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Abstract
In this work, we have evaluated how well the General AMBER force field (GAFF) performs in
studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17
solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9
organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed
and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two
major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous
solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error
(RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values
of D cannot be predicted, good correlations have been achieved for 8 organic solvents with
experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic
compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three
solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied.
The major MD settings, such as the sizes of simulation boxes and with/without wrapping the
coordinates of MD snapshots into the primary simulation boxes have been explored. We have
concluded that our sampling strategy that averaging the mean square displacement (MSD)
collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of
solutes at infinite dilution.
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1. Introduction
This is the second paper of the paper series “Application of Molecular Dynamics
Simulations in Molecular Property Calculations”. This major goal of this series is to assess
the GAFF (General AMBER Force Field) in predicting various molecular properties and
then to identify which force field parameters to be adjusted to reduce the prediction errors.
The ultimate goal is to make GAFF a successful force field in studying the interactions
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between biomolecules and small organic molecules. We want to emphasize that even for a
specific force field targeted to study biomolecular systems, it is also very important for it to
reproduce the bulk properties of small moieties that mimic the biomolecular segments or
residues. In the first paper of this series, GAFF achieves an overall satisfactory performance
in calculating bulk densities and heats of vaporization of a large set of diverse molecules.1 In
this work, we set out to study one of the most important dynamic properties, diffusion
coefficient, D.

Accurate prediction of diffusion coefficients is not only important for developing high
quality molecular mechanic force fields, but also indispensable to chemical engineering
design for production, mass transfer and processing. Development of reliable methods of
predicting diffusion coefficients for proteins and other macromolecules is of great interest
since diffusion is involved in a number of biochemical processes, such as protein
aggregation 2 and transportation in intercellular media,3,4 etc.

MD simulation is an essential technique to study a variety of molecular properties including
molecular diffusion. It can study diffusion process not only in atomic details, but also under
a thermodynamic condition that is unreachable by experiments. Certainly, the molecular
mechanical model for MD simulations and the computation protocols must be calibrated
using existing experimental data (such as diffusion coefficient) before MD is used to make a
prediction. One major objective of this paper is to develop computational protocols for
calculating diffusion coefficients through molecular dynamics simulations as well as to
evaluate the performance of General AMBER force field in predicting the diffusion
coefficients of various diffusion systems. In the following parts of the introduction, we first
briefly discuss several basic concepts in molecular diffusion; then a variety of approaches of
predicting diffusion coefficient are briefly reviewed.

Molecular Diffusion
Molecular diffusion describes the spread of molecules through random motion. For one
molecule M in an environment where viscous force dominates, its diffusion behavior can be
described by the diffusion equation in Eq. (1)

(1)

where  is a function that describes the distribution of probability of finding M in the
small vicinity of the point  at time t, and D is the diffusion coefficient. Note that when the
diffusion function is applied to an ensemble of M, c can be interpreted as a concentration.
The diffusion equation Eq. 1 can be derived using the Fick’s first law (Eq. 2) in combination
with the constraint of the conservation of particles, i.e. the flux  of M into one region must
be the sum of flux flowing out to the surrounding regions in normal diffusion process. Under
this condition, the transport of M can be captured mathematically by the continuity equation
(Eq. 3). If the diffusion coefficient D is constant in space, Eq. 3 yields to the diffusion
equation (Eq. 1). The diffusion equation can also be derived from a microscopic perspective
and a more general version of diffusion equation, also called Kolmogov Forward equation,
can be obtained.

(2)
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(3)

Diffusion equation Eq. 1 is a partial differential equation which can be solved with boundary
conditions and initial condition. The diffusion equation has two important features: it is a
linear equation and it is separable which means it can be split into uncoupled dimensionally
independent equations. Mathematically, diffusion equation can be solved using Green’s

function, which describes how a single point of probability density initially at  evolves in
time and space. Thus, the evolution of the system from any initial condition can be described
by Eq. 4. The n-dimensional Green’s function of infinite extent is given by Eq. 5.

(4)

(5)

Given the fact that Green’s function is a probability density function, fluctuations in the
position of M measured by the mean-square displacement (MSD) can be calculated with Eq.
6, which can be further simplified to Eq. 7. In this work, diffusion coefficient D will be
calculated using Eq. 7 and MSD will be estimated by molecular dynamics simulations. As
all the MD simulations are performed in three dimensions, therefore n = 3.

(6)

(7)

The diffusion coefficient D is related to friction coefficient ξ by Einstein-Smoluchowski
equation (Eq. 8). Friction coefficient ξ depends on the sizes and shapes of molecules
participating in diffusion.

(8)

Diffusion Coefficient Calculation by Molecular Dynamics Simulations
As discussed above, Eq. 7 is a natural result of solving diffusion equation. It is widely used
in MD simulations to predict diffusion coefficient. As an alternative approach, D can also be
calculated according to the Green-Kubo relation that is equal to the Einstein relation
theoretically. Rather than calculate MSD, the velocity autocorrelation function is computed
to calculate D using the Green-Kubo relation (Eq. 9).
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(9)

Theoretically, diffusion coefficient D can only be accurately calculated when t→∞. In
practice, one may calculate the ensemble average of MSD of multiple copies of the
participating molecules in the simulation box to improve the statistics. Least-squares fitting
can be applied to estimate the slope of MSD ~ t, and D is one-sixth of the slope.

The ensemble average significantly improves the statistics, while for a single solute
molecule immersed in a solvent box, much longer MD simulation is required to get a
reliable diffusion coefficient. As discussed later, reliable prediction of self-diffusion
coefficients of most solvents studied in this work was achieved within 3 nano seconds MD
simulations using the periodic condition. However, for single solute molecules in solution,
as demonstrated in Figure 1 for benzene in ethanol and phenol in water, no reliable values of
diffusion coefficients can be obtained even after 60 nanoseconds for the former and 80
nanoseconds for the latter.

Given the fact that very long MD simulations are required to get reliable results of diffusion
coefficients of solutes in solution, most studies today are focused on self-diffusion
coefficient calculation of solvents. Some extensively-studied solvents include water 5,6,
argon,7, dimethyl sulfoxide8,9 (DMSO),10,11 methol,12 ethanol,11, N-methylacetamide
(NMA),12 CCl4, CHCl3, CH2Cl2 and CHCl3, 11 and nano-colloidal particle,13 etc.

In contrast, there are only a limited number of reports on diffusion coefficient prediction of a
molecule in solution using MD simulations. Harmandaris et al. performed MD simulations
to calculate D for binary liquid n-alkane mixtures using the Einstein relation (Eq. 7).14 The
heavier component is polymeric C78 or C60 alkane. A united-atom force field that has no
electrostatic term was used to describe the molecular interactions.15 A Monte Carlo
algorithm16 capable of sampling liquid polymer-oligomer mixture configuration of a variety
of compositions was used to quickly equilibrate the system prior to the MD simulations.
However, it is not known how successful their approach can be in studying regular
solutions. Vishnyakov et al. recently studied the 1:3 mixture of DMSO-water binary system.
The convergence problem mentioned above maybe not apply to their system since there are
many copies of solute molecules in the simulation box.10

As to macromolecules, to the best of our knowledge, the MD-based approach has not been
used to predict the diffusion coefficient of proteins in aqueous solution. The problem of
convergence is more severe for proteins since the concentrations are typically very small,
and usually only one protein molecule exists in a simulation box.

Other Approaches of Calculating Diffusion Coefficients
In the following, a brief review on diffusion coefficient calculation using other approaches is
presented. Mantina et al. calculated D through the prediction of atomic mobility or
diffusivity via a fist principle method within the framework of transition state theory. In
their approach, an atomic diffusion consists of two separate processes, vacancy formation
and vacancy-atom exchange. Thus, D can be written in terms of microscopic parameters, the
atomic jump distance and jump frequency.17

The diffusion hydrodynamic model has been employed to interpret the temperature, density,
and pressure dependencies of diffusion coefficients.18-21 The simple hydrodynamic
relationship is represented by the constancy of the effective hydrodynamic radius R, which
is inversely proportional to the product of the self-diffusion coefficient D and the solvent
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viscosity η divided by the temperature (Eq. 10). In this equation, k is the Boltzmann constant
and f is a boundary condition parameter depending on the relative size of solute and solvent.
When the size of solute is much larger than that of medium, f = 6 and Eq. 10 becomes the
Stocks-Einstein equation.

(10)

Eqs. 8 and 10 are widely used to predict self-diffusion coefficients in fluids. Various
empirical functions have been proposed to estimate friction coefficient ξ which is a function
of density, pressure and temperature, etc.22-27 It is worth mentioning that the free-volume
model and its variants are among the most successful models on D prediction. In the free
volume diffusion theory, holes adjacent to a molecule must exist for a diffusion event to take
place. The continuous motion of a molecule causes a variation in the size of a hole and
diffusion event occurs only when the size of the hole is larger than a cutoff, Vmin. The
friction coefficient is a function of Vmin and Vfree, the free volume, and the interaction
potential energy between molecules. As empirical functions, a set of adjustable parameters
must be fitted using experimental data. Suárez-Iglesias et al. recently evaluated a set of
popular empirical equations on predicting D for a set of 120 molecules and each has more
than 50 data points in average. The average percent errors ranged from 20% to 57% for
those empirical functions.28

A large set of methods have been developed to predict D using statistical mechanics. Sagarik
et al. employed a test-particle model that is constructed through ab initio calculations, to
describe the interaction potential in the statistical mechanical simulations of liquid
pyridine.29 Besides the test-particle model, a variety of empirical models have been
developed to describe the molecular interaction, which include the hard sphere,30 square-
well22 and Lennard-Jones models,31 etc. Diffusion coefficients can be calculated with those
empirical models in combination with statistical analysis (such as statistical association fluid
theory 32,33) and/or statistical mechanical simulations.29

Unlike small molecules, proteins are usually modeled as rigid bodies immersed in
Newtonian solvents. As the interactions between the protein molecules are neglected, the
diffusion coefficient D is therefore an infinite dilution diffusion coefficient. To predict D of
a protein of an arbitrary shape, a generalized form of Eq. 10 was proposed by Brenner.34

(11a)

(11b)

Where Dt and Dr are the translational and rotational diffusion coefficients, respectively; A
and B, the mobility tensors for the protein can be obtained by solving the steady-state Stokes
equations. Brune and Kim proposed a computational approach to solve the Stokes equations
using the double-layer boundary integral equation method.35 This approach needs 3D
coordinates of a protein as input and the calculation performance is controlled by the
empirical parameters, including those that control the construction of molecular surfaces.
Zhao et al. recently further improved the algorithm and investigated how the calculation
performance was impacted by the adjustable parameters.36 It is hard to draw solid
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conclusion on this method since only one protein, lysozyme, was studied in the two
publications. A similar approach was applied by Gonzalez and Li to model the sequence-
dependent diffusion coefficients of short DNA molecules.37 Recently, Kang and Mansfield
studied the transport properties of proteins using a numerical path integration technique.38

The following transport properties can be predicted with their method: translational
diffusion coefficient, intrinsic viscosity, hydrodynamic volume and radius, etc. Although the
two latter properties were well predicted and a set of empirical equations of calculating D
were proposed, the authors did not make a comparison of calculated D to experimental ones.

In summary, although there are a few methods for calculating diffusion coefficients, most of
them depend on empirical parameters. In contrast, MD simulation belongs to a first principle
approach since it does not need specific parameters for calculating D. In this study, we will
propose a sampling protocol to reliably calculate D, and this computation protocol will be
tested with different kinds of solutes in various solvents including proteins at infinite
dilution.

2. Methods
Data Sources

In Table 1, the solute and solvent names of different liquid systems studied in this work are
listed. The data set is divided into four subsets according to the types of solute and solvent,
which are Set 1 – pure solvent, Set 2 – organic molecules in non-aqueous solution, Set 3 –
small organic molecules in aqueous solution, and Set 4 – proteins in aqueous solution. The
experimental values of diffusion coefficient are adopted from several sources.19,20,39-47

In experiments, the diffusion coefficient can be accurately measured using the conventional
isotopic tracer methods.48,49 Nowadays, magnetic resonance spectroscopy (NMR) is widely
used to measure the diffusion coefficients of molecules in solution. The NMR-based
methods which include pulse-field-gradient NMR,46 double-gradient-spin-echo NMR,50

pulsed-gradient spin-echo NMR,19,51,52 nutation spin echo NMR,53 have some advantages
over the conventional isotopic tracer methods. For instance, the NMR-based methods are
faster, require smaller sample volumes, and are not influenced by interfering isotope effect,
etc. Other methods include the Taylor dispersion technique, which achieves an accuracy
within 1.5% in measuring diffusion coefficients.54 It is worth noting that the experimental
diffusion coefficients of N-methyl acetamide (NMA, 0.322×10−9m2/s) and benzene
(2.18×10−9m2/s) at 25°C are obtained through extrapolation. For NMA, there are 5 data
points for temperatures ranging from 35–60°C;55 the R2 of exponential regression is 0.997.
For benzene, there are 12 data points for temperatures ranging from 30–250°C;19 the R2 of
exponential regression is 0.993.

On the other hand, for proteins, the diffusion coefficients are mainly determined based on
Fick’s first law (Eq. 2). Those methods are usually coupled with protein separation and the
following are the widely used ones: diffusion cell,56 chromatographic relaxation,57

analytical split fractionation,58 frit inlet flow field-flow fractionation,59 etc. Other
techniques including pulsed-field-gradient NMR,60 interferometry,61 light scattering,62 etc.
have also been used to measure the binary diffusion coefficient of proteins in aqueous
solution. Four proteins, namely, Cytochrome c, lysozyme, α-chymotrypsinogen-A, and
ovalbumin, were studied in this work. The experimental values of the diffusion coefficients
were adopted from the CRC Handbook of Biochemistry (Ed. 2).63 The Protein Databank64

Codes of the crystal structures are listed as follows: Cytochrome c (1HRC65), lysozyme
(1BWI66), α-chymotrypsinogen-A (1EX367), and ovalbumin (1OVA68).
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Molecular Mechanical Models
Consistent with the strategy of parameterizing GAFF, the point charges of solute and solvent
molecules in Table 1 were derived by RESP69,70 to fit the HF/6-31G* electrostatic
potentials generated using the Gaussian 03 software package.71 The other force field
parameters came from GAFF in the AMBER10.72 The residue topology files were prepared
using the Antechamber module73 in AMBER 10.72 The cofactor, HEME in cytochrome C
was first optimized at HF/6-31G* level and the RESP charges were then generated. The
input structure of HEME for ab initio optimization was extracted from the crystal structure.
The residue topology and force filed parameters of HEME are provided as a supplementary
material. The AMBER Parm99SB force field was used to model proteins.74,75 The Leap
program in AMBER10 was applied to generate the topologies.72

Molecular Dynamics Simulations
All MD simulations were performed with periodic boundary condition to produce
isothermal-isobaric ensembles using the sander program of AMBER10.72 The Particle Mesh
Ewald (PME) method76-78 was used to calculate the full electrostatic energy of a unit cell in
a macroscopic lattice of repeating images. As to the TIP3P water which is described with a
special “three-point” algorithm and all degrees of freedoms were constrained.79 All bonds
were constrained using the SHAKE algorithm80 in MD simulations for the other molecules.

The integration of the equations of motion was conducted at a time step of 2 femtoseconds.
Temperature was regulated using the Langevin dynamics81 with the collision frequency of 5
ps−1.82-84 Pressure regulation was achieved with isotropic position scaling and the pressure
relaxation time was set to 1.0 picosecond.

There are three phases in a MD simulation, namely, the relaxation phase, the equilibrium
phase and the sampling phase. In the relaxation phase, the main chain atoms were gradually
relaxed by applying a series of restraints and the force constants decreased progressively:
from 20 to 10, 5 and 1.0 kcal/mol/Å2. For each force constant, the position-restrained MD
simulation was run for 20 picoseconds. In the following equilibrium phase, the system was
further equilibrated for 5 nanoseconds without any restraint and constraint. In the sampling
phase, if not mentioned explicitly, 1500 snapshots were saved at an interval of 2
picoseconds for post analysis. For TIP3P water, 2500 snapshots were saved at an interval of
2 picoseconds after the 2 nanoseconds equilibrium phase. The mean-square displacements
(MSD) were calculated using the Ptraj module of AMBER10.72

Self-Diffusion Coefficient Calculations of Solvents
Eq. 7 was used to calculate the diffusion coefficient D in this work. For a pure solvent, the
mean square displacements (MSD) were averaged for all the solvent molecules in the
simulation box. D can then be estimated from the plot of mean MSD ~ simulation time as
illustrated in Figure 2 (left panels). D can be more objectively predicted through least-square
fittings. As shown in Figure 2, good correlations are achieved for TIP3P water and methanol
at 298 K. The slopes are 1.7901 and 0.6930, for TIP3P and methanol, respectively. The
calculated diffusion coefficients are then 2.98 and 1.16 ×10−9 m2s−1 for TIP3P and
methanol, respectively.

Diffusion Coefficient of Solute in Solution
We emphasized that the diffusion coefficient of a solute at infinite dilution cannot be
reliably calculated when MD simulations are short. As demonstrated in Figure 1, the D of
benzene in ethanol and phenol in water solutions are not converged even after 60 and 80
nanoseconds MD simulations. Therefore, it is critical to develop a practical sampling
strategy to reliably calculate D of solute at infinite dilution. Here we propose to perform 20
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independent MD sampling runs using the same starting coordinates; then the mean MSD are
calculated by running average of MSD of 20 trajectories; and the diffusion coefficient D is
finally estimated by a least-square fitting of mean MSD ~ simulation time. Even though the
same starting conformation is applied, the independence of 20 MD runs was achieved by
using different random seeds (1575, 18941, 30702, 28852, 8606, 32218, 6763, 22185, 9686,
23608, 4576, 27757, 12734, 31952, 19092, 10400, 25433, 27184, 9312, 30073) to generate
initial velocities.

Statistical Uncertainty Estimation
Different protocols were used to estimate the uncertainty of diffusion coefficient prediction
through MD simulations. For self-diffusion coefficient of pure solvent, the uncertainty was
estimated by the RMS deviation of a series of diffusion coefficients D, which were
calculated using the MSD of the first 1000, 1025, 1050, 1075, 1100… 1500 snapshots. On
the other hand, for the solutes in solutions, a leave-one-out (LOO) strategy was used to
estimate the uncertainty of D. Specifically, for the 20 independent MD runs, one is excluded
in turn and the other 19 MD runs are used to calculate D; the RMS deviation of the 20
diffusion coefficients measures the uncertainty of the D for solutes in solutions.

3. Results and Discussion
Diffusion coefficient D is one of the most important properties to be calibrated in molecular
mechanical force field development. Other dynamic property, such as orientational
correlation time – τrot, can be calculated using the orientational correction function – Grot(t)
obtained through MD simulations.11 Unlike other molecular properties, such as bulk density
and heat of vaporization, diffusion coefficient D typically has larger measurement errors. In
the following, we cherry pick several solvents/solutes that have multiple measurements to
demonstrate how different the experimental values could be. There are three measurements
for trichloromethane: 2.3,41 2.5,85 3.386; two measurements for tetrachloromethane: 1.4,42

1.387; three for DMSO: 1.1,43 0.8,88 0.7346; two for ethanol: 1.5,44 1.189, two for benzene in
cyclohexane: 1.41,39 1.9290, five measurements for cytochrome C: 0.130,63 0.118,58

0.1363,59 0.1386,59 and 0.127.59 All the numbers are in 10−9m2/s.

Considering the striking differences among the 35 liquid systems studied in this work, we
classified the 35 liquid systems into four groups, namely, pure solvent, organic solute in
organic solution, organic solutes in aqueous solution and proteins in aqueous solution. In the
following, we will present the calculation results for the four types of liquid systems
sequentially.

Self-Diffusion Coefficient of Pure Solvents
Among the 17 solvents studied in this work, 9 have experimental diffusion coefficients.
Interestingly, all the calculated self-diffusion coefficients of nine solvents except TIP3P
water are somewhat underestimated. For TIP3P water, the calculated D at 298 K is
overestimated about 30%. Although the calculated diffusion coefficients of 8 organic
solvents are much smaller than the experimental ones, a good correlation between the
experimental and the calculated D is found as shown in Figure 3. The correlation coefficient
square R2 is 0.7835.

The calculated diffusion coefficients and the correlation coefficients R2 of fitting MSD
versus simulation times are listed in Table 1. Encouragingly, most solvents have R2 better
than 0.95 except for aniline and phenol, which have R2 of 0.689 and 0.924, respectively. The
fitting performance of five representative solvents is shown in Figure 4. The much smaller
R2 for aniline solvent implies that a longer MD simulation is needed to achieve better
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statistics. Indeed, after we continued to run another 10 nanoseconds MD simulations for
aniline and phenol, we significantly improved the fitting performance: R2 and calculated D
are 0.838 and 0.128 ×10−9 m2s−1 for aniline, and 0.972 and 0.265 ×10−9 m2s−1 for phenol,
respectively.

Temperature Dependence of Self-Diffusion of Solvents
It is important for a molecular mechanical model to accurately predict molecular properties
of a broad range of thermodynamic states described by temperature, volume, pressure, etc.
Here the temperature dependence of three solvents, namely, TIP3P water, cyclohexane and
DMSO, was studied in this work. As shown in Figure 5, the calculated diffusion coefficients
of TIP3P decrease more slowly than the experimental values and the two lines cross around
320 – 340 K. When temperature is lower than 320 K, D is overestimated; while D is
underestimated when temperature is higher than 340 K. Good prediction performance is
achieved for temperatures ranging from 320 to 340 K.

Similar to other organic solvents, the diffusion coefficients of cyclohexane and DMSO at
different temperatures are underestimated. However, good correlations are observed
between the calculated and the experimental data at various temperatures for both solvents
(Figure 6). The correlation coefficient squares are 0.966 and 0.977 for cyclohexane and
DMSO, respectively. The experimental and calculated data used for plotting Figures 5 and 6
are listed in Table 2.

Diffusion Coefficients of Organic Solutes in Organic Solution
In total, 9 organic solutions were studied in this work. To improve the statistics and shorten
the MD simulation time, the strategy of “averaging MSD of multiple independent MD runs”
was applied to calculate the diffusion coefficients for solutes. As demonstrated by Figure 7,
this strategy profoundly improves the statistics of diffusion coefficient calculations. The left
panels of Figure 7 show the MSD ~ simulation time plots of 20 independent MD runs. It is
obvious that the linearity of MSD ~ time of an individual MD run is poor and diffusion
coefficient D cannot be reliably predicted. When we average multiple MSD, the linearity of
mean MSD ~ simulation time is significantly improved and D can be reliably predicted
(right panels of Figure 7).

Similar to organic solvents, the diffusion coefficients of solutes are also underestimated
(Table 1). Nevertheless, good correlation between the calculated and the experimental D is
achieved and the correlation coefficient square is 0.834 (Figure 8).

Diffusion Coefficients of Organic Solutes in Aqueous Solution
The diffusion coefficients of five organic molecules in aqueous solution were studied.
Interestingly, for all the five solutes, good performance of calculating diffusion coefficients
is achieved: the AUE, RMSE and APE are 0.137, 0.171 ×10−9m2s−1 and 12.6%,
respectively. Given the fact the experimental error of measuring diffusion coefficient can be
larger than 0.5, our prediction of D for small organic molecules in aqueous solution is
satisfactory. How the sampling strategy improves the statistics is demonstrated in Figure 7f,
7g and 7h.

Diffusion Coefficients of Proteins in Aqueous Solution
Given the fact that the publicly available experimental data of diffusion coefficients for
proteins are scarce, we selected four proteins with varying sizes (from 106 to 386 amino
acid residues) to assess how our calculation protocol performs for proteins. Similar to
organic solutes, the diffusion coefficients of proteins cannot be reliably calculated because
of poor linearity between MSD and simulation time for individual MD runs. As shown in
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Figure 9, the above-mentioned sampling strategy also significantly improves the reliability
of calculating D for proteins. Though the calculated diffusion coefficients of proteins are all
underestimated as shown in Figure 10, a very good correlation between the calculated and
the experimental values is achieved and the correlation coefficient square is 0.996.

Interpretation of the observation in diffusion coefficient calculations
In summary, good prediction performance of D is achieved for small organic molecules in
aqueous solution. Although the diffusion coefficients of organic solutes in organic solutions,
proteins in aqueous solution as well as organic solvents are underestimated, good
correlations are achieved between the calculated and the experimental data for the all of the
three solution types. How can we interpret this observation? Why diffusion coefficients are
significantly underestimated for organic solutes in organic solvents? Why diffusion
coefficients are underestimated for proteins but well predicted for organic small molecules
in aqueous solution? Here we attempt to rationalize the prediction results from the concept
of diffusion. Molecules move at random because of frequent collisions and molecular
diffusion is propelled by thermal energy. In a solution, the thermal energy comes from not
only collisions between solute and solute, but also collisions between solute and solvent.
Therefore, when solvent molecules move faster, more solute-solvent collisions occur and
then more thermal energy is generated to propel the motion of solute molecules, resulting in
a larger diffusion coefficient. As discussed above, the self-diffusion coefficients of TIP3P is
overestimated and those of organic solvents are underestimated. Therefore, TIP3P water can
boost the diffusion of its solutes while other organic solvents slow down the diffusion of
their solutes. For organic solutes in aqueous solution, the slowing diffusive organic solutes
are boosted by the TIP3P water and the net result is that D can be well predicted; for organic
solutes in organic solvents, the slowing diffusive organic solutes are further slowed down by
the organic solvents resulting in a much smaller slope of calculated versus experimental D
plot (Figure 8) than that of pure solvent (Figure 3). As to proteins in aqueous solution, the
TIP3P water has much smaller effect on the diffusion of a protein than on the diffusion of an
organic solute, because in a simulation box the number of solute atoms to the number of
solvent atoms ratio is much smaller for a protein than for an organic molecule. Specifically
the ratios are 11, 11, 7 and 8 for 1BWI, 1HRC, 1EX3 and 1OVA, respectively; on the
contrary, the ratios of organic molecules are much larger (> 150). Therefore, the diffusion
coefficients of proteins are still somewhat underestimated. However, the slope of the
calculated versus experimental diffusion coefficient plot for proteins (Figure 10) is larger
than those for pure solvent and organic solutes in organic solvents.

Although the above rational can qualitatively explain the rank order of the slopes of
different diffusion systems, it also has limitations. First of all, the rationalization does not
address the actual causes of under or overestimation of diffusion coefficients; secondly, it
may fail to rationalize the trend of the diffusion coefficients of particular solutes in aqueous
and organic solutions.

The Major Factors That Affect Diffusion Coefficient Calculations
As discussed above, GAFF achieves an overall satisfactory performance in predicting
diffusion coefficients of various liquid systems. However, it is important to investigate the
reasons (rather than to rationalize the observations as we did above) why diffusion
coefficient of pure solvents, organic solutes in organic solvents and proteins in aqueous
solution are underestimated. There are two kinds of factors that lead to the discrepancy: the
molecular mechanical force field and the sampling protocol. Fox et al. pointed out that the
self-diffusion coefficients of solvents are very sensitive to the densities.11 The lower density
allows an easier movement of diffusive molecules, so the calculated D is likely to be
overestimated; on the contrary, higher density is likely to lead to D underestimated.
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Certainly, density alone cannot explain the big discrepancy between the calculated and the
experimental diffusion coefficients. The strength and anisotropy of the intermolecular
interaction also play a key role in determining the solute-solvent interaction as well as the
dynamic reorganization of the solvation structure. Therefore, it is expected that a good force
field that can well predict some energetic properties, such as heat of vaporization, has a
better chance to predict diffusion coefficient successfully. Recently, we have evaluated
GAFF in predicting the interaction energies of 481 amino acid analog pairs. We found that
the relative strengths of non-charge-charge interactions are overall underestimated using
GAFF.91,92 This finding may partially explain why the diffusion coefficients of pure
solvents and organic molecules in organic solvents are significantly underestimated.

Considering diffusion is a dynamic property, it is expected that more rigorous models, such
as polarizable force fields based on the dipole interaction schemes of Applequist93 and
Thole94,95 could outperform additive force fields in predicting diffusion coefficients since
these polarizable models are able to respond to the changes in a dielectric
environment. 91,92,96

Given the fact that GAFF inherits its van der Waals parameters from the AMBER
biomolecular force fields, it is expected that the performance of diffusion prediction can be
significantly improved after we tune the van der Waals parameters to reproduce the
experimental densities and heats of vaporizations.1 We are in the process of
reparameterizing GAFF including tuning van der Waals parameters in a systematic manner,
how well does the new GAFF force field perform in predicting diffusion coefficient will be
presented somewhere else.

Sampling is the other factor that influences the result of diffusion coefficient calculations. If
the linear relation between MSD ~ simulation time doesn’t hold, the predicted D could be
false. Longer MD simulation helps to increase the linearity between MSD ~ simulation time
as illustrated by aniline solvent. The uncertainties of D and R2 are listed in Table 1 for the
35 liquid systems. It is clear that our calculation results are very reliable as the largest
uncertainties of D and R2 are smaller than 0.05 and 0.06, respectively.

Besides the MD sampling, other MD settings that likely affect the diffusion coefficient
calculation were also explored in this work. First of all, we studied how the size of
simulation box affects the D calculation using TIP3P as an example. MD simulations were
performed for three simulation boxes that have 375, 624 and 924 TIP3P water molecules
and the calculated diffusion coefficients at 298K are 3.153, 2.984 and 3.097, respectively.
This result suggests that diffusion coefficient is sensitive to the size of the simulation box.
To mitigate the calculation error caused by simulation boxes, in this work we have tried to
use large simulation boxes. For the solvents and small organic solutes, the simulation boxes
are all larger than 30 × 30 × 30 Å3, while for the proteins in aqueous solution, the simulation
boxes are larger than 60 × 60 × 60 Å3 and the largest one (for 1OVA) has the three
dimensions of 86, 88 and 68 Å, respectively. Another important setting is whether the
coordinates of MD trajectories are wrapped into the primary box or not. If so (iwrap = 1),
when calculating MSD, the trajectories must be unwrapped properly. It should be pointed
out that all the results discussed above are based on MD simulations without wrapping
coordinates (iwrap = 0). The calculation results of diffusion coefficients using the MD
trajectories wrapped into the primary boxes are summarized in Table S1. Obviously, the
calculation results are very similar to those without wrapping coordinates.
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4. Conclusions
This is the second paper in the series of predicting molecular properties using the General
AMBER Force Field (GAFF). The diffusion coefficients of 35 liquids have been predicted
through molecular dynamics simulations. The overall performance of the prediction is
satisfactory: for the organic solutes in aqueous solution, the average unsigned error of 5
organic solutes is 0.137×10−9m2s−1; for other liquid systems, although the absolute values
of diffusion coefficients cannot be well predicted, good correlations between calculated and
experimental diffusion coefficients have been generated for all the other three individual
categories. The correlation coefficients R2 are 0.784, 0.834 and 0.996 for pure organic
solvents, organic solutes in organic solvents and proteins in aqueous solution, respectively.
We have also attempted to rationalize the findings of diffusion coefficient calculations from
the microscopic perspective. The major factors that affect the diffusion coefficient
calculation have also been discussed. Given the fact that GAFF inherits its van der Waals
parameters from the AMBER biomolecular force fields without further optimization, it is
very likely that the performance of predicting diffusion coefficients using GAFF can be
significantly improved after a systematic van der Waals parameterization.

An effective sampling protocol has been proposed to improve the linearity of MSD ~
simulation time plots. This sampling protocol has been successfully applied in calculating
diffusion coefficients of solutes at infinite dilution. The major objective of this study,
developing effective computational protocols of calculating diffusion coefficients for
various diffusion systems, has been achieved.
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Abbreviations

GAFF the general AMBER force field

MD molecular dynamics

vdW van der Waals

D diffusion coefficient

MSD mean square displacement

AUE average unsigned errors

RMSE root-mean-square errors

APE average percent errors

R2 correlation coefficient square

DMSO dimethyl sulfoxide

NMA N-methyl aceticamide

CHCl3 trichloromethane

Wang and Hou Page 12

J Comput Chem. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



CCl4 tetrachloromethane

References
1. Wang JM, Hou TJ. J Chem Theory Comput. 2011 ePub, ahead of print.
2. Georgalis Y, Starikov EB, Hollenbach B, Lurz R, Scherzinger E, Saenger W, Lehrach H, Wanker

EE. Proc Natl Acad Sci U S A. 1998; 95(11):6118–6121. [PubMed: 9600927]
3. Krewson CE, Saltzman WM. Brain Res. 1996; 727(1-2):169–181. [PubMed: 8842395]
4. Tellez CM, Cole KD. Electrophoresis. 2000; 21(5):1001–1009. [PubMed: 10768787]
5. Yu HB, Hansson T, van Gunsteren WF. Journal Of Chemical Physics. 2003; 118(1):221–234.
6. Lee SH. B Korean Chem Soc. 2009; 30(9):2158–2160.
7. Li W, Chen C, Yang J. Heat Transfer-Asian Research. 2008; 37(2):86–93.
8. Levitt M, Hirshberg M, Sharon R, Laidig KE, Daggett V. Journal of Physical Chemistry B. 1997;

101(25):5051–5061.
9. Mark P, Nilsson L. Journal of Physical Chemistry B. 2001; 105(43):9954–9960.
10. Vishnyakov A, Lyubartsev AP, Laaksonen A. Journal of Physical Chemistry A. 2001; 105(10):

1702–1710.
11. Fox T, Kollman PA. Journal of Physical Chemistry B. 1998; 102(41):8070–8079.
12. Caldwell JW, Kollman PA. Journal of Physical Chemistry. 1995; 99(16):6208–6219.
13. Nuevo MJ, Morales JJ, Heyes DM. Phys Rev E. 1998; 58(5):5845–5854.
14. Harmandaris VA, Angelopoulou D, Mavrantzas VG, Theodorou DN. Journal Of Chemical

Physics. 2002; 116(17):7656–7665.
15. Nath SK, Escobedo FA, de Pablo JJ. Journal Of Chemical Physics. 1998; 108(23):9905–9911.
16. Zervopoulou E, Mavrantzas VG, Theodorou DN. Journal Of Chemical Physics. 2001; 115(6):

2860–2875.
17. Mantina M, Wang Y, Arroyave R, Chen LQ, Liu ZK, Wolverton C. Physical Review Letters.

2008; 100(21):215901. [PubMed: 18518620]
18. Yoshida K, Matubayasi N, Nakahara M. J Chem Phys. 2007; 127(17):174509. [PubMed:

17994829]
19. Yoshida K, Matubayasi N, Nakahara M. Journal Of Chemical Physics. 2008; 129(21):214501.

[PubMed: 19063563]
20. Krynicki K, Green CD, Sawyer DW. Faraday Discuss. 1978; (66):199–208.
21. Rah K, Kwak S, Eu BC, Lafleur M. Journal of Physical Chemistry A. 2002; 106(48):11841–11845.
22. Ruckenstein E, Liu HQ. Ind Eng Chem Res. 1997; 36(9):3927–3936.
23. Liu HQ, Silva CM, Macedo EA. Chem Eng Sci. 1998; 53(13):2403–2422.
24. Dariva C, Coelho LAF, Oliveira JV. Fluid Phase Equilibr. 1999; 160:1045–1054.
25. Zhu Y, Lu XH, Zhou J, Wang YR, Shi J. Fluid Phase Equilibr. 2002; 194:1141–1159.
26. Zabaloy MS, Vasquez VR, Macedo EA. Fluid Phase Equilibr. 2006; 242(1):43–56.
27. Lee H, Thodos G. Ind Eng Chem Fund. 1983; 22(1):17–26.
28. Suarez-Iglesias O, Medina I, Pizarro C, Bueno JL. Fluid Phase Equilibr. 2008; 269(1-2):80–92.
29. Sagarik K, Spohr E. Chemical Physics. 1995; 199(1):73–82.
30. Dymond JH. Chem Soc Rev. 1985; 14(3):317–356.
31. Yu YX, Gao GH. Fluid Phase Equilibr. 1999; 166(1):111–124.
32. Chapman WG, Gubbins KE, Jackson G, Radosz M. Ind Eng Chem Res. 1990; 29(8):1709–1721.
33. Yu YX, Gao CH. Fluid Phase Equilibr. 2001; 179(1-2):165–179.
34. Brenner H. J Colloid Interf Sci. 1967; 23(3):407–436.
35. Brune D, Kim S. Proc Natl Acad Sci U S A. 1993; 90(9):3835–3839. [PubMed: 8483901]
36. Zhao H, Pearlstein AJ. Physics of Fluids. 2002; 14(7):2376–2387.
37. Gonzalez O, Li J. J Chem Phys. 2008; 129(16):165105. [PubMed: 19045320]

Wang and Hou Page 13

J Comput Chem. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



38. Kang EH, Mansfield ML, Douglas JF. Phys Rev E Stat Nonlin Soft Matter Phys. 2004; 69(3 Pt 1):
031918. [PubMed: 15089333]

39. Landolt-Bornstein. II/5a. Springer-Verlag; Heidelberg: 1969.
40. Hurle RL, Woolf LA. Australian Journal of Chemistry. 1980; 33(9):1947–1952.
41. Bender HJ, Zeidler MD. Berich Bunsen Gesell. 1971; 75(3-4):236–242.
42. Collings AF, Mills R. T Faraday Soc. 1970; 66(575):2761–2766.
43. Liu HY, Mullerplathe F, Vangunsteren WF. Journal of the American Chemical Society. 1995;

117(15):4363–4366.
44. Sehgal CM. Ultrasonics. 1995; 33(2):155–161.
45. Easteal AJ, Price WE, Woolf LA. J Chem Soc Farad T 1. 1989; 85:1091–1097.
46. Holz M, Heil SR, Sacco A. Phys Chem Chem Phys. 2000; 2(20):4740–4742.
47. Gillen KT, Douglass DC, Hoch JR. Journal Of Chemical Physics. 1972; 57(12):5117–5119.
48. Mills R. Journal of Physical Chemistry. 1973; 77(5):685–688.
49. Tiddy GJT. J Chem Soc Farad T 1. 1977; 73:1731–1737.
50. Zhang X, Li CG, Ye CH, Liu ML. Analytical Chemistry. 2001; 73(15):3528–3534. [PubMed:

11510814]
51. Jacob AC, Zeidler MD. Phys Chem Chem Phys. 2003; 5(3):538–542.
52. James TL, Mcdonald GG. J Magn Reson. 1973; 11(1):58–61.
53. Scharfenecker A, Ardelean I, Kimmich R. J Magn Reson. 2001; 148(2):363–366. [PubMed:

11237643]
54. Niesner R, Heintz A. J Chem Eng Data. 2000; 45(6):1121–1124.
55. Williams WD, Ellard JA, Dawson LR. J Am Chem Soc. 1957; 79(17):4652–4654.
56. Gutenwik J, Nilsson B, Axelsson A. Biochem Eng J. 2004; 19(1):1–7.
57. Larew LA, Walters RR. Anal Biochem. 1987; 164(2):537–546. [PubMed: 3674399]
58. Fuh CB, Levin S, Giddings JC. Anal Biochem. 1993; 208(1):80–87. [PubMed: 8434799]
59. Liu MK, Li P, Giddings JC. Protein Sci. 1993; 2(9):1520–1531. [PubMed: 8401236]
60. Krishnan VV. J Magn Reson. 1997; 124(2):468–473.
61. Annunziata O, Paduano L, Pearlstein AJ, Miller DG, Albright JG. Journal of the American

Chemical Society. 2000; 122(25):5916–5928.
62. Dubin SB, Clark NA, Benedek GB. Journal Of Chemical Physics. 1971; 54(12):5158–5164.
63. Sober, HA. CRC Press; Cleveland, Ohio: 1970. p. C3-C39.
64. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE.

Nucleic Acids Res. 2000; 28(1):235–242. [PubMed: 10592235]
65. Bushnell GW, Louie GV, Brayer GD. J Mol Biol. 1990; 214(2):585–595. [PubMed: 2166170]
66. Dong J, Boggon TJ, Chayen NE, Raftery J, Bi RC, Helliwell JR. Acta Crystallogr D. 1999;

55:745–752. [PubMed: 10089304]
67. Pjura PE, Lenhoff AM, Leonard SA, Gittis AG. Journal of Molecular Biology. 2000; 300(2):235–

239. [PubMed: 10873462]
68. Stein PE, Leslie AGW, Finch JT, Carrell RW. Journal of Molecular Biology. 1991; 221(3):941–

959. [PubMed: 1942038]
69. Bayly CI, Cieplak P, Cornell WD, Kollman PA. Journal Of Physical Chemistry. 1993; 97(40):

10269–10280.
70. Cieplak P, Cornell WD, Bayly C, Kollman PA. J Comp Chem. 1995; 16(11):1357–1377.
71. Frisch, MJ.; Trucks, GW.; Schlegel, HB.; Scuseria, GE.; Robb, MA.; Cheeseman, JR.;

Montgomery, J.; Vreven, T.; Kudin, KN.; Burant, JC.; Millam, JM.; Iyengar, SS.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, GA.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, JE.; Hratchian, HP.; Cross, JB.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, RE.; Yazyev, O.; Austin, AJ.; Cammi, R.;
Pomelli, C.; Ochterski, JW.; Ayala, PY.; Morokuma, K.; Voth, GA.; Salvador, P.; Dannenberg,
JJ.; Zakrzewski, VG.; Dapprich, S.; Daniels, AD.; Strain, MC.; Farkas, O.; Malick, DK.; Rabuck,

Wang and Hou Page 14

J Comput Chem. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



AD.; Raghavachari, K.; Foresman, JB.; Ortiz, JV.; Cui, Q.; Baboul, AG.; Clifford, S.; Cioslowski,
J.; Stefanov, BB.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, RL.; Fox, DJ.; Keith,
T.; Al-Laham, MA.; Peng, CY.; Nanayakkara, A.; Challacombe, M.; Gill, PMW.; Johnson, B.;
Chen, W.; Wong, MW.; Gonzalez, C.; Pople, JA. Gaussian, Inc; Wallingford CT: 2004. J. A.

72. Case, DA.; Darden, TA.; Cheatham, I.; Simmerling, C.; Wang, J.; Duke, RE.; Luo, R.; Crowley,
M.; Walker, RC.; Zhang, W.; Merz, KM.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.;
Kolossvary, I.; Wong, KF.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, SR.; Steinbrecher, T.;
Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, DH.; Seetin, MG.;
Sagui, C.; Babin, V.; Kollman, PA. University of California; San Francisco: 2008. T. E.

73. Wang JM, Wang W, Kollman PA, Case DA. Journal of Molecular Graphics & Modelling. 2006;
25(2):247–260. [PubMed: 16458552]

74. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Proteins: Structure,
Function, and Bioinformatics. 2006; 65(3):712–725.

75. Wang JM, Cieplak P, Kollman PA. Journal of Computational Chemistry. 2000; 21(12):1049–1074.
76. Darden T, Perera L, Li L, Pedersen L. Structure. 1999; 7(3):R55–60. [PubMed: 10368306]
77. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. J Chem Phys. 1995;

103(19):8577–8593.
78. Sagui C, Pedersen LG, Darden TA. Journal Of Chemical Physics. 2004; 120(1):73–87. [PubMed:

15267263]
79. Miyamoto S, Kollman PA. Journal of Computational Chemistry. 1992; 13(8):952–962.
80. Ryckaert JP, Ciccotti G, Berendsen HJC. J Comput Phys. 1977; 23(3):327–341.
81. Uberuaga BP, Anghel M, Voter AF. J Chem Phys. 2004; 120(14):6363–6374. [PubMed:

15267525]
82. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD. Journal Of Chemical Physics. 2001; 114(5):

2090–2098.
83. Larini L, Mannella R, Leporini D. J Chem Phys. 2007; 126(10):104101. [PubMed: 17362055]
84. Loncharich RJ, Brooks BR, Pastor RW. Biopolymers. 1992; 32(5):523–535. [PubMed: 1515543]
85. Harris KR, Lam HN, Raedt E, Easteal AJ, Price WE, Woolf LA. Mol Phys. 1990; 71(6):1205–

1221.
86. Oreilly DE. Journal Of Chemical Physics. 1968; 49(12):5416.
87. Moelwyn-Hughes, EA. Academic Press; New York: 1971.
88. Cebe E, Kaltenmeier D, Hertz HG. Z Phys Chem Neue Fol. 1984; 140(2):181–189.
89. Meckl S, Zeidler MD. Mol Phys. 1988; 63(1):85–95.
90. Safi A, Nicolas C, Neau E, Chevalier JL. J Chem Eng Data. 2007; 52(3):977–981.
91. Wang JM, Cieplak P, Li J, Hou TJ, Luo R, Duan Y. Journal of Physical Chemistry B. 2011;

115(12):3091–3099.
92. Wang JM, Cieplak P, Li J, Wang J, Cai Q, Hsieh MJ, Lei HX, Luo R, Duan Y. Journal of Physical

Chemistry B. 2011; 115(12):3100–3111.
93. Applequist J, Carl JR, Fung KK. Journal of the American Chemical Society. 1972; 94(9):2952–

2960.
94. Thole BT. Chemical Physics. 1981; 59(3):341–350.
95. van Duijnen PT, Swart M. Journal of Physical Chemistry A. 1998; 102(14):2399–2407.
96. Cieplak P, Dupradeau FY, Duan Y, Wang JM. J Phys-Condens Mat. 2009; 21(33):333102.

Wang and Hou Page 15

J Comput Chem. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Calculations of diffusion coefficients of solutes in solvation that need long time MD
simulations. (a) benzene in ethanol solution (b) phenol in aqueous solution
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Figure 2.
Prediction of diffusion coefficients of two solvents using the slope of mean square
displacements (MSD) ~ simulation time plot. (a) TIP3P water at 298 K and (b) methanol at
298 K. Left panel: calculated D ~ simulation time plot; right panel: correlation between
MSD and simulation time.
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Figure 3.
Correlation between calculated and experimental diffusion coefficients for the organic
solvents
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Figure 4.
Correlation between mean squared displacement (MSD) and simulation time for
representing solvents. (a) acetic acid, (b) DMSO, (c) CCl4, (d) cyclohexane, (e) NMA.
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Figure 5.
The temperature dependence of diffusion coefficient of TIP3P water
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Figure 6.
Performance of predicting diffusion coefficients at different temperatures for (a)
cyclohexane and (b) DMSO
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Figure 7.
Calculations of diffusion coefficients for organic solutes in solutions using the strategy of
averaging MSD of multiple independent MD runs. Left panel: MSD ~ simulation time plots
for 20 MD runs; right panel: correlation between mean MSD ~ simulation time. (a) water in
acetone, (b) aniline in benzene, (c) CHCl3 in CCl4, (d) benzene in cyclohexane, (e) pyridine
in ethanol, (f) cyclohexane in water, (g) diethylamine in water, and (h) phenol in water
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Figure 8.
Correlations between the calculated and the experimental diffusion coefficients of nine
solutes in organic solvents
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Figure 9.
Calculations of diffusion coefficients for proteins in aqueous solution using the strategy of
averaging MSD of multiple independent MD runs. Left panel: MSD ~ simulation time plots
for 20 MD runs; right panel: correlation between mean MSD ~ simulation time. (a) 1BWI,
(b) 1EX3, (c) 1HRC, and (d) 1OVA
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Figure 10.
Correlations between the calculated and the experimental diffusion coefficients of four
proteins
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