

NIH Public Access

Author Manuscript

Org Lett. Author manuscript; available in PMC 2012 October 21

Published in final edited form as: *Org Lett.* 2011 October 21; 13(20): 5420–5423. doi:10.1021/ol201730q.

Phosphine-Initiated General Base Catalysis: Facile Access to Benzannulated 1,3-Diheteroatom Five-Membered Rings via Double-Michael Reactions of Allenes

Judy Szeto, Vardhineedi Sriramurthy, and Ohyun Kwon*

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569

Abstract

General base-catalyzed double-Michael reactions of allenes with various dinucleophiles are described. The reactions are facilitated most efficiently by a catalytic amount of trimethylphosphine, affording six types of C2-functionalized benzannulated five-membered heterocycles: benzimidazolines, benzoxazolines, benzothiazolines, 1,3-benzodioxoles, 1,3-benzothioles, and 1,3-benzodithioles. This atom-economical reaction is operationally simple and provides the product heterocycles in good to excellent yields. Careful mechanistic studies unveiled the phosphine-triggered general base catalysis pathway. Furthermore, the double-Michael reaction can serve as an alternative method for the selective mono-ketalization of β -diketones.

C2-Functionalized benzannulated 1,3-diheteroatom five-membered rings are useful compounds for medicinal purposes and in materials chemistry.¹ For instance, some 1,3-benzodioxoles display endothelin antagonist, antiinflammatory, antimicrobial, and antitumor activities.² 1,3-Benzothiazolines are used as antioxidants to improve the oxidative stability of rubbers, polymers, and plastics.³ These scaffolds are commonly synthesized through dehydrative condensation of 1,2-disubstituted benzenes with aldehydes or ketones in the presence of acid catalysts.⁴ The reaction conditions are, however, often harsh, employing strong dehydrating agents (e.g., P₂O₅) or superstoichiometric amounts of acid, requiring tedious work-up.⁵ In addition, no single set of conditions reported previously can be applied to the preparation of all six benzannulated 1,3-diheteroatom five-membered rings.

The Michael reaction is one of the most versatile processes in organic synthesis.⁶ While intramolecular Michael reactions of compounds featuring donor/acceptor groups are valuable for forming functionalized cyclic compounds from acyclic starting materials,⁷ intermolecular double-Michael reactions are particularly powerful tools for assembling complex cyclic products from simple acyclic starting materials. Among the intermolecular double-Michael reactions, the union of two olefins, functioning as both acceptor and donor, is most common.⁸ Recently, we disclosed the phosphine-catalyzed double-Michael reactions

ohyun@chem.ucla.edu .

Supporting Information Available: Representative experimental procedures, characterization data and copies of ¹H and ¹³C NMR spectra for all new compounds (PDF). Crystallographic data for **3b**, **4b**, and **5c** (CIF). This information is available free of charge via the Internet at http://pubs.acs.org.

of dinucleophiles with acetylenes as a powerful method for synthesizing heterocycles **A** (Eq 1).⁹ Although, theoretically, disubstituted acetylenes could be used to introduce a quaternary center (as in **B**), we found that any additional substituent at the β -carbon atom of the activated acetylene prohibited its double-Michael reaction. Double-Michael reactions of dinucleophiles with allenes, which have the same degree of unsaturation as acetylenes yet enhanced reactivity, would conceivably also yield heterocycles **B**;¹⁰ it has been reported, however, that allenes typically undergo tandem γ -umpolung addition/Michael cyclization, forming heterocycles **C**, in the presence of phosphines.¹¹ Herein, we report a new phosphine-triggered general base-catalyzed tandem double-Michael reaction of dinucleophiles with allenes, affording, under simple and mild conditions, highly functionalized heterocycles **B** featuring fully substituted carbon centers.

The tandem umpolung addition/Michael cyclization of dinucleophiles and allenoates is typically facilitated by PPh₃.¹¹ Indeed, treatment of *N*-tosyl-2-aminophenol (**1a**)¹² and the allene **2a** with PPh₃ (10 mol %) provided the benzomorpholine **3a** in 88% yield (Eq 2). Switching the catalyst to PMe₃, however, led to production of the double-Michael product **4a** in 92% yield.¹³ The addition of PMe₃ to allenoate **2a** is speculated to form a phosphonium enolate that acts as a general base and promote the formation of the double-Michael product **4a** (see mechanistic studies below). To test this hypothesis, we also examined the double-Michael reactions mediated by amines and inorganic bases.

N-Tosyl-2-aminophenol (**1a**) was reacted with allene **2b** in the presence of an amine (0.1 equiv) or an inorganic base (1.1 equiv) in MeCN at 90 °C (Table 1). While PMe₃ provided the double-Michael adduct **4b** in 86% yield (entry 1), amine bases displayed varying degrees of success. Among the common nucleophilic amine bases, DMAP performed better than quinuclidine, 3-hydroxyquinuclidine (3-HQD), and DABCO, exhibiting efficiency comparable with that of PMe₃ (entries 2–5). Neither the basicity¹⁴ nor the nucleophilicity¹⁵ of the amine base followed the same trend as the reaction efficiency, hinting at a complex multistep reaction mechanism (*vide infra*). The inorganic bases also facilitated the reaction, albeit with much diminished efficiency (entries 6–8). Focusing on the double-Michael reaction with PMe₃ and DMAP, we investigated a variety of nucleophiles and allenes for the construction of benzannulated 1,3-diheteroatom five-membered cycles.

The PMe₃-mediated double-Michael reaction was generally applicable to a variety of orthosubstituted phenol, aniline, and thiophenol dinucleophiles (Table 2). Under the simple conditions of heating the dinucleophile at 90 °C in MeCN in the presence of the allenoate **2a**

and PMe₃ (10 mol %), 2-mercaptophenol provided the 1,3-benzoxathiole **4c** in 93% yield (entry 1).¹⁶ The 1,3-benzodioxole **4d** and the 1,3-benzodithiole **4e** were also formed readily in good yields (entries 2 and 3). In contrast, *N*-tosyl-2-aminothiophenol¹⁷ and *N*,*N'*-ditosyl-1,2-diaminobenzene¹⁸ produced only their mono-Michael adducts at 90 °C; a temperature of 120 °C was required to facilitate full conversions to their double-Michael products, the benzothiazoline **4f** and the benzimidazoline **4g**, respectively (entries 4 and 5). The presence of a chlorine substituent did not affect the double-Michael reaction of **1g**, giving the benzoxazoline **4h** in 84% yield (entry 6). When DMAP (10 mol %) was used, only moderate amounts of the benzothiazoline **4f** and the benzimidazoline **4g** were obtained (entries 4 and 5).

To form fully substituted C2 centers decorated with groups other than Me and CH₂CO₂Et units, we surveyed the reactions of various α - and γ -substituted allenoates (Table 3). Allenoates with γ -substituents¹⁹ of varying steric and electronic demand were well suited to double-Michael reactions with *N*-tosyl-2-aminophenol, 2-mercaptophenol, and catechol (entries 1–11). Furthermore, the reactions of α -substituted allenoates²⁰ with catechol provided the 1,3-benzodioxoles **4t**–**v** in excellent yields (entries 12–14). With *N*-tosyl-2-aminophenol as the dinucleophile, α -substituted allenoates generated mixtures of diastereoisomers with poor selectivity, albeit in excellent yields (entries 15–17). In general, DMAP was a less-efficient catalyst than PMe₃, with some exceptions (entries 2, 4, and 6). We observed a particularly noteworthy improvement in the product yield when DMAP was used for the reaction of the γ -benzyl allenoate **2d** (entries 2 and 6). The lower yield with PMe₃ was likely due to isomerization of the γ -benzyl allenoate **2d** to the corresponding diene.²¹ The generally superior performance of PMe₃ over DMAP might be due to the phosphonium cation being better than the pyridinium ion at forming a spectator countercation for the general bases.

We gleaned clues regarding the mechanism of this new phosphine-mediated double-Michael reaction from the isolation of the mono-Michael product $5a^{13}$ of *N*-tosyl-2-aminophenol (**1a**) and the allenoate **2b** (Eq 3). Intriguingly, when we heated **5a** in MeCN in the presence of catalytic PMe₃, we obtained almost no cyclized product **4b**. On the other hand, exposure of **5a** to catalytic PMe₃ and the allenoate **2b** in MeCN at 90 °C provided the double-Michael product **4b** in 80% yield. Most interestingly, treatment of **5a** with catalytic PMe₃ and 1.1 equivalent of the allenoate **2a** also rendered formation of the benzoxazoline **4b**. Notably, we detected no product **4a**, arising from the elimination of **1a** from **5a** and subsequent double-Michael reaction of the allenoate **2a**.

Based on these insights, we propose the following mechanism for the double-Michael reaction (Scheme 1). Nucleophilic addition of the phosphine to the allenoate **2** results in the phosphonium enolate **6**. Protonation of **6** by the pronucleophile **1** leads to the formation of a nucleophile/phosphonium salt pair **7**·**8**, which undergoes γ -umpolung addition to yield the ylide **9** when PPh₃ is employed as the catalyst.¹¹ In contrast, the more-electron-rich phosphine PMe₃ does not facilitate umpolung addition.²² As we had observed for the double-Michael reactions of acetylenes, the β , β -disubstituted enoate **10** did not undergo the Michael reaction.⁹ Instead, the nucleophile **7** adds to the allenoate **2**. The resulting dienolate **11** undergoes γ -protonation to form the α , β -unsaturated enoate **13**, which is primed for a second Michael addition. The cyclic enolate **14** can further facilitate the double-Michael reaction cycle by deprotonating the pronucleophile **1** (or mono-Michael product; e.g., **5a** in Scheme 1) to produce the product **4**, supporting the notion of general base catalysis.²³ The

observation of no cyclized product derived from the allenoate 2a in Eq 3 also suggests that the second Michael addition is facile and that the intermediate 11 does not revert back to the allenoate 2 and the nucleophile 7.

Scheme 2 demonstrates an additional application of this double-Michael reaction: what amounts to the selective ketalization of asymmetric β -diketones. The ketalization of the β -diketone **15** with catechol would produce a mixture of the acetals **16** and **17**. Conversely, the double-Michael reaction of catechol with the allenone **18**²⁴ produced only the acetal **16** in 90% yield.

In summary, we have developed a phosphine-triggered general base-catalyzed double-Michael reaction that enables the syntheses of six different C2-functionalized benzannulated 1,3-diheteroatom five-membered rings from dinucleophiles and allenes. The reported processes are operationally simple, atom-economical, minimize the generation of chemical waste, and employ mild reaction conditions. Based on the results of experiments performed using an isolated mono-Michael adduct, we have established a general base catalysis mechanism for what appears to be a phosphine catalysis reaction. Such mechanistic insight introduces a new twist to the growing number of phosphine-catalyzed annulation reactions²⁵ and suggests what might be a general role of phosphines in other annulation processes. This highly efficient methodology also circumvents the synthetic problem of non-selective ketalization of β -diketones. Our focus is now on expanding the scope of the pronucleophile, examining the diastereoselectivity of the double-Michael reaction using 1,2-disubstituted benzenes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by the NIH (R01GM071779, P41GM081282). O.K. thanks Profs. Daniel A. Singleton (Texas A&M University) and Louis S. Hegedus (Colorado State University) for helpful discussions.

References

- 1. Boshta NM, Bomkamp M, Waldvogel SR. Tetrahedron. 2009; 65:3773.
- a Jae H-S, Winn M, von Geldern TW, Sorensen BK, Chiou WJ, Nguyen B, Marsh KC, Opgenorth TJ. J. Med. Chem. 2001; 44:3978. [PubMed: 11689084] b Ullrich T, Baumann K, Welzenbach K, Schmutz S, Camenisch G, Meingassner JG, Weitz-Schmidt G. Bioorg. Med. Chem. Lett. 2004; 14:2483. [PubMed: 15109637] c Leite ACL, da Silva KP, de Souza IA, de Araújo JM, Brondani DJ. Eur. J. Med. Chem. 2004; 39:1059. [PubMed: 15571867]
- 3. Robert, DP.; Frank, AH. US Patent 4708810. 1987.
- 4. Prakash GKS, Mathew T, Panja C, Vaghoo H, Venkataraman K, Olah GA. Org. Lett. 2007; 9:179. [PubMed: 17217259]
- a Iwagami H, Yatagai M, Nakazawa M, Orita H, Honda Y, Ohnuki T, Yukawa T. Bull. Chem. Soc. Jpn. 1991; 64:175.b Chan TH, Brook MA, Chaly T. Synthesis. 1983:203.
- a Michael A. J. Prakt. Chem. 1887; 35:349.b Jung, ME. Comprehensive Organic Synthesis. Trost, BM.; Fleming, I.; Semmelhack, MF., editors. Vol. Vol. 4. Pergamon; Oxford: 1991. p. 1-68.Chapter 1.1c Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis. Elsevier Science; New York: 1992.
- 7. a Ihara M, Fukumoto K. Angew. Chem., Int. Ed. Engl. 1993; 32:1010.b Parsons PJ, Stefinovic M. Synlett. 1993:931.

- a Enders D, Hüttl MRM, Grondal C, Raabe G. Nature. 2006; 441:861. [PubMed: 16778886] b Lu Z, Chai G, Ma S. Angew. Chem., Int. Ed. Engl. 2008; 47:6045. [PubMed: 18604790] c Zhang X, Zhang S, Wang W. Angew. Chem., Int. Ed. Engl. 2010; 49:1481. [PubMed: 20084653]
- 9. a Sriramurthy V, Barcan GA, Kwon O. J. Am. Chem. Soc. 2007; 129:12928. [PubMed: 17924625]
 b Sriramurthy V, Kwon O. Org. Lett. 2010; 12:1084. [PubMed: 20143856]
- 10. Cabiddu S, Cadoni E, Ciuffarin E, Fattuoni C, Floris C. J. Heterocycl. Chem. 1991; 28:1573.
- a Cristau HJ, Fonte M, Torreilles E. Synthesis. 1989:301.b Liu B, Davis R, Joshi B, Reynolds DW. J. Org. Chem. 2002; 67:4595. [PubMed: 12076163] c Lu C, Lu X. Org. Lett. 2002; 4:4677. [PubMed: 12489959] d Lu Z, Zheng S, Zhang X, Lu X. Org. Lett. 2008; 10:3267. [PubMed: 18597475]
- 12. Andersen KK, Gowda G, Jewell L, McGraw P, Phillips BT. J. Org. Chem. 1982; 47:1884.
- 13. The structures of 3b (5-chlorobenzene variant of 3a), 4b, and 5c (5-chlorobenzene variant of 5a) were established unequivocally through X-ray crystallographic analyses. See the Supporting Information for details
- 14. a Streuli CA. Anal. Chem. 1960; 32:985.b Ripin, DH.; Evans, DA. [(accessed June 2011)] Evans pK_a Table. http://www2.lsdiv.harvard.edu/labs/evans/index.html
- a Ofial, A.; Mayr, H. [(accessed June 2011)] Reactivity Scales. http://www.cup.unimuenchen.de/oc/mayr/CDpublika.htmlb Brotzel F, Kempf B, Singer T, Zipse H, Mayr H. Chem. Eur. J. 2007; 13:336.
- 16. Despite their acetal-like functionality, the heterocycles formed in this study were stable to flash column chromatography over silica gel
- 17. Mizukami S, Kono M. Chem. Pharm. Bull. 1965; 13:33. [PubMed: 5864279]
- Kato T, Masu H, Takayanagi H, Kaji E, Katagiri K, Tominaga M, Azumaya I. Tetrahedron. 2006; 62:8458.
- 19. Lang RW, Hansen H-J. Org. Synth. 1984; 62:202.
- 20. a Kumar K, Kapur A, Ishar MPS. Org. Lett. 2000; 2:787. [PubMed: 10814429] b Zhu X-F, Lan J, Kwon O. J. Am. Chem. Soc. 2003; 125:4716. [PubMed: 12696883] c Tran YS, Kwon O. Org. Lett. 2005; 7:4289. [PubMed: 16146409] d Zhao G-L, Shi M. Org. Biomol. Chem. 2005; 3:3686. [PubMed: 16211103] e Castellano S, Fiji HDG, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. J. Am. Chem. Soc. 2007; 129:5843. [PubMed: 17439124] f Tran YS, Kwon O. J. Am. Chem. Soc. 2007; 129:12632. [PubMed: 17914823] g Lu K, Kwon O. Org. Synth. 2009; 86:212. [PubMed: 20161208] h Guo H, Xu Q, Kwon O. J. Am. Chem. Soc. 2009; 131:6318. [PubMed: 19374356] i Wang T, Ye S. Org. Lett. 2010; 12:4168. [PubMed: 20712333] j Zhang Q, Yang L, Tong X. J. Am. Chem. Soc. 2010; 132:2550. [PubMed: 20131904] k Wang Z, Castellano S, Kinderman SS, Argueta CE, Beshir AB, Fenteany G, Kwon O. Chem. Eur. J. 2011; 17:649.1 Guan X-Y, Wei Y, Shi M. Eur. J. Org. Chem. 2011:2673.m Cruz D, Wang Z, Kibbie J, Modlin R, Kwon O. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:6769. [PubMed: 21383121] n Baskar B, Dakas P-Y, Kumar K. Org. Lett. 2011; 13:1988. [PubMed: 21417315] o Martin TJ, Vakhshori VG, Tran YS, Kwon O. Org. Lett. 2011; 13:2586. [PubMed: 21491870]
- 21. Xu S, Zhou L, Zeng S, Ma R, Wang Z, He Z. Org. Lett. 2009; 11:3498. [PubMed: 19580297]
- Tricyclohexylphosphine, which is comparable in size to triphenylphosphine, produced only the double-Michael product 4a (in yields of 93%) when mixed with the allene 1a and the nucleophile 2a
- a White DA, Baizer MM. Tetrahedron Lett. 1973; 14:3597.b Yoshida T, Saito S. Chem. Lett. 1982:1587.c Gómez-Bengoa E, Cuerva JM, Mateo C, Echavarren AM. J. Am. Chem. Soc. 1996; 118:8553.d Lumbierres M, Marchi C, Moreno-Mañas M, Sebastián RM, Vallribera A, Lago E, Molins E. Eur. J. Org. Chem. 2001:2321.e Stewart IC, Bergman RG, Toste FD. J. Am. Chem. Soc. 2003; 125:8696. [PubMed: 12862443]
- 24. Kumar K, Kaur S, Ishar MPS. Synlett. 1999:1237.
- 25. a Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34:535. [PubMed: 11456471] b Valentine DH, Hillhouse JH. Synthesis. 2003:317.c Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346:1035.d Lu X, Du Y, Lu C. Pure Appl. Chem. 2005; 77:1985.e Nair V, Menon RS, Sreekanth AR, Abhilash N, Biju AT. Acc. Chem. Res. 2006; 39:520. [PubMed: 16906748] f Ye L-W, Zhou J, Tang Y. Chem. Soc. Rev. 2008; 37:1140. [PubMed: 18497927] g Denmark SE, Beutner GL.

Angew. Chem., Int. Ed. Engl. 2008; 47:1560. [PubMed: 18236505] h Kwong CK-W, Fu MY, Lam CS-L, Toy PH. Synthesis. 2008:2307.i Aroyan CE, Dermenci A, Miller SJ. Tetrahedron. 2009; 65:4069.j Cowen BJ, Miller SJ. Chem. Soc. Rev. 2009; 38:3102. [PubMed: 19847345] k Marinetti A, Voituriez A. Synlett. 2010:174.l Kolesinska B. Cent. Eur. J. Chem. 2010:1147.

scheme1.

Scheme 1.Mechanism of the Double-Michael Reactions of Allenes

scheme2. Scheme 2. Selective Synthesis of a β -Diketone Mono-acetal

Table 1

Double-Michael Reactions of the Amidophenol 1a and the Allene 2b Mediated by Different Bases^a

	H HTs 2b	PMe ₃ or amine (10%) or inorganic base (110%) gEt MeCN, 90 °C pressure tube									
entry	base ^b	$pK_a(H_2O)^c$	nucleophilicity ^d	yield(%) ^e							
1	PMe ₃	8.7	15.49 ^f	86							
2	quinuclidin ^e	11.3	20.54 ^g	26							
3	3-HQD	9.9		54							
4	DABCO	8.7	18.80 ^g	77							
5	DMAP	9.2	$15.80^{h} (14.95)^{g}$	82							
6	Na ₂ CO ₃	10.3		35							
7	NaHCO ₃	6.3		16							
8	NaOAc	4.8		53							

^{*a*}Reactions were performed using 0.4 mmol of 1a and 1.1 equiv of 2b.

 ${}^{b}\ensuremath{\mathsf{For}}$ for the complete list of bases tested, see the Supporting Information.

^cReference 14.

^dReference 15.

^eIsolated yield.

 $f_{\text{The value is the nucleophilicity of PBu3 (in CH₂Cl₂).}$

^gNucleophilicity in MeCN.

^hNucleophilicity in CH2Cl2.

Table 2

Szeto et al.

Annulations of Various Dinucleophiles ^a	PMe ₃ or DMAP (10%) Z	MeCN, 90 °C	Z product $yield (\%)^b$	PMe ₃ DMAP) H 4c 93) H 4d 80) H 4e 74	e) H 4f 68 53	If) H 4g 79 38	g) CI 4h 84	ormed using 0.4 mmol of 1 and 1.1 equiv of 2a .	hromatography.
Double-Michael Annulation	Z XH PMe ₃ c	1b-a 2a pre	entry X,Y Z I		1 O, S (1b) H	2 0,0(1 c) H	3 S, S (1d) H	₄ c S,NTs (1e) H	5 ^c NTs, NTs (1f) H	6 0, NTs (1g) CI	a Reactions were performed using (b Isolated yield after chromatograpl

^cReaction performed initially at 90 °C to obtain the mono-Michael adduct; the temperature was then raised to 120 °C for full conversation to the double-Michael product.

Double-Michael Annulations of Substituted Allenoates^a

Table 3

X R ¹	4 R ²	yield $(\%)^b$	Me ₃ DMAP	83	61 77	69 51	74 76	86	65 89	58 48	70 68	LL	89 74	82 68	89	86	80	a_1^d	^{13}d	^{34}d	35 equiv of 2 .
AP (20%)	00 °C	product	PI	4i	4j	4k	41	4m	4n	40	4p	4q	4r	4s	4t	4u	4v	4w 8	4 x	4y 8	ol of 1 and 1.3
R ² PMe ₃ or DM/	CO ₂ Et MeCN, 5 b-h pressure	R ¹ ,R ²		Ph, H (2c)	Bn, H (2d)	<i>t</i> -Bu, H (2e)	Me,H	Ph,H	Bn,H	<i>t</i> -Bu, H	Me,H	Ph,H	Bn,H	t-Bu, H	H, Me (2f)	H, Bn (2g)	H, CH ₂ CO ₂ Et(2h)	H,Me	H,Bn	H, CH ₂ CO ₂ Et	formed using 0.4 mm
_	7	X, Y		O,NTs	0,NTs	0,NTs	0,S	O,S	O,S	O,S	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,NTs	0,NTs	0,NTs	ıs were pei
×	1a-c	entry		-	2	33	4	5	9	L	8	6	10	11	12	13	14	15^c	16^{C}	$_{17}^{c}$	a Reaction

Org Lett. Author manuscript; available in PMC 2012 October 21.

 $b_{\rm Isolated}$ yield.

 $^{c}\mathrm{NaOAc}$ (50 mol %) was added.

^dDiastereoisomeric ratio determined using ¹H NMR spectroscopy. Diastereomeric ratios 1:1, 2:1, and 1.2:1 for **4w**, **4x**, and **4y**, respectively.