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Abstract
Rho kinase (ROCK) belongs to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and
is a major downstream effector of the small GTPase RhoA. ROCK plays central roles in the
organization of the actin cytoskeleton and is involved in a wide range of fundamental cellular
functions such as contraction, adhesion, migration, proliferation and gene expression. Two ROCK
isoforms, ROCK1 a n d ROCK2, are assumed to be functionally redundant, based largely on the
major common activators, the high degree of homology within the kinase domain and studies from
overexpression with kinase constructs a n d chemical inhibitors (e.g., Y27632 a n d fasudil), which
inhibit both ROCK1 and ROCK2. Extensive experimental a n d clinical studies support a critical
role for the RhoA/ROCK pathway in the vascular bed in the pathogenesis of cardiovascular
diseases, in which increased ROCK activity mediates vascular smooth muscle cell
hypercontraction, endothelial dysfunction, inflammatory cell recruitment and vascular remodeling.
Recent experimental studies, using ROCK inhibitors or genetic mouse models, indicate that the
RhoA/ROCK pathway in myocardium contributes to cardiac remodeling induced by ischemic
injury or persistent hypertrophic stress, thereby leading to cardiac decompensation and heart
failure. This article, based on recent molecular, cellular and animal studies, focuses on the current
understanding of ROCK signaling in cardiovascular diseases and in the pathogenesis of heart
failure.
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Rho-kinase (Rho-associated coiled-coil-containing protein kinase [ROCK]) is one of the
best-characterized effectors of small GTPase RhoA and belongs to the AGC PKA/PKG/
PKC) family of serine/threonine kinases [1-4]. As a major downstream effector of RhoA,
ROCK promotes actin-myosin-mediated contractile force generation by phosphorylating a
variety of downstream target proteins. The ROCK family consists of two members, ROCK1
(also called ROKb or p160ROCK) and ROCK2 (also known as ROKa), that share 65%
overall identity and 92% identity in the kinase domain. Both kinases contain a catalytic
kinase domain at the N-terminus, followed by a central coiled-coil domain, including a Rho-
binding domain and a C-terminal pleckstrin-homology domain, with an internal cysteine-
rich domain. In humans and mice, both ROCK1 and ROCK2 are ubiquitously expressed
across tissues [3].

The Rho/ROCK family has been investigated intensively for its roles in cellular processes,
as the majority of cellular activities are directly or indirectly regulated by Rho/ROCK
protein activity, for reviews see [5-16]. The progress in both pharmacological study and
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translational research have led to the discovery that ROCK could be a potential therapeutic
target in the treatment of diverse disorders, such as cardiovascular disorders, neurologic
disorders, metabolic disorders and cancers [17-20]. In this article, we will focus on the
current information derived from studies of cardiovascular-related diseases, mainly covering
hypertension, atherosclerosis and heart failure, with a special emphasis on the myocardium
and cardiomyocytes. Two relatively selective ROCK inhibitors, Y27632 [21] and fasudil
[22], which target the ATP-dependent kinase domain of ROCK1 and ROCK2, will be
discussed; specifically we will examine their application in dissecting the roles of ROCK in
cellular signaling and in diverse pathological events of animal models. Recent findings
derived from ROCK1 and ROCK2 knockout mouse models will also be covered.

Substrates, functions & signaling pathways Regulation of ROCK activity
ROCK1 and ROCK2 are downstream targets of the small GTP-binding protein RhoA,
working as a mediator in the RhoA-dependent signalling pathway. Stimulation of tyrosine
kinase and G-protein-coupled receptors leads to activation of RhoA via the recruitment and
activation of guanine nucleotide exchange factors [23,24]. Activated RhoA directly interacts
with the C-terminal portion of the coiled-coil domain of ROCK and induces a
conformational change, leading to activation of the serine/threonine kinase toward selective
substrates [1-4]. ROCK’s activity can also be modulated through interaction of the C-
terminal pleckstrin-homology domain with lipid mediators such as arachidonic acid and
sphingosylphosphorylcholine [25-27], autophosphorylation [28], mechanical stress and
proteolytic cleavage of the inhibitory C-terminal domain [29-31].

ROCK & cytoskeleton dynamics
Both ROCK1 and ROCK2 are highly homologous and share more than 20 immediate
downstream substrates [6-12]. The major downstream substrates of ROCK include the
myosin binding subunit of myosin light chain (MLC) phosphatase (MYPT1) [32-34], MLC2
[32,35], LIM kinases [36-40], ezrin/radixin/moesin (ERM) [41] and adducin [42], thereby
modulating actin cytoskeleton organization, stress fiber formation and smooth muscle cell
contraction. The consensus amino acid sequences for phosphorylation on these substrates
are R/KXS/T or R/KXXS/T [34,38]. However, these substrates can also be phosphorylated
by other serine—threonine kinases such as MLC kinase, PKA, PKC and PKG [43,44].

The ROCK/MYPT1/MLC2 pathway is extensively described in smooth muscle cells, where
it mediates calcium sensitization and thereby enhances and sustains contraction in the
vascular bed. Identification of this pathway first connected this kinase family with
cardiovascular diseases associated with abnormal smooth muscle contraction, such as
cerebral vasospasm, hypertension and ischemic cardiac injury. On the other hand, ROCK/
MYPT1/MLC and ROCK/LIMK/cofilin pathways are heavily involved in stress fiber
formation. ROCK seems to induce and maintain stress fibers by increasing contractility via
MLC phopshorylation and by stabilizing actin filaments through LIMK activation, resulting
in cofilin phosphorylation and thereby inhibiting its actin-depolymerization activity. The
most recent updated information about these pathways has been summarized in several
recent reviews [7,9,12,45].

ROCK & SRF
The prominent effects of RhoA/ROCK on cytoskeletal dynamics not only control cell
contraction, adhesion, morphology and motility, but also involve transcriptional regulation.
For instance, serum response factor (SRF) activity is regulated by RhoA/ROCK signaling on
actin polymerization [46-49]. Myocardin, myocardin-related transcription factor-a (MRTF-
A), and MRTF-B constitute a SRF coactivator family and their activity depends on actin
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dynamics [48-51]. Association of MRTF-A with G-actin results in its sequestration in the
cytoplasm and actin polymerization leads to MRTF-A translocation into the nucleus and
SRF target gene activation [48,49].

The RhoA/ROCK/actin/MRTF-A/SRF pathway has been more fully described in muscle
cells and cultured fibroblasts [52]. Recent studies have demonstrated the involvement of this
pathway in cardiovascular diseases. RhoA/ROCK may regulate MRTF-A mediated
myofibroblast activation in cardiac fibrosis; a recent study demonstrated that TGF-b1-
induced nuclear accumulation of MRTF-A in a ROCK-dependent manner in cardiac
fibroblasts, leading to the activation of SRF and collagen synthesis [53]. RhoA/ROCK may
also be involved in hyperglycemia-induced cell growth and SRF-dependent gene expression
in rat aortic smooth-muscle cells, with pitavastatin, a HMG-CoA inhibitor, inhibiting
hyperglycemia-augmented reactions via inhibition of RhoA/ROCK pathway [54].

ROCK & phosphatase & tensin homologue
The important roles of ROCK1 and ROCK2 are not only involved in governing various
mechanisms modulating cytoskeletal dynamics in response to extracellular signals, but are
also implicated in regulating other functions independent of their effects on the actin
cytoskeleton. For example, RhoA/ROCK/phosphatase and tensin homologue pathway has
been demonstrated to regulate the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway,
which has important roles in a diverse range of biological processes, including cell survival
[55-57]. The phosphorylation of phosphatase and tensin homologue by ROCK increases its
stability and phosphatase activity, leading to the reduction of Akt phosphorylation [55-57].

ROCK & IRS
ROCK has been demonstrated to interact and phosphorylate insulin receptor substrate-1
(IRS-1) and thereby modulate insulin signaling. However, both in vitro and in vivo studies
have yielded conflicting results about the effects of RhoA/ROCK/IRS pathway on insulin
signaling. The majority of the reported studies favor a detrimental role of ROCK activation
in insulin signaling. These studies suggest that ROCK phosphorylates IRS-1 and IRS-2 and
impairs activation of PI-3K in rat vascular smooth muscle cells, H9c2 rat cardiac myoblasts
and C2C12 mouse myoblasts [58-60]. In contrast, Furukawa etal. reported that ROCK-
mediated phosphorylation of IRS-1 positively regulates insulin action by facilitating tyrosine
phosphorylation of IRS-1 in 3T3-L1 adipocytes and L6 myotubes [61]. Although it was
consistently reported that ROCK activation increases serine phosphorylation levels of IRS-1
(Ser307 and Ser632/635) and IRS-2 [58-61], the effects on insulin-stimulated tyrosine
phosphorylation of IRS-1 and IRS-2 and on PI-3K activation appear to be complex and may
be context dependent. In vivo, whether treatment with ROCK inhibitors improves or impairs
insulin signaling is also context dependent. In supporting a negative effect of ROCK
activation on insulin signaling, in obese Zucker rats treatment with fasudil, a ROCK
inhibitor, improves insulin signaling and glucose tolerance [62]. In supporting a positive
effect of ROCK activation on insulin signaling, acute treatment of ROCK inhibitor, Y27632,
causes insulin resistance by reducing insulin-mediated glucose uptake in skeletal muscle
[61], and global ROCK1 deficiency in mice causes insulin resistance in vivo, in part via
reduced serine 632/635 phosphorylation of IRS-1 [63].

Isoform functions
While the two ROCK isoforms are very similar and are possibly somewhat redundant, a
growing body of evidence indicates that they also have some unique functions. Recent
studies with individual knockdowns of ROCK1 and ROCK2 using short interfering RNA
(siRNA)-based gene silencing or genetic approach, have demonstrated that these two
isoforms have nonredundant in vitro functions. For instance, although both ROCK1 and
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ROCK2 control assembly of the actin cytoskeleton and cell contractility via phosphorylation
of MYPT1, the mechanism may vary between the two isoforms. Only ROCK2 binds directly
to and phosphorylates MYPT1 [64], suggesting that intermediate proteins are involved in
ROCK1 binding to MYPT1. Moreover, functional differences between ROCK1 and ROCK2
have been reported in fibroblasts [65-67], smooth muscle cells [64], endothelial cells
[68-70], keratinocytes [71] and cancer cells [72]. Their functional differences could be
explained by the facts that both isoforms are expressed at different levels and/or they have
different interaction partners in individual cell types.

The in vivo functional similarity and differences of ROCK1 and ROCK2 have been
demonstrated by mouse genetic studies during development and under pathological
conditions [73]. ROCK1 [74-76] and ROCK2 [77-80] knockout mice both exhibit
embryonic lethality depending upon the genetic background. ROCK1 or ROCK2 knockout
in C57BL/6 genetic background can result in mice born with eyes open at birth and an
omphalocele phenotype due to disorganization of actin filaments in the epithelial cells of the
eyelids and of the umbilical ring [73-75,78]. Most of these mice die soon after birth due to
an omphalocele with organs, such as liver and gut, protruding from the peritoneal cavity. For
both genetic knockouts, the mice that survive past the perinatal period develop
phenotypically normal and are fertile, supporting the idea that the two isoforms are mostly
redundant [67].

ROCK in cardiomyocytes
In the context of the myocardium, the role of the ROCK signaling pathway is less well
understood than its role in the vasculature. Although cardiomyocytes express RhoA,
ROCK1 and ROCK2, their key substrates remain largely unsolved (FIGURE 1).

ROCK & hypertrophy
In vitro experiments, extensively performed in cultured neonatal cardiomyocytes, have
demonstrated that RhoA/ROCK signaling pathway mediates an induction of cardiomyocyte
hypertrophy by GPCR agonists such as angiotensin II (Ang II), a-adrenergic agonists, and
endothelin-1 [81-87]. The signaling pathways activated by RhoA/ROCK to promote
cardiomyocyte hypertrophy are not well understood. The RhoA/ROCK pathway may be
involved in myofiber assembly through effects on cytoskeleton organization, in hypertrophy
gene expression in part through activating SRF transcriptional activity [8,83], and in the
production of cytokines, including fibrogenic cytokines TGF-P2 and connective tissue
growth factor [76], FGF-inducible 14-kDa protein (Fn14), a member of the TNF-receptor
family [88], and inflammatory cytokine IL-18 [89].

ROCK & apoptosis
Cardiomyocyte apoptosis has been observed in major heart diseases, including
cardiomyopathies, myocardial infarction, end-stage heart failure, arrhythmogenic right
ventricular dysplasia and it is believed to play a crucial role in the development of heart
failure [90-92]. Both proapoptotic and antiapoptotic roles of RhoA/ROCK have been
extensively reported in a variety of in vitro and in vivo studies and most of them in
noncardiomyocytes [10]. However, exactly how RhoA/ROCK regulates an apoptotic
response is not completely understood in many instances, and is likely different depending
on the cell type and the apoptotic stimulus. In cultured cardiomyocytes, acute activation of
RhoA/ROCK (less than 24 h) inhibited apoptosis through the FAK/PI3K/Akt survival
pathway, while more sustained activation of Rho/ROCK (48-72 h) induced apoptosis
through activation of p53/Bax-mediated mitochondrial death pathway [93,94]. Our
laboratory demonstrated the involvement of ROCK1 in cardiomyocyte apoptosis in
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hypertrophic hearts [56,95]. The antiapoptotic effects of ROCK1 deletion were found to be
associated with enhanced ERK/MAPK and/or Akt activation [56,95], suggesting a role for
ROCK1 in modulating the activity of these survival pathways under pathological conditions.

ROCK & contraction
The role of ROCK in cardiac contraction is unclear, although similar mechanisms as in
smooth muscle cells have been proposed. ROCK was reported to mediate a1-adrenergic
receptor agonist-stimulated contraction in the hearts through the MYPT/MLC pathway
[96-98], thus increasing contraction. By contrast, phosphorylation of cardiac troponin I/T by
ROCK resulted in impaired contraction [99].

Moreover, acute ROCK inhibition improved cardiac contraction in the diabetic heart [100],
supporting a negative role for ROCK in cardiac contraction. Other potential roles of ROCK
in regulating contraction include participating in the maturation of the myocardial contractile
system [101,102]; mediating the contraction-induced suppression of sarcoendoplasmic
reticulum Ca2+-ATPase2a expression [103].

ROCK inhibitors
Most of the studies to date have been performed using nonisoform selective ROCK
inhibitors such as fasudil, Y-27632, or H-1152, all ofwhich target the ATP-dependent kinase
domain of ROCK1 and ROCK2 [104,105]. These inhibitors also have possible nonselective
effects [106,107] and at higher concentrations they also inhibit other serine/threonine
kinases such as PKA and PKC [108]. When tested against a panel of 70 protein kinases,
Y27632 (10 pM), fasudil (10 pM) and H-1152 (1 pM) inhibited 9, 13 and 12 protein kinases
including ROCK2 by more than 50%, respectively [107].

Based on the overall promising studies showing beneficial effects of fasudil and Y27632 in
a variety of animal disease models, considerable interest and effort have been devoted to the
development of more potent and selective ROCK inhibitors (TABLE 1). One of these novel
inhibitors of ROCK is SAR 407899 which is nonisoform selective; its potency was found to
be three-times that of Y-27632 and eight-times that of fasudil, and has demonstrated
antihypertensive effects [109]. Another novel inhibitor is azaindole-1, which is also an ATP-
competitive inhibitor, modeled to bind to the catalytic domain of ROCK1. It has 30-fold the
potency of Y27632 with a longer duration in the body and also has blood pressure lowering
effects [110]. Two others inhibitors are GSK269962A and SB-772077-B, both competitively
binding to the ROCK ATP pocket, they possess higher inhibitory potency than that of
Y-27632 or fasudil [111,112]. Finally, a ROCK2 isoform-specific inhibitor, SLx-2119,
which is also an ATP-competitive inhibitor, has recently been developed [113].

In some studies, the beneficial effects of ROCK inhibition have been tested along with other
treatments to enhance their effectiveness. One such case is using a combination of ROCK
specific inhibitors in conjunction with statins [113]. Statins, which inhibit HMG-CoA
reductase and block the synthesis of cholesterol, are clinical drugs for the treatment of
hyperlipidemia to reduce the risk of adverse cardiovascular events. In addition to the
cholesterol-lowering effects, statins have also been found to reduce ROCK expression and
activity [114-117]. Another study has found that using ROCK inhibitors (fasudil) with
another vasodilator agent (nitroglycerin) caused further dilations, beyond treatment with just
nitroglycerin [118].
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ROCK in cardiovascular diseases Hypertension
Arterial hypertension is a major risk factor for cardiovascular disease and one of the most
common cardiovascular disorders. It is characterized by a high arterial pressure level,
resulting from increased peripheral vascular resistance, attributable to increased vascular
contractility and arterial wall remodeling. In addition, increased cardiac output, reduced
renal sodium/water excretion and a distorted CNS for blood pressure regulation are key
components of the pathogenesis of hypertension. Numerous factors, especially the renin-
angiotensin-aldosterone system and reactive oxygen species (ROS) have been implicated in
the pathophysiology of hypertension [119,120]. Ang II acts directly on vascular smooth
muscle to cause vessel constriction and regulate vascular tone; it also alters renal sodium
and water absorption via stimulating the synthesis and secretion of aldosterone. Ang II is
also associated with cardiovascular remodeling through a process of promoting
inflammation, hypertrophy and fibrosis [119,121,122]. On the other hand, cardiovascular
cells produce ROS under various stresses such as pressure, stretch, hypoxia and Ang II,
resulting in changes of the vascular redox state; these changes consequently activate specific
signaling pathways leading to smooth muscle contraction and proliferation, induction of an
inflammatory response and impairment of endothelium-dependent relaxation [120,123].

The role of ROCK signaling in arterial hypertension has been extensively studied using
ROCK inhibitors such as Y27632 and fasudil [21,124-127]. Numerous studies have
demonstrated that the Rho/ROCK pathway is increased in hypertensive animal models
[124-126] and hypertensive patients [127]. Additional evidence for the importance of the
RhoA/ROCK pathway for hypertension in humans comes from genetic studies, which
demonstrates that ROCK polymorphism at amino acid position 431 [128] and a haplotype
block consisting of 4 single-nucleotide polymorphisms within the ROCK2 allele [129] are
associated with changes in systemic blood pressure. Importantly, RhoA/ROCK signaling is
involved substantially in the vascular effects of oxidative stress [13,130] and various
vasoactive factors, especially Ang II [125,131-133]. Enhanced smooth muscle contractility
through an increase in MLC phosphorylation and impaired endothelial function through a
decrease in nitric oxide (NO) production by stimulated RhoA/ROCK most likely contribute
the hypertensive state [21,126,134]. ROCK activation also promotes inflammation and
remodeling through inducing the expression of proinflammatory cytokines and adhesion
molecules in endothelial and smooth muscle cells, including plasminogen activator
inhibitor-1 [135,136] and monocyte chemoattractant protein-1 [137]; promoting ROS
production through upregulation of NADPH oxidases [138]; and enhancing auto/paracrine
growth mechanisms through facilitating the secretion of cyclophilin A from smooth muscle
cells, which subsequently increases ROS production, inflammation and remodeling in the
vascular bed [13]. In addition, ROCK could also regulate blood flow via direct effects on the
CNS; the administration of ROCK inhibitors in the brainstem lowered blood pressure and
reduced sympathetic nerve activity in hypertensive or heart failure animals [139-141].

In most vessel types, NO, produced after activation of endothelial NO synthase (eNOS), acts
as an important vasodilator through activating soluble guanylate cyclases, thus stimulating
the formation of cyclic GMP and the subsequent activation of cGMP-dependent protein
kinase (PKG). The vasodilation induced by the NO/PKG pathway is therefore a crucial
factor in maintaining vascular tone. Accumulating evidence indicates that there is extensive
crosstalk between NO/PKG and RhoA/ROCK signaling in the vascular bed, resulting in
enhanced contractility in the hypertensive state. The eNOS expression is negatively
regulated by the RhoA/ROCK pathway, through decreasing eNOS mRNA stability
[142-145]. RhoA/ROCK also negatively regulates eNOS phosphorylation and activity
through the inhibition of the PI-3K/Akt pathway [146,147]. Conversely, the NO/PKG
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pathway negatively regulates RhoA/ROCK activation via phosphorylation and inhibition of
RhoA [148].

The most recent updated information regarding ROCK in hypertension has been
summarized in several recent reviews [7,9,45]. Limited studies using homozygous and
heterozygous ROCK1 and ROCK2 knockout mice have been performed, to examine their
contributions to the regulation of vascular functions. ROCK1 haploinsufficiency had no
effect on Ang II-induced hypertension [75]. In addition, we observed that ROCK1−/−

mice had normal blood pressure under baseline conditions [WEI ET AL, UNPUBLISHED DATA]. ROCK1
appears to play a predominant role in vascular inflammation diseases [149]. Future studies
with systemic and conditional deletion of ROCK1 and ROCK2 should allow genetic
validation of ROCK as a crucial target for the treatment of hypertension.

Atherosclerosis
Atherosclerosis is characterized by progressive inflammation, lipid accumulation and
arterial wall fibrosis, which leads to the build up of plaques, resulting in the diminishing
function of smooth muscle contraction and endothelial relaxation. Multiple animal studies
have demonstrated that ROCK is a critical contributor to many steps of the inflammatory
atherosclerotic process and selective ROCK inhibitors lead to upregulation of eNOS,
decreased vascular inflammation, and reduced atherosclerosis plaque formation [9,14,150].

Using a mouse model of accelerated atherosclerosis such as apolipoprotein E-deficient mice,
increased ROCK-dependent smooth muscle contraction (without changes in ROCK
expression) was observed in the aorta in the early stage of atherosclerosis [151]. During
atherosclerosis lesion formation, ROCK activity, as indicated by ERM phosphorylation,
which can be inhibited by Y27632 treatment, was increased in certain areas and cell types
including endothelium, periadventitial adipocytes and macrophage foam cells, supporting a
role of ROCK in the ERM phosphorylation-mediated macrophage infiltration and foam cell
formation [152]. In addition, treatments with fasudil caused a decrease in arterial intima-
medial thickness, maximum flow velocity and macrophage accumulation in the
atherosclerosis lesions [153]. More support for a critical role of ROCK1 in the development
of atherosclerosis comes from experiments using ROCK1−/− mice which have demonstrated
that ROCK1 in bonemarrow-derived macrophages mediates macrophage foam cell
formation and macrophage chemotaxis [154].

Ischemic injury
ROCK was found to have a role in cardiac ischemia/reperfusion (I/R) injuries, where blood
flow is restricted or cut off and then is reintroduced into the area. I/R results in oxidative
stress, mitochondrial dysfunction, inflammation and tissue damage. Increased RhoA/ROCK
activity has been reported in I/R injuries [155,156]. A deleterious role of RhoA/ROCK
signaling in I/R injury has been demonstrated in several in vivo models including mouse
[155], rat [147,156,157] and swine [158]. In these models ROCK inhibition with fasudil or
Y27632 resulted in reduced infarct size, less inflammation, reduced apoptosis and enhanced
contractile function. The mechanisms by which RhoA/ROCK signaling contributes to I/R
injuries include suppressing the reperfusion injury salvage kinase pathway, for example,
PI-3K/Akt/eNOS signaling [147,156]; decreasing expression of the antiapoptotic Bcl-2
protein [155]; increasing mitochondria-nuclear translocation of apoptotic-inducing factor
through the activation of c-Jun NH2-terminal kinase [157]; inducing inflammatory
responses [147,156]; impairing energy production as ROCK inhibition with Y27632 during
I/R injury resulted in increased lactate dehydrogenase and glyceraldehyde-3-phosphate
dehydrogenase, normalization of creatine kinase levels and inhibition of ATP synthase
degradation [159].
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One specific application for the protective effects of ROCK inhibition against I/R injuries is
in organ preservation during transplants. Using an isolated working rabbit heart model and a
support rabbit, addition of the ROCK inhibitor fasudil to an organ preservation solution
resulted in reduced MLC phosphorylation and increased eNOS expression associated with
enhanced coronary blood flow and ventricular recovery, suggesting that the ROCK fasudil
inhibitor could help prevent early myocardial dysfunction after transplantation [160].

Beneficial effects of ROCK inhibition by fasudil or Y27632 in ischemic preconditioning
(IPC) have also been observed in several animal models [161-164], which have
demonstrated reduced infarct size, oxidative stress and apoptosis. The activation of ROCK
was reduced in IPC and activation of ERK-MAPK signaling by IPC was required to oppose
ROCK activity [161].

The roles of RhoA/ROCK signaling in acute I/R injuries have not been investigated in
ROCK1 or ROCK2 deficient mice yet. In a model for repetitive I/R injury, an increase in
fibrosis but not in apoptosis was induced and ROCK1 deletion significantly reduced cardiac
fibrosis through inhibiting cardiac fibroblast differentiation and activation derived from
monocytic fibroblast precursors [165]. Further investigations should evaluate the function of
each ROCK isoform in acute I/R injuries.

Pathological cardiac hypertrophy & heart failure
Pathological cardiac hypertrophy is defined by the augmentation of ventricular mass as a
result of increased cardiomyocyte size induced by pathological stimuli such as hypertension,
valvular insufficiency and stenosis, myocardial infarction or ischemia associated with
coronary artery disease. The pathological cardiac hypertrophy has three basic phenotypical
characteristics:

■ A change in gene-expression profiles from adult to a ‘fetal-like’ programs;

■ Histological alterations such as interstitial fibrosis, myocyte loss by apoptosis or
necrosis and inadequate growth of the cardiac vasculature;

■ Contractile dysfunction (diastolic and/or systolic).

This type of hypertrophy is initially beneficial in overcoming adverse hemodynamic load in
that it maintains cardiac output by increasing ventricular wall thickness and is thus
recognized as an adaptive response [85,166,167]. However, persistent stress eventually leads
to decompensated congestive heart failure, in which heart chambers become markedly
enlarged and contractile function deteriorates [85,166,167]. There is considerable evidence
that RhoA/ROCK signaling mediates a hypertrophic response [8]. In vivo studies using
pharmacological inhibitors, Y27632 and fasudil, suggest an in vivo role for ROCK in the
pathogenesis of cardiac hypertrophy and remodeling in a variety of animal models
[138,168-174].

Recent genetic studies using ROCK1 deficient [76,95,175] and haploinsufficient mice [75]
have demonstrated a critical role for this isoform in pathological remodeling and
hypertrophic decompensation. Interestingly, partial or full ROCK1 deletion did not block the
development of cardiomyocyte hypertrophy [75,76,95,175], but significantly reduced a
number of structural and functional alterations attributable to pathological hypertrophic
remodeling including cardiac fibrosis [75,76], cardiomyocyte apoptosis [56,95], cardiac
dilation and contractile dysfunction [95,175].

The studies with ROCK1 deficient mice have revealed critical contributions of ROCK1 in
the pathogenesis of heart failure. The roles for ROCK2 in cardiac hypertrophy and
remodeling have not been tested yet. The finding that ROCK1 is not required for the
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development of cardiac hypertrophy, suggests that ROCK2 may play a dominant role in
regulating hypertrophic response, or that the antihypertrophic effects of ROCK inhibitors
[138,168-170] are not exclusively the result of ROCK inhibition. These observations suggest
that ROCK1 and ROCK2 may have nonredundant functions in pathological hypertrophy:
ROCK1 may be involved in cardiac fibrosis and apoptosis while ROCK2 may be involved
in hypertrophy. Further studies are needed to determine the contribution of ROCK2 to
cardiac hypertrophy, fibrosis, apoptosis and contraction.

Clinical implications
Despite the potential clinical importance of ROCK inhibition, fasudil is the only ROCK
inhibitor approved for human use and was approved in Japan in 1995 for the prevention and
treatment of cerebral vasospasm after surgery for subarachnoid hemorrhage [6,14,105].
Postmarketing surveillance studies have found that fasudil has exhibited no serious side
effects [19].

Given the safety and effectiveness of fasudil in treating vasospasm after subarachnoid
hemorrhage subarachnoid hemorrhage and extensive preclinical data in experimental model
systems, small clinical trials have been carried out and have demonstrated some of the
benefits of fasudil in cardiovascular diseases including essential hypertension [127],
pulmonary hypertension [176-181], coronary artery disease [182], coronary artery spasm
[118,183-186], aortic stiffness [187], heart failure associated vascular resistance and
contraction [188], ischemic stroke [18], stable angina pectoris [189-192], chronic cerebral
infarction [193] and kidney transplantation [194]. In addition, ROCK inhibition by statins
may mediate their cholesterol-independent effects (pleiotropic effects) and contribute to the
clinical benefits of statins in reducing cardiovascular events [114,195].

In these clinical studies, the underlying mechanism of the beneficial effects of fasudil has
been attributable to the inhibition of ROCK in the vascular system resulting in the
attenuation of smooth muscle hypercontraction, upregulation of eNOS expression and
activity and reduction of inflammatory responses. However, the clinical effects of fasudil
may also result from inhibition of other kinases given the possible nonselective effects of
fasudil. With the development of more selective ROCK inhibitors and isoform selective
inhibitors, further clinical studies will need to be performed to validate ROCK as the crucial
target of fasudil in the treatment of cardiovascular diseases.

Conclusion
In conclusion, there is growing evidence that the RhoA/ROCK pathway plays an important
pathophysiological role in cardiovascular diseases. Pharmacological ROCK inhibitors such
as Y27632 and fasudil have proven to be remarkable tools in dissecting the roles of ROCK
in cellular signaling and in animal disease models, including demonstrating that vascular
tone is regulated by biochemically defined RhoA/ROCK pathways. The up-to-date progress
in translational research supports the notion that ROCK is an important therapeutic target for
the treatment of various cardiovascular diseases including hypertension, atherosclerosis,
heart failure and ischemic damage. However, there are a number of questions that remain to
be answered. While the effects of ROCK inhibitors in animal models of cardiac diseases
may be known, the cellular site of their action, in particular, their action in cardiomyocytes,
still remain largely unsolved (FIGURE 1). Although numerous studies have demonstrated
the beneficial effects of ROCK inhibitors, whether these effects are mediated by inhibition
of ROCK1, ROCK2 or both remains to be determined (TABLE 1). The generation and study
of conditional knockout mice of ROCK1 and ROCK2 as well as the development of
isoform-specific inhibitors would provide important insights into their physiopathological
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roles in cardiovascular diseases. Given the broad substrate specificity of fasudil, the
evaluation of more selective ROCK inhibitors in human clinical trials will help to validate
ROCK as the crucial target of fasudil’s action. Further research is needed to investigate the
role of each ROCK isoform in the cardiovascular system and their values as drug targets.

Future perspective
Research in the RhoA/ROCK pathway has attracted much attention since the discovery of
ROCK in 1996. A large body of knowledge on ROCK cellular functions, ROCK substrates,
isoform functions and dynamic cross talks between RhoA/ROCK signaling with other
signaling pathways has been rapidly accumulating. Most importantly, ROCK’s involvement
in many cellular processes and its up-regulated activity in various cardiovascular disease
pathologies make it a good target for inhibition. A significant amount of animal studies and
human clinical trials with the application of ROCK inhibitors have demonstrated beneficial
effects in the treatment of various cardiovascular diseases including arterial hypertension,
atherosclerosis, I/R injuries, hypertrophic remodeling, cardiac dysfunction and heart failure.
These studies strongly support the notion that ROCK is a promising therapeutic target in
various disorders, especially in cardiovascular diseases. Currently, the inhibitors being used
(fasudil and Y-27632) are nonisoform specific and could bind to other kinases at higher
concentrations. In future years we expect to see more development and application of
isoform-specific ROCK inhibitors in animal studies and clinical trials. In addition, we also
expect to see more fundamental research with tissue-specific and conditional ROCK isoform
knockout animal models. Determining the specific functions of the two isoforms and using
that information combined with isoform specific inhibitors will generate new treatments for
various cardiovascular diseases.
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Executive summary

■ Rho-associated coiled-coil-containing protein kinase (ROCK) has a
major role in regulating actin cytoskeleton organization, stress fiber
formation and smooth muscle cell contraction. ROCK’s action in
cytoskeletal dynamics leads to a critical role in cell contraction,
adhesion, morphology, motility and transcriptional regulation.

■ Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be
functionally redundant, based largely on the major common activators
and substrates and the high degree homology within the kinase domain.
Recent studies with individual knockdowns of ROCK1 and ROCK2
using short interfering RNA (siRNA)-based gene silencing or a genetic
approach have demonstrated that these two isoforms have nonredundant
in vitro and in vivo functions.

■ The current ROCK inhibitors (fasudil and Y-27632) are not isoform
selective and can inhibit other kinases at high concentrations; thus new,
more selective, inhibitors are being developed and tested. Fasudil is the
only ROCK inhibitor approved for human use and was approved in
Japan in 1995, for the prevention and treatment of cerebral vasospasm
after surgery for subarachnoid hemorrhage.

■ Extensive experimental and clinical studies, performed with fasudil and
Y-27632, have demonstrated beneficial effects and support the notion
that ROCK is a promising therapeutic target for various disorders,
especially cardiovascular disorders, in which increased ROCK activity
mediates vascular smooth muscle cell hypercontraction, endothelial
dysfunction, inflammatory cell recruitment and vascular and cardiac
remodeling.

■ The role of the ROCK signaling pathway in the myocardium is less well
understood than its role in the vasculature. Recent genetic studies
indicate that ROCK isoforms may have distinct roles in cardiac
remodeling: ROCK1 is not required for cardiac hypertrophy and may
instead be involved in cardiac fibrosis and apoptosis.
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Figure 1. Major molecular events and cell functions directly or indirectly affected by
upregulation of ROCK activity and/or expression in the vascular bed and myocardium
In the vascular bed, biochemical signaling pathways downstream of ROCK have been well
described and their contribution to various cardiovascular diseases have been extensively
documented. However, in the myocardium, the biochemical pathways downstream of
ROCK and the related cellular mechanisms implicated in the pathogenesis of heart failure
are much less well understood. CAD: Coronary artery disease; I/R: Ischemia/reperfusion;
PH: Pulmonary hypertension; ROCK: Rho-associated coiled-coil-containing protein kinase.
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