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General base-catalyzed double-Michael reactions of allenes with various dinucleophiles are
described. The reactions are facilitated most efficiently by a catalytic amount of
trimethylphosphine, affording six types of C2-functionalized benzannulated five-membered
heterocycles: benzimidazolines, benzoxazolines, benzothiazolines, 1,3-benzodioxoles, 1,3-
benzoxathioles, and 1,3-benzodithioles. This atom-economical reaction is operationally simple and
provides the product heterocycles in good to excellent yields. Careful mechanistic studies unveiled
the phosphine-triggered general base catalysis pathway. Furthermore, the double-Michael reaction
can serve as an alternative method for the selective mono-ketalization of B-diketones.

C2-Functionalized benzannulated 1,3-diheteroatom five-membered rings are useful
compounds for medicinal purposes and in materials chemistry.! For instance, some 1,3-
benzodioxoles display endothelin antagonist, antiinflammatory, antimicrobial, and antitumor
activities.? 1,3-Benzothiazolines are used as antioxidants to improve the oxidative stability
of rubbers, polymers, and plastics.3 These scaffolds are commonly synthesized through
dehydrative condensation of 1,2-disubstituted benzenes with aldehydes or ketones in the
presence of acid catalysts.* The reaction conditions are, however, often harsh, employing
strong dehydrating agents (e.g., P2Os) or superstoichiometric amounts of acid, requiring
tedious work-up.® In addition, no single set of conditions reported previously can be applied
to the preparation of all six benzannulated 1,3-diheteroatom five-membered rings.

The Michael reaction is one of the most versatile processes in organic synthesis.6 While
intramolecular Michael reactions of compounds featuring donor/acceptor groups are
valuable for forming functionalized cyclic compounds from acyclic starting materials,’
intermolecular double-Michael reactions are particularly powerful tools for assembling
complex cyclic products from simple acyclic starting materials. Among the intermolecular
double-Michael reactions, the union of two olefins, functioning as both acceptor and donor,
is most common.8 Recently, we disclosed the phosphine-catalyzed double-Michagl reactions
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of dinucleophiles with acetylenes as a powerful method for synthesizing heterocycles A (Eq
1).2 Although, theoretically, disubstituted acetylenes could be used to introduce a quaternary
center (as in B), we found that any additional substituent at the -carbon atom of the
activated acetylene prohibited its double-Michael reaction. Double-Michael reactions of
dinucleophiles with allenes, which have the same degree of unsaturation as acetylenes yet
enhanced reactivity, would conceivably also yield heterocycles B;10 it has been reported,
however, that allenes typically undergo tandem y-umpolung addition/Michael cyclization,
forming heterocycles C, in the presence of phosphines.1! Herein, we report a new
phosphine-triggered general base-catalyzed tandem double-Michael reaction of
dinucleophiles with allenes, affording, under simple and mild conditions, highly
functionalized heterocycles B featuring fully substituted carbon centers.
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The tandem umpolung addition/Michael cyclization of dinucleophiles and allenoates is
typically facilitated by PPhs.11 Indeed, treatment of N-tosyl-2-aminophenol (1a)12 and the
allene 2a with PPh3 (10 mol %) provided the benzomorpholine 3a in 88% vyield (Eq 2).
Switching the catalyst to PMes, however, led to production of the double-Michael product
4a in 92% yield.13 The addition of PMej to allenoate 2a is speculated to form a
phosphonium enolate that acts as a general base and promote the formation of the double-
Michael product 4a (see mechanistic studies below). To test this hypothesis, we also
examined the double-Michael reactions mediated by amines and inorganic bases.

PPha (10 mol %) ]ACOQE'(
toluene 80°C,16 h
Ts 88% yield

SR
NHTs @
PMeg (10 mol %) ></
|—» CO,Et

MeCN, 90 °C, 20 h Ts
4a 92% yield

N-Tosyl-2-aminophenol (1a) was reacted with allene 2b in the presence of an amine (0.1
equiv) or an inorganic base (1.1 equiv) in MeCN at 90 °C (Table 1). While PMe3 provided
the double-Michael adduct 4b in 86% yield (entry 1), amine bases displayed varying degrees
of success. Among the common nucleophilic amine bases, DMAP performed better than
quinuclidine, 3-hydroxyquinuclidine (3-HQD), and DABCO, exhibiting efficiency
comparable with that of PMes (entries 2-5). Neither the basicityl4 nor the nucleophilicity?®
of the amine base followed the same trend as the reaction efficiency, hinting at a complex
multistep reaction mechanism (vide infra). The inorganic bases also facilitated the reaction,
albeit with much diminished efficiency (entries 6-8). Focusing on the double-Michael
reaction with PMe3 and DMAP, we investigated a variety of nucleophiles and allenes for the
construction of benzannulated 1,3-diheteroatom five-membered cycles.

The PMes-mediated double-Michael reaction was generally applicable to a variety of ortho-
substituted phenol, aniline, and thiophenol dinucleophiles (Table 2). Under the simple
conditions of heating the dinucleophile at 90 °C in MeCN in the presence of the allenoate 2a
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and PMe3 (10 mol %), 2-mercaptophenol provided the 1,3-benzoxathiole 4c in 93% vyield
(entry 1).16 The 1,3-benzodioxole 4d and the 1,3-benzodithiole 4e were also formed readily
in good yields (entries 2 and 3). In contrast, N-tosyl-2-aminothiophenol’ and N,N'-
ditosyl-1,2-diaminobenzenel8 produced only their mono-Michael adducts at 90 °C; a
temperature of 120 °C was required to facilitate full conversions to their double-Michael
products, the benzothiazoline 4f and the benzimidazoline 4g, respectively (entries 4 and 5).
The presence of a chlorine substituent did not affect the double-Michael reaction of 1g,
giving the benzoxazoline 4h in 84% yield (entry 6). When DMAP (10 mol %) was used,
only moderate amounts of the benzothiazoline 4f and the benzimidazoline 4g were obtained
(entries 4 and 5).

To form fully substituted C2 centers decorated with groups other than Me and CH,CO5Et
units, we surveyed the reactions of various a- and y-substituted allenoates (Table 3).
Allenoates with y-substituents!® of varying steric and electronic demand were well suited to
double-Michael reactions with N-tosyl-2-aminophenol, 2-mercaptophenol, and catechol
(entries 1-11). Furthermore, the reactions of a-substituted allenoates2? with catechol
provided the 1,3-benzodioxoles 4t-v in excellent yields (entries 12—-14). With N-tosyl-2-
aminophenol as the dinucleophile, a-substituted allenoates generated mixtures of
diastereoisomers with poor selectivity, albeit in excellent yields (entries 15-17). In general,
DMAP was a less-efficient catalyst than PMes, with some exceptions (entries 2, 4, and 6).
We observed a particularly noteworthy improvement in the product yield when DMAP was
used for the reaction of the y-benzyl allenoate 2d (entries 2 and 6). The lower yield with
PMes was likely due to isomerization of the y-benzyl allenoate 2d to the corresponding
diene.2! The generally superior performance of PMes over DMAP might be due to the
phosphonium cation being better than the pyridinium ion at forming a spectator
countercation for the general bases.

We gleaned clues regarding the mechanism of this new phosphine-mediated double-Michael
reaction from the isolation of the mono-Michael product 5al2 of N-tosyl-2-aminophenol
(1a) and the allenoate 2b (Eq 3). Intriguingly, when we heated 5a in MeCN in the presence
of catalytic PMe3, we obtained almost no cyclized product 4b. On the other hand, exposure
of 5a to catalytic PMes and the allenoate 2b in MeCN at 90 °C provided the double-Michael
product 4b in 80% yield. Most interestingly, treatment of 5a with catalytic PMez and 1.1
equivalent of the allenoate 2a also rendered formation of the benzoxazoline 4b. Notably, we
detected no product 4a, arising from the elimination of 1a from 5a and subsequent double-
Michael reaction of the allenoate 2a.

Based on these insights, we propose the following mechanism for the double-Michael
reaction (Scheme 1). Nucleophilic addition of the phosphine to the allenoate 2 results in the
phosphonium enolate 6. Protonation of 6 by the pronucleophile 1 leads to the formation of a
nucleophile/phosphonium salt pair 7-8, which undergoes y-umpolung addition to yield the
ylide 9 when PPhg is employed as the catalyst.!! In contrast, the more-electron-rich
phosphine PMe3 does not facilitate umpolung addition.22 As we had observed for the
double-Michael reactions of acetylenes, the B,B-disubstituted enoate 10 did not undergo the
Michael reaction.? Instead, the nucleophile 7 adds to the allenoate 2. The resulting dienolate
11 undergoes y-protonation to form the a,B-unsaturated enoate 13, which is primed for a
second Michael addition. The cyclic enolate 14 can further facilitate the double-Michael
reaction cycle by deprotonating the pronucleophile 1 (or mono-Michael product; e.g., 5a in
Scheme 1) to produce the product 4, supporting the notion of general base catalysis.23 The
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observation of no cyclized product derived from the allenoate 2a in Eq 3 also suggests that
the second Michael addition is facile and that the intermediate 11 does not revert back to the
allenoate 2 and the nucleophile 7.

Scheme 2 demonstrates an additional application of this double-Michael reaction: what
amounts to the selective ketalization of asymmetric B-diketones. The ketalization of the f3-
diketone 15 with catechol would produce a mixture of the acetals 16 and 17. Conversely, the
double-Michael reaction of catechol with the allenone 1824 produced only the acetal 16 in
90% vyield.

In summary, we have developed a phosphine-triggered general base-catalyzed double-
Michael reaction that enables the syntheses of six different C2-functionalized benzannulated
1,3-diheteroatom five-membered rings from dinucleophiles and allenes. The reported
processes are operationally simple, atom-economical, minimize the generation of chemical
waste, and employ mild reaction conditions. Based on the results of experiments performed
using an isolated mono-Michael adduct, we have established a general base catalysis
mechanism for what appears to be a phosphine catalysis reaction. Such mechanistic insight
introduces a new twist to the growing number of phosphine-catalyzed annulation reactions2®
and suggests what might be a general role of phosphines in other annulation processes. This
highly efficient methodology also circumvents the synthetic problem of non-selective
ketalization of B-diketones. Our focus is now on expanding the scope of the pronucleophile,
examining the diastereoselectivity of the double-Michael reaction when using a-substituted
allenes, and exploring the umpolung addition/Michael reaction using 1,2-disubstituted
benzenes.
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Table 1

Double-Michael Reactions of the Amidophenol 1a and the Allene 2b Mediated by Different Bases™

PMe; or amine (10%)

©: or inorganic base (110%)
_— ' COsk ><,\002Et

MeCN, 90 °C
2b pressure tube

Y pase®  pKy(H,0)°  nucleophilicity & yield(96)®

1 PMe, 87 I 86

quinuclidin ¢ 113 20.549 2
3 3-HQD 9.9 54
4 DABCO 87 15500 77
5 DMAP 9.2 1580 (14.95)0 82
6 Na,COs 103 35
7 NaHCO, 63 16
8 NaOAc 48 53

aReactions were performed using 0.4 mmol of 1a and 1.1 equiv of 2b.
bFor the complete list of bases tested, see the Supporting Information.
C

Reference 14.
d

Reference 15.
e .

Isolated yield.
fThe value is the nucleophilicity of PBu3 (in CH2CI2).
gNucleophilicity in MeCN.

hNucleophilicity in CH2CI2.
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