection sites had faded, and
another dark signal (white arrowhead) had appeared and spread along the border of the
damaged brain tissue. By day 21 (f), the dark signal had thickened and extended further
along the lesion (white arrow). (Reprinted with permission from Ref 69. Copyright 2006
Massachusetts Medical Society)
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FIGURE 6.
Serial optical bioluminescence imaging and magnetic resonance imaging (MRI) of H9c2
cells after transplantation. Optical bioluminescence imaging of a representative rat
intramyocardially injected with 2 × 106 Fluc-labeled cells (top panel, right) shows a robust
distinct heart signal on day 1 (red arrow), compared to no discernable signal in a
representative control rat having received non-labeled cells (top panel, left). The signal
increases slightly on day 3 but decreases rapidly to near-background levels by day 6. MRI of
a representative rat injected with 2 × 106 Feridex-labeled cells (bottom panel, right) shows a
large hypointense signal (red arrow) in the anterolateral wall of myocardium when viewed in
short axis. The size of the signal decreases slightly over time, and the signal persists for at
least 80 days post cell injection, even though the cells have died by day 6. No corresponding
signal is observed on the short-axis image of a representative control rat having received
non-labeled cells (bottom panel, left). A, P, R, and L indicate anterior, posterior, right, and
left anatomical orientations, respectively. (Reprinted with permission from Ref 81.
Copyright 2008 Academy of Molecular Imaging)
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