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We establish an appropriate thermodynamic framework for deter-
mining the optimal genome length in electrostatically driven viral
encapsidation. Importantly, our analysis includes the electrostatic
potential due to the Donnan equilibrium, which arises from the
semipermeable nature of the viral capsid, i.e., permeable to small
mobile ions but impermeable to charged macromolecules. Because
most macromolecules in the cellular milieu are negatively charged,
the Donnan potential provides an additional driving force for gen-
ome encapsidation. In contrast to previous theoretical studies, we
find that the optimal genome length is the result of combined
effects from the electrostatic interactions of all charged species,
the excluded volume and, to a very significant degree, the Donnan
potential. In particular, the Donnan potential is essential for obtain-
ing negatively overcharged viruses. The prevalence of overcharged
viruses in nature may suggest an evolutionary preference for
viruses to increase the amount of genome packaged by utilizing
the Donnan potential (through increases in the capsid radius),
rather than high charges on the capsid, so that structural stability
of the capsid is maintained.

polyelectrolyte ∣ viral assembly

The most prevalent viruses in nature are single-stranded
RNA viruses with the genetic material enclosed in icosahe-

dral-shaped capsids made up of 60 T protein units, where the
T-number is a small integer index. The protein units (capsomers)
often contain highly basic peptide arms that extend into the cap-
sid interior and, under physiological conditions, are positively
charged. Electrostatic attraction provides the driving force for
encapsidating the negatively charged RNA, which, in turn, helps
overcome the electrostatic repulsion among the capsomers dur-
ing the capsid assembly.

In a series of classic experiments, Bancroft and coworkers
(1, 2) demonstrated that certain viruses can encapsidate nonna-
tive RNA and even generic polyanions. Dominance of the elec-
trostatics as the driving force for viral assembly has led to the
expectation of a simple relationship between the total capsid
chargeQP and the genome chargeQR, as every nucleotide carries
one unit of negative charge. Belyi and Muthukumar (3) compiled
data for 19 wild type viruses from several viral families and found
an apparent “universal” charge ratio of QR∕QP ≈ 1.6, which they
explained by combining the ground-state dominance approxima-
tion for polyelectrolyte binding to an oppositely charged polymer
brush with the Manning condensation theory (4). The former
predicts a 1∶1 charge ratio and the latter is used as a qualitative
argument for the actual charge on the RNA being less than the
nominal charge. Hu, et al. (5), however, assumed that the RNA
winds around individual peptide arms and found that the viruses
are most stable when the total contour length of the RNA is close
to the total length of the peptide arms; this roughly gives a charge
ratio of 2. In other works that ignore the peptide arms completely,
there is additional disagreement for the charge ratio. For exam-
ple, van der Schoot and Bruinsma (6) obtained a charge ratio of 2,
whereas the work of Angelescu, et al. (7) yielded a ratio of 1 as
the most favorable condition (but predicted that encapsidation

can remain favorable up to a ratio of 3.5). Implicit in any expected
relationship between the total capsid charge QP and the genome
charge QR is the assumption that at a given QP, there exists an
optimal genome length N� that can be encapsidated. However,
the definition of N� has not been clearly articulated in the litera-
ture, and the issue of a “universal” charge ratio remains unre-
solved.

In this article, we first clarify the meaning of an optimal
genome length N�. The determination of N� requires a clearly
defined thermodynamic setup from which minimization of an
appropriate free energy can emerge in a way that is consistent
with the assembly mechanism under typical in vitro or in vivo
conditions. We then use self-consistent field (SCF) theory (8) to
calculate the free energy required to determine N�. We find that
N� is not uniquely determined by the total charge of the capsid
QP, but depends on the placement of the capsid charges, the ex-
cluded volume effects and, most significantly, the negative elec-
trostatic potential outside the viral capsid. This Donnan potential
(9) has been neglected in all previous theoretical and computa-
tional studies. We find that this contribution is essential for
obtaining overcharged viruses.

By including the Donnan potential, we are able to vary the
parameters in our model—the charge density and length of the
peptide arms, and the charge density and radius of the capsid
shell—to generate a set of hypothetical viruses for which the be-
havior of the genome length vs. the total capsid charge resembles
data on real overcharged viruses from ref. 3. On the basis of our
analysis, the prevalence of overcharged viruses in nature may sug-
gest an evolutionary preference for viruses that primarily utilize
the Donnan potential, rather than highly charged capsomers, to
increase the amount of genome packaged, while still maintaining
the structural stability of the capsid shell.

Clarification of the Optimal Genome Length
Bancroft, et al. (2) showed that viral assembly occurs by a nuclea-
tion and growth mechanism, with the RNA acting as the nucle-
ating agent. If the RNA are sufficiently large, and on account of
their electrostatic repulsion with each other, the likelihood of
multiple RNA nucleating one capsid is low and, for the optimal
length question, we may confine ourselves to the population of
single RNA-encapsidated viral particles. Also, following previous
theoretical works (3, 5–7, 10–15), we treat the RNA as a linear
polyelectrolyte, and ignore the secondary structures (16). This
approximation is in part a computational necessity and in part
guided by the motivation to elucidate the generic features of
electrostatically driven viral assembly by using simple models. It
will be shown that changing the polyelectrolyte from a linear
chain to a multiarmed star (which considerably reduces its phy-
sical dimension, one of the main effects of the secondary struc-
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ture) has little effect on the results. As depicted in Fig. 1, we
consider two scenarios for the encapsidation. Under reasonable
conditions, these two scenarios yield identical results.

Scenario I. Consider a monodisperse solution of sufficiently long
RNA (N0 > N�) mixed with capsomers. Upon nucleation around
the RNA, the capsomers aggregate to form viruses of various
T-number sizes with N segments inside and N0 −N segments
outside. It has been suggested that the outside fragments can be
removed by nucleases (17, 18). We focus on the subpopulation of
singly encapsidated viral particles of a particular T-number. Treat-
ing viral assembly as an equilibrium system subject to the laws of
mass action (see ref. 6 and references therein), the number con-
centration of viral capsids containing a genome lengthN inside is

CðNÞ ¼ Cref exp½−f ðNÞ − Δf cap þ μþ 60Tλ�: [1]

Here f ðNÞ is the free energy of interaction between the RNA and
the capsid, Δf cap is the free energy of formation for an empty
capsid, μ and λ are the chemical potentials of the free RNA and
the free capsomers, respectively, and Cref is a reference concen-
tration that is assumed to be independent of N. f ðNÞ and Δf cap
are really semigrand free energies, as the capsid is open with
respect to small salt ions and solvent. However, for notational
conciseness, we do not explicitly include the chemical potentials
of these species in the expression. Throughout this work, we take
the thermal energy kT as the energy unit. Clearly, the fraction
of viral particles with N segments inside is given by PðNÞ ¼
exp½−f ðNÞ�∕∑N0 exp½−f ðN 0Þ�, where the summation runs from
Nmin, as required to nucleate the capsid (2), to N0. Importantly,
the free energy of formation of the capsid and the concentrations
of RNA and capsomers, while determining the concentration of
the viral particles, play no role in PðNÞ. If we ignore the connec-
tivity between the inside and outside portions of the RNA, then
the free energy of interaction may be separated into f ðNÞ ¼
f inðNÞ þ f outðN0 −NÞ. The main contribution to f out arises from
the external osmotic pressureΠ and the finite electrostatic poten-
tial difference Δψ , i.e., the Donnan potential. The former is due
to the presence of other macromolecules, such as proteins and
nucleic acids or added osmolytes (19), and the latter due to

the fact that these macromolecules are usually charged. Thus,
we have f outðN0 −NÞ ¼ ðN0 −NÞðvRΠþ eΔψÞ, where vR is the
monomer volume of a nucleotide and e is the elementary charge.
Under usual solution conditions, vRΠ ≪ kT so that we can safely
ignore the osmotic pressure term. Substituting the free energy
back into PðNÞ, we get

PðNÞ ¼ exp½−gðNÞ�
∑
N0

exp½−gðN 0Þ� ; [2]

where gðNÞ ¼ f inðNÞ − eNΔψ . It is now clear that the largest
population corresponds to the minimum of this free energy.

Scenario II. We envision a polydisperse solution of RNA mixed
with capsomers. Once packaged we assume that the RNA mole-
cules reside entirely within the viral capsid. Again, we focus on
the subpopulation of singly encapsidated viral particles of a
particular T-number. Following arguments similar to those in
Scenario I, the fraction of viral particles with chain length N is
given by PðNÞ ¼ exp½−f inðNÞ þ μN�∕∑N0 exp½−f inðN 0Þ þ μN0 �.
Here μN is the chemical potential of free RNA of length N. As-
suming ideal solution behavior for the free RNA, μN ¼ μrefN þ
logðρN∕ρrefN Þ þ eNΔψ , where ρrefN is a reference concentration
and μrefN is its respective chemical potential. These reference
terms contain contributions from the momentum and conforma-
tion integration of the reference Gaussian chain and exactly
cancel those implicit in f in. The distribution then becomes

PðNÞ ¼ ρN exp½−f inðNÞ þ eNΔψ �
∑
N0

ρN0 exp½−f inðN 0Þ þ eN 0Δψ � : [3]

When the concentrations of RNAwith different chain lengths are
the same, the ρN exactly cancel and Eq. 3 becomes identical to
Eq. 2. In fact, because the free energy in the exponential is
OðNÞ (see Fig. 2), its contribution will dominate the distribution
and the concentration prefactors can be safely ignored. There-
fore, for all practical purposes, the determination of N� is again
a minimization of the free energy, gðNÞ.

We note that it is possible to include the part-in, part-out con-
figuration of Scenario I in Scenario II. Here, chain lengths longer
than N� will likely have some fragments outside the capsid that
can be removed by nucleases. Including such a configuration will
make the distribution PðNÞ even more dominated by N�, but the
determination of N� remains unchanged. Also, for long enough
chains, gðNÞ is primarily determined by the total number of
nucleotides in the capsid and is insensitive to the actual number
of chains nR or the architecture of the polyelectrolyte; see Fig. 2.
In particular, the results for a 12-arm star and for a linear chain

I

II

Fig. 1. Two scenarios for viral assembly giving rise to an optimal genome
length. Scenario I: a monodisperse solution of RNA of length N0 > N�, where
the optimal length N� corresponds to the largest population of viral particles
containing N� segments inside the capsid. Here, the outside fragment of
RNA can be removed by nucleases, as represented by scissors. Scenario II: a
polydisperse solution of RNA, where viruses containing fully encapsidated
molecules of length N� dominate the population of singly encapsidated viral
particles.
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Fig. 2. T ¼ 4 virus with QP ¼ 1;847e in the presence (solid) and absence
(dashed) of the Donnan potential.
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with the same number of nucleotides are essentially identical,
indicating that packaging is insensitive to the radius of gyration
or degree of branching—two main effects of the RNA secondary
structure (16). In what follows, we briefly describe the compo-
nents of our SCF model used to obtain gðNÞ, but refer the reader
to the Appendix for details, including the model parameters.

Model
We approximate the icosahedral viral capsid by a spherical shell
of some finite thickness with inner radius rcap, uniform charge
density of magnitude ccap, and np ¼ 60 T peptide arms grafted
to the inner surface. The capsid is treated as a semipermeable
shell, open with respect to solvent and ions, but closed with re-
spect to the RNA and peptide arms. We represent the flexible
RNA molecule, whose persistence length l ∼ 1 nm is an order
of magnitude smaller than the capsid radius, by a discrete Gaus-
sian chain of N monomers, each carrying a unit negative charge
and having a volume vR. The capsid proteins are represented by
end-grafted polyelectrolyte chains of uniform charge distribution
and are similarly modeled by a discrete Gaussian chain of Np
monomers, each with volume vp and charge cp. The solvent
molecules are represented by monomers of volume vs and the
monovalent salt ions are taken to be point charges of the elemen-
tary charge e. The essential contributions to the model are the
chain connectivity, the excluded volume effects, and the electro-
static interactions from all charged species, with total charge den-
sity ρc ¼ ccapϕcap − ρ− þ cp

vp
ϕp −

ϕR
vR
. Here ρ− is the charge density,

assumed to be uniform, of the negatively charged macromole-
cules outside the capsid. Following the usual SCF derivation
(see Appendix), we obtain the semigrand free energy:

f in ¼ − ln
�
ZR

vR

�
− ln

�
Z
np
p

v
np
p np!

�
−
eμs

vs
Zs −

eμ�

v�
Z�

þ
Z

dr
�
− ∑
I¼R;P;S

ξIϕI þ ψρc −
ϵ

2
ð∇ψÞ2

�
: [4]

In this expression, the Zα (α ¼ R, P, S,� ) are the single-molecule
partition functions in their respective self-consistent fields ξI, ψ is
the electrostatic potential (measured in reference to a monova-
lent salt solution when ρ− ¼ 0), and the dielectric constant ϵ
depends on the local volume fraction of the species.

Results
To understand how each of the different capsid parameters
affects the optimal genome length N�, we begin by varying one
parameter at a time, holding all else fixed. For different ways of
changing the capsid charges, we obtain the optimal genome

charge QR ¼ eN� from the free energy minimization with respect
to N. In Fig. 3 we show the relationship between QR and the total
capsid charge QP. In all cases, an approximately linear relation-
ship is obtained in the range of charges considered, with a
slope k ¼ ΔQR∕ΔQP.

We first examine the situation in the absence of the Donnan
potential, when ρ− ¼ 0 mM and c� ¼ 130 mM (filled markers).
Changing the charge density of the capsid shell ccap has the smal-
lest effect (k3 ¼ 0.33) on the optimal genome charge, while chan-
ging the charge density of the peptide arms cp has the largest
effect (k2 ¼ 0.82). Intermediate to these slopes, we find
k4 ¼ 0.38 for increasing the radius of the capsid shell rcap (at fixed
grafting density) and k1 ¼ 0.67 for increasing the length of the
peptide arms Np. To understand these different dependencies,
we consider a reference T ¼ 4 capsid with a total charge
QP ¼ 1;440e distributed only on the np ¼ 240 peptide arms. In
Fig. 4A, we plot (solid line) the radial density profile for the op-
timal genome with QR ¼ 769e. We observe, as expected, a region
of RNA density near the capsid surface, with most of the capsid
interior devoid of genome. In this case, the main contribution
comes from the electrostatic interactions with the peptide arms
grafted to the inner surface of the capsid. We subsequently dou-
ble QP by changing Np, cp, ccap and rcap individually. From the
density profiles, it is clear that increasing ccap (dashed) has a local
effect and the resulting optimal genome only increases to
QR ¼ 1;171e. The region where the genome can benefit from
additional electrostatic interactions is limited to a concentrated
shell at the inner surface of the capsid, where additional layers
are hindered by excluded volume from the genome and peptide
arms. In contrast, delocalizing the charges onto the peptide arms
allows the genome to interact with the entire region of the pep-
tide brush and we find QR ¼ 2;011e or QR ¼ 1;802e, depending
on whether we increase cp (dotted) or Np (dot-dashed), respec-
tively. The discrepancy between the two can be understood again
from the excluded volume effect. Increasing Np increases the
volume fraction of the protein arms and therefore the excluded
volume effect, while increasing cp does not. Finally, one could
double the capsid charge by doubling the number of peptide arms
at fixed grafting density, thus increasing rcap (note that this is
a hypothetical case, because the number of peptide arms is
restricted by the T-number). We find that the density profile is
largely the same, except for a shift in position with the capsid
shell. Not surprisingly, the optimal genome has approximately
doubled with the number of peptide arms, where we find QR ¼
1;488e. In all cases considered, we find undercharged viruses,
where QR∕QP < 1.

We next consider the effect of negatively charged macro-
molecules outside the viral capsid and set ρ− ¼ 100 mM, cþ ¼
130 mM, and c− ¼ 30 mM (20). As usual, the small ions, which
can diffuse freely, maintain charge neutrality subject to equality
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Fig. 4. Radial density profiles (nm) corresponding to the optimal genome
length for a T ¼ 4 virus. (A) For np ¼ 240, Np ¼ 36, cp ¼ 0.167, and
ccap ¼ 0.0 (solid), we double the charge by changing one of the following:
Np ¼ 72 (dot-dashed), cp ¼ 0.33 (dotted), and ccap ¼ 0.177 (dashed). (B) For
Np ¼ 36 and cp ¼ 0.083, we increase the capsid charge density: ccap ¼ 0.00
(solid), 0.05 (dotted), 0.10 (dashed). (C) For ccap ¼ 0.10 without protein arms
(solid), with neutral protein arms Np ¼ 36 (dotted), and with charged protein
arms Np ¼ 36, cp ¼ 0.083 (dashed).
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of chemical potential for each of the small ion species across the
viral capsid. This combination of charge neutrality with equality
of chemical potential gives rise to a negative electrostatic poten-
tial (relative to a neutral monovalent salt solution) that makes it
favorable for an RNA molecule to be inside the viral capsid. The
optimal genome length occurs when the potential inside the cap-
sid becomes comparable to this Donnan potential. In Fig. 3
(empty markers), we show that increasing rcap at constant grafting
density now has the greatest effect on increasing the optimal gen-
ome length, where k8 ¼ 1.69. In contrast, the optimal genome
lengths for changing Np, cp, or ccap have primarily shifted by a
constant, while the slopes ΔQR∕ΔQP remain largely unchanged.
These observations can be explained from the density profiles
in Fig. 4B, where we note that accounting for the negative
background charge fills the capsid interior with RNA. When we
increase ccap, the concentrated density of RNA near the surface
increases (as is the case when ρ− ¼ 0 mM), while the density in
the interior remains unchanged. We note that it is possible to
increase QR simply by increasing the volume of the capsid so that
even negative slopes can be obtained, e.g., by increasing rcap while
decreasing QP.

Lastly, in Fig. 4C, we demonstrate the combined effects of the
excluded volume, electrostatics, and Donnan potential. We start
with a charged capsid shell without protein arms (solid). As
expected, we find a concentrated density of RNA near the inner
surface of the capsid and a lower density throughout the interior
of the capsid. We next add neutral protein arms (dotted) to iso-
late the effect of the excluded volume, and find that the peptide
arms repel the RNA from the surface of the capsid, resulting in a
decrease in QR. If we add back charges to the peptide arms
(dashed), we find that the favorable electrostatic interactions
overcome the excluded volume effect and, as before, the deloca-
lization of the capsid charges creates an extended region of
enhanced RNA density.

From these results, it is clear that no universal relationship
exists between the optimal genome length and the total capsid
charge. The optimal genome length depends in a nontrivial
way on the placement of charges, the peptide arm length and,
importantly, the capsid radius (through the Donnan potential).
In real viruses, the variation in the total capsid charge from one
virus to another almost certainly occurs by a combination of these
parameters. Therefore, very different genome vs. capsid charge
relationships can be obtained. To illustrate, in Fig. 5Awe generate
three datasets designated by the green circles, blue squares, and
purple triangles, corresponding, respectively, to hypothetical
small, medium, and large T ¼ 4 viruses at different values of
the total capsid charge. Here the size refers to rcap ¼ 17, 22,

and 25 nm for small, medium, and large, respectively. Several in-
teresting observations can be made. First, even at zero capsid
charge, there is a finite QR that depends on the volume of the
capsid available to the genome. This result is a direct conse-
quence of the negative Donnan potential outside the capsid,
which fills the interior with a nearly constant density of genome
(see Fig. 4 B and C). Second, it is obvious that the same total
capsid charge QP can correspond to multiple values of the opti-
mal genome charge QR. Finally, there are multiple ways to con-
nect these 12 data points, each defining a different genome to
capsid charge relationship. In fact, there is essentially a conti-
nuum of points in the general area covered by these 12 points,
corresponding to different combinations of Np, cp, ccap and rcap.

Discussion
We have developed a thermodynamic framework for viral assem-
bly and clarified the notion of the optimal genome length as the
minimization of an appropriate free energy, which we obtain
using SCF theory. Importantly, we have accounted for the Don-
nan potential due to the presence of charged macromolecules
outside the viral capsid and find it to be essential for obtaining
overcharged viruses. Based on the minimization of the free en-
ergy defined in our work, we find that the optimal genome length
depends in a nontrivial way on the placement of the capsid
charges, the excluded volume inside the capsid and, significantly,
the Donnan potential. We conclude that there is no universal
genome to capsid charge ratio.

What, then, can be made of the apparent linear relationship
QR ≈ 1.6QP that was obtained from 19 wild type viruses in ref. 3?
To address this question, we first note that if we exclude the three
obvious outliers in the data used in that study, a slope of 1.3
with an intercept of 668 is obtained instead. On the other hand,
another set of viruses chosen by Hu, et al. (5), when fitted to a
linear function, yields a slope of 0.3 and an intercept of 3,275.
If we combine both sets of data, an apparent linear relationship
with slope 1.1 and intercept 1,214 is obtained (see Fig. 5B). These
data therefore suggest that a fitted linear relationship between
the genome and capsid charge is quite sensitive to the choice
of which viruses to include in a set; this is consistent with our dis-
cussion of Fig. 5A in the last section. Whether an apparent linear
relationship can be obtained if data on all available viruses are
compiled remains an open question. However, it is safe to say
that there is nothing particularly meaningful about 1.6 being the
genome to capsid charge ratio.

Nevertheless, it can be seen from Fig. 5B that all the viruses
selected in refs. 3 and 5 are overcharged. Indeed, overcharged
viruses are prevalent in nature (21). To understand this observa-
tion, we have generated a set of hypothetical viruses by tuning the
parameters (peptide arm length NP and charge density cP; and
capsid shell radius rcap and charge density ccap) in our model
so that only overcharged viruses are obtained. It is in fact possible
to make the genome vs. capsid charge relationship for these
hypothetical viruses appear similar to real viruses; see Fig. 5 A
and B, red circles. A common attribute of these hypothetical
viruses is that the charges on the peptide arms and capsid shell
are relatively low. The primary driving force for packaging comes
from the Donnan potential, which fills the capsid volume with
genome (the finite positive offset in QR at QP ¼ 0 for both
the real viruses and our hypothetical viruses is also consistent with
this). Thus, the greatest increases inQR come from increasing the
capsid radius. We emphasize that without the Donnan potential,
we cannot obtain overcharged viruses because the genome is
limited to electrostatic interactions near the inner surface of the
capsid, where the excluded volume effects become an issue. We
recognize that many factors contribute in the evolutionary pres-
sure on the genome to capsid ratio in naturally occurring viruses.
However, in light of our thermodynamic analysis, the prevalence
of overcharged viruses in nature suggests that there may be an
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Fig. 5. (A) QR as a function of QP for hypothetical small (green circles), med-
ium (blue squares), and large (purple triangles) T ¼ 4 viruses obtained from
our model. For a given T-number, QP is increased by varying NP, cP and/or ccap
using no particular methodology. Also shown is a set of overcharged viruses
(red circles) with a slope of 1.1 and intercept 1192. (B) QR as a function of QP

for a selection of WT virus obtained from (3) (red circles) and (5) (blue trian-
gles), with a combined slope of 1.1 and intercept 1214.
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evolutionary advantage for viruses that primarily use the Donnan
potential, and not the electrostatic attraction between the RNA
and the capsomers, for increasing the amount of genome encap-
sidated. The charges on the capsomers should be just enough to
nucleate viral assembly (2), but not so large as to compromise the
structural stability of the capsid.

In conclusion, our study offers a resolution to the issue of a
universal charge ratio, highlights the importance of the negative
Donnan potential in viral assembly, and provides an explanation
for the prevalence of overcharged viruses in nature. The thermo-
dynamic framework developed in this study should be useful for
interpreting results from experimental studies of in vitro assembly
of viruses and virus-like particles (22–26), as well as for the design
of viral vectors for gene therapy, where, in addition to minimizing
toxicity, a major goal is to successfully deliver the appropriate
amount of therapeutic gene (27). More generally, because the
presence of charged macromolecules in cells is ubiquitous, we
expect the associated Donnan effects, much like the well known
crowding effects (28), to significantly influence a wide range of
biomacromolecular behaviors and cellular processes.

Appendix: The Model and Self-Consistent Field Theory
Consider a spherical capsid shell with uniform charge density of
magnitude ccap, whose density profile we define

ϕcapðrÞ ¼
1

2

�
tanh

ðr − rcapÞ
δ

− tanh
ðr − rcap − 2dÞ

δ

�
:

In this expression, rcap is the capsid radius at the inner surface,
2d is the thickness of the shell, and δ is the characteristic width
of the interface. The RNA is represented by a polyanion of N
identical monomers, each carrying a unit negative charge and
having a volume vR ¼ 0.22 nm3 (29). The peptide arms are repre-
sented by end-grafted polycation chains of Np monomers, each
with volume vp ¼ 0.065 nm3 (29) and charge magnitude (per
monomer) cp, where cp is allowed to vary. The solvent molecules
are represented by monomers of volume vs ¼ vp and the salt ions
are taken to be simply point charges of elementary charge e and
valency z� ¼ 1. Outside the capsid, we account for the negatively
charged macromolecules by setting ρ− ¼ 100 mM. As usual, the
salt ions maintain charge neutrality, where cþ ¼ 130 mM and
c− ¼ 30 mM (when ρ− ¼ 0 mM we set c� ¼ 130 mM).

The particle-based Hamiltonian for the model, which captures
the essential contributions to viral encapsidation, is

H ¼ hRðfrgÞ þ∑

np

i¼1

hpi ðfrgÞ þ
e2

2

Z
drdr0ρ̂cðrÞCðr;r0Þρ̂cðr0Þ:

The first and second terms account for the chain connectivity of
the RNA and peptide arms, respectively. The third term is the
Coulomb energy of the system, accounting for the long ranged
electrostatic interactions from the total charge density of all
charged species, including the capsid shell, peptide arms,
RNA, salt ions, and negatively charged macromolecules outside
the capsid. Cðr;r0Þ is the Coulomb operator satisfying
−∇ · ½ϵðrÞ∇Cðr;r0Þ� ¼ δðr − r0Þ, where ϵðrÞ is the dielectric con-
stant, which is spatially varying and depends on the volume frac-
tions of the different species. We set ϵcap ¼ ϵp ¼ 12 for the capsid
(30), ϵR ¼ 2 for the RNA (31), and, as usual, ϵs ¼ 80 for the
solvent.

The semigrand canonical partition function is obtained by
summing over all particle degrees of freedom, including the posi-
tion of each solvent and ion molecule, as well as the position and
conformation of each polyelectrolyte:

Ξ ¼ ∑
∞

nS ;n�¼0

eðμsnsþμ�n�Þ

ns!n�!vsnsv�
n�

Z
Dri

YnP
j¼0

Drj
Yns
k¼0

drk
Yn�
l¼0

drl

×
Y
r

δ½1 − ϕ̂RðrÞ − ϕ̂pðrÞ − ϕcapðrÞ�e−H:

Here, ϕ̂pðrÞ and ϕ̂RðrÞ are the instantaneous volume fractions of
the peptide arms and RNA molecule, respectively, and the delta
functional accounts for the incompressibility (excluded volume)
at all positions r within the system volume.

In SCF theory, the first step is to replace the above particle-
based model with a field-theoretic model, using a series of tech-
niques related to Hubbard-Stratonovich transformations (8),
which decouples the interactions among particles and replaces
them with interactions between single particles and effective
fields. The final result for the field-theoretic partition function
can be generically written in the form Ξ ¼ ∫Dω expð−F½ω�Þ,
where F is an effective Hamiltonian that is complex and depends
on the (multidimensional) field variable ω. In general, the field-
theoretic partition function cannot be evaluated in closed form.
The mean-field, or self-consistent field approximation, amounts
to assuming that a single field configuration ω� dominates the
functional integral, i.e., Ξ ≈ expð−F½ω��Þ, where F½ω�� in our
model is given by Eq. 4. Here, the partition functions are for a
single particle in its respective field and are given by Z�ðψÞ ¼
∫ dr expf∓ψez� − ub�g for the ions, ZsðξsÞ ¼ ∫ dr expf−vsξsg for
the solvent, and ZIðξIÞ ¼ ∫ drqIðr;NIÞ, where I ¼ R;P, for the
RNA and protein arms. Z�ðψÞ contains the Born self-energy
of the ions ub� ¼ z2�e

2∕8πa�ϵ, where ϵ is the spatially varying
dielectric constant. This term cannot be absorbed into a redefini-
tion of the chemical potential for a spatially varying dielectric
medium (32). Although the volume of the salt ions does not enter
into the incompressibility, with respect to the self-energy of an
ion, we specify a� ¼ 0.18 nm as the radius. We have introduced
the chain propagator qIðr; iÞ, where i is the monomer index, to
obtain the single-chain statistics of the polyelectrolytes. The pro-
pagator accounts for the chain connectivity and the Boltzmann
weight due to the self-consistent potential field, with the initial
conditions that qRðr; 1Þ ¼ exp½−vRξRðrÞ� and qpðr; 1Þ ¼
exp½−vpξpðrÞ�δðr − rcapÞ. Here the delta function accounts for
the fact that the initial monomer of the peptide arm must be
grafted to the inner surface of the capsid shell at r ¼ rcap. Because
of the lack of inversion symmetry of the peptide arm, it is neces-
sary to introduce a complimentary chain propagator q�pðr; iÞ that
propagates from the free end of the protein arm with the initial
condition q�pðr; 1Þ ¼ exp½−vpξpðrÞ�.

The self-consistent field equations are obtained by requiring
that Eq. 4 is stationary with respect to variations in the fields.
Variation with respect to the volume fraction fields ϕI gives,

ξR ¼ ξs −
1

vR
ψ − ðϵR − ϵsÞ

�ð∇ψÞ2
2

þ z2�e
2c�

8πa�ϵ2

�
; [5]

ξp ¼ ξs þ
cp
vp

ψ − ðϵp − ϵsÞ
�ð∇ψÞ2

2
þ z2�e

2c�
8πa�ϵ2

�
: [6]

Here, c� ¼ eμ�v−1� expf∓z�eψ − ub�g is the ion distribution. Var-
iation with respect to ψ gives,

−∇ðϵ∇ψÞ ¼
�
ccapϕcap − ρ− þ cp

vp
ϕp −

ϕR

vN

�
� ðz�ec�Þ; [7]

with respect to ξs gives,

1 − ϕR − ϕp − ϕcap ¼ eμs expf−vsξsg; [8]
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and with respect to ξR and ξp gives,

ϕR ¼ vR
ZR ∑

N

i¼1

qRðr; iÞevRξRðrÞqRðr;N − iþ 1Þ; [9]

ϕp ¼ vpnp
Zp ∑

Np

i¼1

qpðr; iÞevpξpðrÞq�pðr;Np − iþ 1Þ: [10]

To correct for overcounting the monomer when the propagators
are joined, we include an extra exponential factor in the expres-
sions for ϕR and ϕp. Numerical SCF theory requires solving the
set of equations [5–10], together with the chain propagators,
iteratively until convergence. From these solutions, the free
energy is obtained from Eq. 4.

Finally, additional parameters used in Fig. 3 are given in
Table 1.
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Table 1. Additional parameters used for Fig. 3

Variable parameter Fixed parameters

k1 Np ¼ 12, 24, 36 cp, rcap, ccap ¼ 1∕3, 17, 0.10
k2 cp ¼ 1∕6, 1∕3, 1∕2 Np, rcap, ccap ¼ 12, 17, 0.10
k3 ccap ¼ 0.05, 0.10, 0.20 Np, cp, rcap ¼ 12, 1∕6, 17
k4 rcap ¼ 10, 12.8, 17 Np, cp, ccap ¼ 24, 1∕6, 0.10
k5 Np ¼ 12, 20, 24 cp, rcap, ccap ¼ 1∕6, 17, 0.10
k6 cp ¼ 1∕12, 1∕6, 1∕4 Np, rcap, ccap ¼ 12, 20, 0.05
k7 ccap ¼ 0.05, 0.10, 0.20 Np, cp, rcap ¼ 12, 1∕6, 12.8
k8 rcap ¼ 12.8, 17, 20 Np, cp, ccap ¼ 12, 1∕6, 0.10
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