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Abstract

Practical radical cyclizations using organoboronic acids and trifluoroborates take place in water,
open to air, and in a scalable fashion employing catalytic silver nitrate and stoichiometric
potassium persulfate. Both Pschorr-type cyclizations and tandem radical cyclization/trap cascades
are described, illustrating the utility of these mild conditions for the generation of polycyclic
scaffolds.

Radical cyclizations have proven to be a valuable tactic widely employed in organic
synthesis.1 Often, however, the appeal they exhibit in generating molecular complexity is
attenuated by the drawback of using toxic tin species and inert (oxygen-free) reaction
conditions. In the case of aryl-centered radicals, diazonium salts serve as one means for
entry into radical processes, although their preparation and handling offsets their synthetic
value. Among the recent developments2 aimed at circumventing such drawbacks, the
recently discovered Minisci-type reactivity of organoboronic acids3 and trifluoroborates3b,4

(Figure 1) addresses many of these. Indeed, the conditions involve the use of ubiquitous
boronic acids, cheap inorganic salts (silver nitrate and potassium persulfate), can be
performed in an open-flask without recourse to high temperatures, and can be safely
conducted on gram-scale. In this letter, the chemistry of aryl radicals derived from boronic
acids and trifluoroborates is explored in an intramolecular setting.

The preparation of tricyclic scaffolds such as dibenzofurans and fluorenones has received
significant attention, owing to their presence in natural products and compounds of
medicinal interest.5 One of the earliest means for access to such molecules involves the
radical-based method known as the Pschorr cyclization,6 which dates back to 1896. This
powerful transformation relies upon an arenediazonium salt as a radical precursor, and
typically employs superstoichiometric iron or copper salts for radical generation. Figure 2
illustrates the invention and scope of a “borono-Pschorr” reaction that obviates the need for
potentially dangerous arenediazonium salt preparation. Additionally, this method
complements Pd-mediated processes recently described by Harvey,7a Fagnou,7b and
Glorius.7c A variety of functional groups are tolerated, such as nitriles, esters, Lewis-basic
heteroatoms, and products are obtained in synthetically useful yields. Concomitant benzylic
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oxidation is observed, and this can be exploited to increase step-economy. For instance,
fluorenone (7) was obtained from a diarylmethane precursor under the standard conditions.

The boronic acid is installed onto the substrate through lithium-halogen exchange followed
by borate trap,8 or by transition metal-mediated borylation.9 For a substrate bearing a
pinacol boronate ester, conversion to the trifluoroborate salt is accomplished by treatment
with aqueous KHF2 followed by repeated evaporation with MeOH–H2O (1:1 v/v) to remove
pinacol.10

Given the durability of pinacol boronate esters under a variety of conditions, we secured (as
proof-of-principle) three examples of fluorenone synthesis utilizing a bifunctional reagent,
2-formylphenylboronic acid pinacol ester (Figure 3). Direct addition of an aryl Grignard,
followed by treatment with aqueous KHF2, provided radical cyclization precursors which,
upon exposure to Ag+/S2O8

2−, furnished the corresponding fluorenones. Such a strategy can
prove useful in situations where a masked radical precursor is carried through subsequent
steps and then unmasked for the radical cyclization step.

Vicinal olefin difunctionalization, in which multiple carbon–carbon bonds are forged in
concert, is a valuable tactic for complexity generation in synthesis.11 Such a process is
exemplified by the results in Figure 4. In this tandem radical cyclization/benzoquinone trap
protocol, 5-exo, 6-exo, and 6-endo radical cyclizations are combined with an intermolecular
radical capture.12 The trend in isolated yields (for products 16–23) suggests that increasing
degrees of olefin substitution attenuate the efficiency of the tandem process. Importantly,
this protocol stands in contradistinction to the more classic tributyltin hydride-based radical
cyclization and the palladium-catalyzed Heck-type process, both of which were found to be
incompatible with the use of benzoquinone in this context.13

Incidentally, we have isolated benzofuranone (24) in a control experiment (in the absence of
1,4-benzoquinone). In lieu of a competent radical trapping agent, oxygen from the air
intercepts the radical intermediate. This, accompanied by benzylic C–H oxidation of the
substrate, leads to oxidative carbon–carbon bond cleavage.14,15

While the results described in this letter demonstrate a capacity for performing open-flask
radical cyclizations, it is important to note its limitations. Although high chemoselectivity
has been observed under these biphasic conditions,3 persulfate (S2O8

2−) is a strong
oxidizing agent and therefore motifs such as benzylic C–H bonds and vicinal diols may not
be compatible. Radical ring closure and intermolecular radicophile capture must outpace the
capture of oxygen (O2) or H-abstraction (either from an intramolecular donor or from
solvent). Such considerations must be taken into account when planning a reaction using the
Ag+/S2O8

2− system.16

The mechanism by which an organoboronic acid gives rise to a reactive radical species upon
exposure to Ag+/S2O8

2− will be the subject of future work. The working hypothesis
involves 1) Ag+-mediated decomposition of S2O8

2− to give SO4
•−, 2) attack at boron by

SO4
•−, and 3) carbon–boron bond homolysis.17

We emphasize that this open-air18 radical chemistry does not involve high temperatures and
avoids the use of toxic and/or expensive metals. Additionally, this method circumvents
recourse to potentially hazardous entities such as arenediazonium salts,19 and can be safely
conducted on gram-scale.20,21 With the emergence of non-cryogenic22 and C–H
borylation23 protocols to complement classic methods for preparing organoboron species,
we anticipate increased use of boronic acids and trifluoroborates as radical precursors in
synthesis.
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Figure 1.
Previously Reported Intermolecular C–H Functionalization of Heteroarenes3a and
Benzoquinones3b
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Figure 2.
Pschorr-Type Cyclization using Organotrifluoroborates as Radical Precursorsa
aAryltrifluoroborate (0.1 mmol), AgNO3 (0.02 mmol), K2S2O8 (0.3 mmol), PhCF3–H2O
(1:1 v/v, 1.0 mL), 60 °C, 60 min; yields for chromatographically and spectroscopically pure
products. bYield of reaction performed on gram-scale. cInseparable mixture. dYield from X
= CH2. eYield from X = CHOH.

Lockner et al. Page 6

Org Lett. Author manuscript; available in PMC 2012 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Three-Step Sequence to Fluorenones
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Figure 4.
Tandem Radical Cyclization/Trap using 1,4-Benzoquinone as the Terminating Radicophile
aPotassium aryltrifluoroborate or barylboronic acid was employed; isolated yields of
chromatographically and spectroscopically pure products displayed, unless otherwise
noted. cYield of reaction performed on gram-scale. dMajor product is
dihydrobenzofuran. eInseparable mixture.
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