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Abstract
Instrumental variables methods (IV) are widely used in the health economics literature to adjust
for hidden selection biases in observational studies when estimating treatment effects. Less
attention has been paid in the applied literature to the proper use of IVs if treatment effects are
heterogeneous across subjects. Such a heterogeneity in effects becomes an issue for IV estimators
when individuals’ self-selected choices of treatments are correlated with expected idiosyncratic
gains or losses from treatments. We present an overview of the challenges that arise with IV
estimators in the presence of effect heterogeneity and self-selection and compare conventional IV
analysis with alternative approaches that use IVs to directly address these challenges. Using a
Medicare sample of clinically localized breast cancer patients, we study the impact of breast-
conserving surgery and radiation with mastectomy on 3-year survival rates. Our results reveal the
traditional IV results may have masked important heterogeneity in treatment effects. In the context
of these results, we discuss the advantages and limitations of conventional and alternative IV
methods in estimating mean treatment-effect parameters, the role of heterogeneity in comparative
effectiveness research and the implications for diffusion of technology.
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1 Introduction
Recent legislation around investments in comparative effectiveness research (CER) has
raised awareness and enthusiasm for the development of methods for such research. A
contemporaneous investment in health information technology has raised hopes for the
development of richer and comprehensive observational databases based on electronic
medical records. Despite the push for the larger use of such databases in CER, the
fundamental methodological challenge of selection bias arising out of non-random
assignment of treatments remains. Since the goal of CER is to generate information that can
inform better treatment selection in practice, causal estimation of treatment effects remain
central to the CER theme. Otherwise, interventions that do not provide sufficient value may
be adopted and treatments that do may be eliminated.

Selection bias (i.e., confounding by indication) arises when factors that can influence the
treatment choice such as patient health and provider skills also influence outcomes. This is a
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common phenomenon in observational studies of treatment outcomes. The significance of
this well-known limitation was famously illustrated in the case of hormone replacement
therapy in post-menopausal women. As several large scale observational studies consistently
showed these treatments to be effective for preventing chronic cardiovascular disease,
hormone replacement therapy became widely adopted. Use then plummeted when these
studies were eventually disproven by a large randomized trial [35]. It has subsequently been
shown that the reason for the discrepant results was that the observational studies failed to
consider certain confounders like socioeconomic status [25] or failed to distinguish initiation
of therapy from prevalence of therapy [24]. The significance of overcoming the limitation of
common observational study designs cannot be overstated as it could lead to fewer mistaken
conclusions regarding treatment effectiveness and a greater use of sound observational
studies to develop the evidence base of comparative effectiveness research.

A wide range of statistical methods have been developed to address overt selection bias or
bias that arise due to differences in levels of confounders for patients receiving different
treatments that are observed by the analyst of the observational data. Some of the most
common techniques used to address overt bias include regression methods, propensity score
matching and doubly robust estimators [3, 34, 36, 38, 40]. The set of techniques that rely on
propensity scores and related techniques that ensure balance of confounders between groups
are being widely adopted in comparative effectiveness research as they often provide better
estimates of treatment effects [39] and can be implemented across a wide range of settings
using data readily available. However, these methods have limitations if confounders that
are not observed by the analysts give rise to hidden selection bias [43, 44]. This hidden
selection bias presents the biggest challenge for comparative effectiveness research as aptly
illustrated in the hormone replacement therapy example.

Because of the prevalence of hidden selection bias, instrumental variable (IV) analysis has
been a cornerstone method for observational studies, whose origins date back to the 1920s
[42]. In the last couple of decades, these methods have gained popularity in the medical
literature on the evaluation alternative medical treatments [9, 10, 14, 27, 43], the types of
evaluations that were by and large restricted to clinical trials. The instrumental variables
determine or affect treatment choice, but do not have a direct effect on outcomes except to
the extent that they influence the choice of treatment [1, 2, 16]. Thus, by using IVs, one can
induce substantial variation in the treatment variable but have no direct effect on the
outcome variable of interest. One can then estimate how much of the variation in the
treatment variable is induced by the instrument—and only that induced variation—affects
the outcome measure. In econometric terminology, this induced variation is called the
exogenous variation and identifies the desired estimate. These analyses constitute an
important body of work that have advanced the field of CER by going beyond establishing
associations between treatments and outcomes to estimating causal effects of treatments on
outcomes, such as a RCT conducted on a similar population can inform. The adoption of
these techniques for CER, although limited thus far, appears to be accelerating.

The field of CER itself is also grappling with issues about heterogeneity of treatment effects.
In many situations, people respond differently to the same treatment. This is called response
heterogeneity. More importantly, the differential response from alternative treatments may
vary across people. This is called treatment-effect heterogeneity, and will be the primary
focus of discussion in this paper. There are strong economic reasons why heterogeneity is
important is this field [4, 6]. But what has received less attention is how such a
heterogeneity can compromise the traditional evidence generation infrastructure (e.g.
randomized clinical trials and observational data analyses) in CER.
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Let us take the case of IV approaches. An IV estimate of treatment effect using standard
methods (e.g. two-stage least squares) is comparable to that arising from an RCT only under
the assumption that treatment effects are constant for everyone in the population with the
same observed characteristics. Even if treatment effects are allowed to be heterogeneous, IV
estimates assume patients or their physicians do not have any additional information beyond
what the analyst of an observational data possesses that can enable them to anticipate these
effects and to select a treatment that would potentially give them the largest benefits. Such
assumptions are clearly a stretch for modeling treatment choices in health care, especially
under the practical limitations of observational data to collect all relevant information
pertaining to treatment choices. Note that such assumption are also implicitly made in RCTs
where selection into RCTs are hardly ever studied, even though there are several instances
where clinicians have questioned the generalizability of RCTs [12].

When such assumptions are relaxed, recent econometric literature has demonstrated several
limitations of the traditional and newer IV approaches that we discussed above [16, 17].
Now subjects and their providers are able to self-select treatments based on the patient’s
expected idiosyncratic gains, i.e. it allows unobserved characteristics of patients that
influence treatment choices to also be moderators of treatment effects (I will later develop a
weaker assumption than self-selection that can also lead to such moderation). Imbens and
Angrist [26] showed that standard IV methods can identify parameters that reflect the
treatment effects for a group of marginal patients, i.e. the patients whose actual treatment
choices are driven by the specific instrumental variables, but are otherwise indifferent to
choosing between alternative treatments. Therefore, the marginal patients identified by an
IV are entirely dependent on the specific instrument being used and how this instrument
affects treatment choices [2, 16]. Consequently, the use of different instruments will produce
different treatment effects because they represent the effects for different groups of marginal
patients, and IV results become instrument dependent. This key insight, originally
highlighted by Heckman [15], is that it is difficult to interpret and apply IV results to clinical
practice, where patients are often believed to select treatment based on their idiosyncratic
net gains or preferences. In response to this insight, most traditional IV methods estimate a
Local Average Treatment Effect (LATE). This estimate is often substantially different from
mean treatment-effect concepts such as the Average Treatment Effect (ATE). This result, in
one sense, is synonymous to the problems of interpreting RCT results, when self-selection
into RCTs is common. In fact, under heterogeneity and self selection, even if results from IV
methods applied to observational data and results from an RCT are both internally valid,
there is no reason to expect that these results should tally with each other. Yet much of the
applied literature has tried to replicate RCT results with IV methods.

To recover the full distribution of treatments effects across all possible margins of patients
choices, not just the one directly influenced by an IV, one needs to explicitly develop a
choice model for treatment selection. This choice model tries to explain choices based on all
observed risk factors and also all possible IVs that are identified in the data, so that for each
predicted level of probability for treatment choice, we observe some patients choosing
treatment and some that do not. One can then study how the difference in average outcomes,
the marginal treatment effect (MTE), between these two groups varies over levels of the
probability of treatment choice. This approach, known as the local instrumental variable
(LIV) approach, uses control function methods to identify the MTEs and subsequently
combines them to form interpretable and decision-relevant parameters of interest such as the
ATE or the Effect on the Treated (TT) or the Untreated (TUT). (Heckman series) ATE
estimates the average gain if everyone undergoes treatment as compared to an alternative
treatment or no treatment at all. This has been one of the most popular parameters of interest
for health economists and policy analysts when making inference about health care policies
[46]. Treatment Effect on the Treated (TT) estimates the average gain to those who actually
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select into treatment and is one ingredient for determining whether a given treatment should
be shut down or retained as a medical practice or in the formularies. It is informative on the
question of whether the persons, choosing the treatment, benefit from it in gross terms.
Recently, Basu et al. [5] applied these methods to estimate ATE and TT of breast cancer
treatments on costs.

In this paper, my goal would be to highlight these challenges in the context of using
instrumental variable methods on observational data and discuss potential solutions to these
problems.

2 A Motivating Example
Several RCTs compared survival rates for breast-conserving surgery with radiation therapy
(BCSRT) and mastectomy (MST) in the treatment of women with localized (stage 1 or 2)
breast cancer. The largest trial (1843 women of all ages evenly divided among the treatment
arms) found that there were no statistically significant differences in five-year survival rates,
which were 75.9% for MST, and 79.8% for BCSRT [11]. Other RCTs, which had smaller
enrollments and compared survival over 6–15 years between BCSRT and MST, also found
statistically insignificant survival differences ranging from −8% to 3% [41]. In 2003, Hadley
and colleagues used data for a sample of Medicare beneficiaries (age 67 and older) who
were treated for localized breast cancer between 1992 and 1994 and analyzed 3-year
survival rates using a set of valid IVs and a traditional IV approach [14]. They found that the
IV approach produced a comparative effect estimate of −5 percentage points favoring MST
that did not reach statistical significance (std. err. = 0.10). The authors discuss several issues
regarding the generalizability of the RCT results and its comparison to their IV estimates.
More importantly, they point out that IV estimators, though inefficient in the moderate
sample size that they utilize, do produce results that conform to contemporaneous RCT
evidence. The point estimates of the comparative effect in this scenario arising out of the
CER studies and the statistical insignificance of those estimates seem to have conveyed a
sense of equivalence for both treatments for all patients. Consequently, the proportion of
patients undergoing breast-conserving surgery increased from 41% in 1992 to 60% in 2003,
whereas the mastectomy rate decreased from 59% in 1992 to 40% in 2003 (P < 0.0001)
[47].

Later in this paper, we are going to use the same data as used by Hadley et al. to closely
reproduce their results but also establish the distribution of treatment effects in the
population and discuss whether such large scale uptake of BSCRT could have been
beneficial.

2.1 A Model for Potential Outcomes and Selection
We start by formally developing structural models of outcomes and treatment choice. For
the sake of simplicity we will restrict our discussion to two treatment states—the treated
state denoted by j = 1 and the untreated state denoted by j = 0, and their corresponding
potential outcomes represented by

(1a)

(1b)
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where μj (X, W) is an unknown nonlinear function of observable (X) and unobservable (W)
characteristics and Uj are purely random errors. The fact that Y0 (or Y1) vary by levels of X
and W indicate that absolute response to a treatment is heterogeneous (i.e. there is response
heterogeneity). Conditional on specific levels of X and W, idiosyncratic gains (or losses)
from treatment over control is given by μ1(x, w) − μ0(x, w). These idiosyncratic gains or
losses may vary either over observed characteristics X or over unobserved characteristics W
or both, giving rise to treatment-effect heterogeneity. The terms observable and
unobservable pertain to the analyst’s perspective and these covariates enter the structural
model symmetrically in determining potential outcomes [30]. We will refer to this
formulation of the symmetric structural nonlinear model as the pure nonlinear model.
Following standard assumptions in the potential outcomes literature, we posit that X, W ∐
Uj and X ∐ W where ∐ implies statistical independence.

Let D be an indicator that takes the value 1 if an individual selects into treatment and 0 if she
does not. Treatment selection is assumed to be driven by levels of both X and W, making
them confounders. However, no formal model for treatment choice is required at this point.
Each subject either receives treatment or not and the observed outcome becomes Y = DY1 +
(1 − D)Y0. This representation is Quandt’s switching regression framework [31, 32].
Consequently, the model for potential outcomes in (1a) and (1b) can be used to obtain a
model for the observed outcome:

(2)

Since Uj are purely random errors, the error term {D(U1 − U0) + U0} is also purely random
and is not the source of hidden biases. This is in sharp contrast to linear models where the
unobserved factors generating hidden biases reside in this additive error term. Instead, in a
pure nonlinear model, the endogeneity arise due to unobserved factors W that resides within
the mean function of the outcome, symmetrically as other observed factors. Since W ∐ ̸D
(i.e., levels of W are different among those who select into treatment versus those who do
not) it is not possible to decompose g(.) into additively separate part comprising of the
observed and unobserved components unless μ0(.) and μ1(.) follow an additively separable
specification in X’s and W’s and therefore lend themselves to be used as an ordinary least
squared estimator.

The ATE conditional on X = x, is given by

(3)

It estimates the average gain if everyone with characteristics X = x undergoes treatment as
compared to remaining untreated [8], and informs whether, on average, a new treatment
should replace an older treatment or a no treatment policy. Similarly, another useful
parameter that has significant policy relevance in health care is the effect of Treatment on
the Treated (TT) which informs whether the person choosing the treatment benefits from it.
TT conditional on X = x is formally defined by

(4)
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Notice that, conditional on X = x, TT is different from ATE only when the individual-level
treatment-effects vary over unobserved confounders W. This kind of (treatment-effect)
heterogeneity is termed as “essential” [16]. Essential heterogeneity can arise in two ways.
(1) Subjects anticipate this heterogeneity and select treatment based on it. This is the
economic self-selection behavior that Heckman and colleagues discuss [16, 19, 23]. (2)
Subjects cannot anticipate idiosyncratic gains but select treatment based on W, which
determines response heterogeneity μ0(x, W) or μ1(x, W). However, treatment-effect
heterogeneity (or idiosyncratic gains, μ1(x, W) − μ0(x, W)) is NOT independent of response
heterogeneity. Thus, even though subjects do not self select based on idiosyncratic gains,
their choices and idiosyncratic gains are no longer independent.

When either of these two situations is not met and the distribution of idiosyncratic gains
(μ1(x, w) − μ0(x, w)) is independent of D, then it leads to the case where treatment effects are
heterogeneous but not necessarily essential, making TT(x) and ATE(x) identical.1

2.2 Estimation Using Instrumental Variables
Instrumental variables can be used to salvage certain treatment effects. IV analysis tries to
model the dependence of unobserved characteristics that influence both treatment choice and
outcomes using factors (Z) that influence treatment choice but are not contained in X. In this
pure nonlinear model, the treatment effects are always heterogeneous over unobservables
with a strong possibility that subjects’ choices may be dependent on idiosyncratic gains
resulting in essential heterogeneity. An IV assumes

(5)

The conditional instrumental variable effect, E(ΔIV |X), for any two values of an instrument,
z and z′, is given by2

(6)

The parameter is the ratio of the change in the conditional expectations of outcomes with
respect to Z to the change in the probability of receiving treatment with respect to Z.

2.2.1 Under Non-essential Heterogeneity—If treatment effects are non-essential, then
the IV effect estimator in (6) is consistent for the average treatment effect E(Δ|X = x). This is
because, under non-essential heterogeneity, and following assumption (1),

(7)

Consequently, for any two values on an instrument, z and z′, the IV estimator is given by

1Under essential heterogeneity, ATE(x) ≠ TT(x), but ATE may be equal to TT, while under non-essential heterogeneity ATE(x) =
TT(x) but ATE may not be equal to TT. The unconditional effects depends on F(X) and F(X|D).
2For a continuous instrumental variable, the overall IV effect is a weighted average of all possible pairs of values for that instrument.
This is further explained below.
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(8)

Based on (2),

where the last equality is due to assumptions (1) and (2). Therefore,

(9)

Note that in this traditional application of an IV estimator, one can be agnostic about a
formal choice model. This, in principle, represents an attractive feature. However, as we
show below, absence of an explicit choice model is also a drawback of the IV approach,
when the non-essential treatment-effect heterogeneity assumption is relaxed.

2.2.2 Under Essential Heterogeneity—When treatment-effect heterogeneity is
essential, the IV estimator in (6) produces a local average treatment effect (LATE), which is
the average treatment effect for individuals who would change their treatment choice when
Z moves from z to z′. This is because, even if assumption (1) is met under essential
heterogeneity, assumption (2) is not. That is, conditionally receiving treatment the IVs may
no longer be independent of the idiosyncratic gains in that subgroup (E(Y1 − Y0|D, x, z′) ≠
E(Y1 − Y0|D, x, z)). Consequently, the inferences based on traditional IV methods breaks
down as the effect identified by IV now depends on the practically unidentified margin of
patients among whom the change in IV levels can hypothetically induce change in treatment
choice. However, the subpopulation induced to change treatment due to changes in levels of
instrument is not clearly identified since, in the absence of an underlying choice model, the
relevant margin at which this change in behavior is taking place is not specified.
Unfortunately, targeting clinical practice or policy to this margin of patients is often
difficult, if not impossible, due to lack of explicit identity for these patients.

In order to understand what LATE estimates and how one can go beyond LATE to recover
decision-centered parameters such as ATE and TT, one must formulate a formal model for
treatment choices that can formally identify the margin of patients influenced by an IV.

2.3 Formal Model for Treatment Choices and Its Link to IV Estimators
2.3.1 The Random Utility Framework—Let the net (latent) utility for treatment,3 Λ,
based on which choices are determined,4 be given as

3Latent utility in this framework is an anticipated form of utility rather than an experienced form and implicitly accounts for decision
maker’s preferences which varies over all factors. A factor cannot affect treatment choice unless it affects this latent utility.
4Decision maker in a clinical context may as well be the physician–patient dyad and not the patient or the physician alone.

Basu Page 7

Stat Biosci. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(10)

where, similar to the potential outcomes model in (1), μΛ′ (X, W, Z) is an unknown nonlinear
function of observable (X, Z) and unobservable (W) characteristics and UΛ′ are random
errors. Under assumptions of exogeneity for Z and X, which implies that X, Z ∐ UV′ and X, Z
∐ W, we can rewrite (10) as

(11)

where μΛ(X, Z) = ∫ μΛ′(x, w, z) dF (w) and UΛ = Λ − μΛ(X, Z) has expectation of zero while I
(.) is an indicator function representing treatment choice D. Equation (11) expresses the
typical random utility framework for discrete choices in econometrics [28, 29]. Following
this framework, one can write

where P (z, x) = FUΛ(μΛ(z, x)) and FUΛ(UΛ) = UD ~ Uniform(0, 1) by construction. The
formulation in (11) decomposes factors that determine choice of treatment into the observed
and unobserved components (again, by the analyst). The additive separability of (10) in
terms of observables and unobservables plays a crucial role in the justification of
instrumental variable methods [19, 23]. Hereon, we denote S(z, x) = 1 − P(z, x). Consider for
simplicity the single instrument case, i.e. Z is a scalar rather than a vector of instruments.
Given model (11) and the assumed independence of Z and UV, changing Z externally from
UV, shifts all people in the same direction (toward or against D = 1). This produces
“monotonicity” in the sense of Imbens and Angrist [26].

2.3.2 Interpretation of IV Estimators—Armed with a choice model, one can then start
to understand the heterogeneity in treatment effects across different margins of the patient
population. Recall that UD represents the unobserved characteristics that determine
treatment. Once we condition on the observed factors X and the unobserved UD, the
conditional mean treatment effects E(Δ | X = x, UD = uD, Z = z) are exactly the same for each
individual with the same value of UD = uD, despite having different values of Z (or P(Z, X)).
For any value of the instrument Z = z (and X = x), the patients for whom UD > S(z, x) receive
treatment while patients with UD ≤ S(z, x) remain untreated. In addition, notice that the
expected value of the observed outcome for this group of patients can be written as the
weighted average of those who receive treatment and those who do not:

(12)

By the definition of an instrument (Assumption 1), we can vary the value of Z = z (given X =
x), and therefore P(z, x) and S(z, x), non-trivially with respect to the distribution of UD.
Thus, consider two groups of patients, one with Z = z and the other with Z = z′ from the
same distribution of UD. Let S(z, x) ≥ S(z′, x) for every patient. Using expression (12), we
see that the difference in the observed outcomes between these two groups of patients is then
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(13)

where the last two equalities follow from the fact that UD ~ Uniform(0, 1). The mean
potential outcomes outside the limits of the margin, S(z′, x) < UD < S(z, x), cancel out.
Combining (8) and (13), we can conclude that LATE identifies the average effect for a
group of patients who are within the margin defined by S(z, x) and S(z′, x) [19, 22]:

(14)

LATE is often referred in the health literature as the treatment effect for the marginal
patients [9, 27]. The marginal patients are defined as the subset of patients whose treatment
choices varies with the instrument. Imbens and Angrist [26] define the LATE parameter
from hypothetical manipulation of the choice probability or values for the instrument.
Heckman and Vytlacil [19, 22] draw on choice theory and derive LATE (and also other
treatment-effect parameters, as explained below) in the context of the generalized Roy
Model [18, 37]. Relating IV to choice models helps to identify the margin of UD selected by
instruments. IV, working through S(Z, X), selects different slices of UD and defines mean
treatment effects for those slices.

In a model with a scalar and binary instrument with only two points in the support of P(Z,
X), the IV estimate and the overall LATE estimate are the same. When there are more than
two distinct values of Z, an overall LATE (the standard IV estimator) can be estimated by a
weighted average of the pairwise LATE parameters based on ordered values of the scalar
instrument Z [26, 48]. However, Heckman et al. [23] showed that when a vector of
instruments enter the choice model, the traditional IV method may produce misleading
inferences since the IV estimate can be negative even if all the pairwise LATE estimates are
positive. This is because the weights used to compute the overall LATE can be negative if
the choice model is determined by a vector of instruments and the analyst uses only some of
those instruments in the calculations [5, 23].

LATE is an interpretable parameter when the observed variation in the instrument defines
the question for which the analyst seeks an answer, e.g., if the analyst has access to an
instrument, Z, that takes two values (z and z′) and the question he seeks to answer is
precisely what happens when the instrument is changed from z1 to z′. However, when the
policy being analyzed does not conform closely to the instrument used, it is not always clear
who the marginal patients associated with the policy are, and consequently, whether or not
the marginal patients defined by LATE are those on which the clinical decision making
should rely.

2.3.3 Marginal Treatment Effects—In order to address some of these limitations and to
better understand the distribution of treatment effects in the population, we can use the
Marginal Treatment Effect (MTE) first introduced by Björklund and Moffitt [7] (see also
[16, 17, 19–22]). The MTE is the average gain to patients who are indifferent between
receiving treatment 1 versus treatment 0 given X and Z. These are the patients at the margin
as defined by X and Z. Formally, MTE can be defined by

Basu Page 9

Stat Biosci. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(15)

where the last equality follows from the fact that S(Z, X) is a monotonic transformation of
the mean utility μV (Z, X) while UD is a monotonic function of UΛ. The mean conditional
treatment effect at each level of UD is the value of the MTE at that level of UD. Evaluation
of the MTE parameter at low values of UD averages the outcome gain for those individuals
whose unobservable characteristics make them less likely to undergo treatment, while
evaluation of MTE parameter at high values of UD gives the gain for those patients with
unobservable characteristics which make them more likely to undergo treatment. For
example, LATE is a weighted sum of all MTE within the margin at which LATE is
identified. In the limit, as μV (z′, x) → μV (z, x), LATE converges to MTE under standard
regularity conditions.

An additional feature of MTE is that all mean treatment effects parameters, including the
ATE, TT, and the IV effect, can be calculated from weighted averages of MTE. These
weights can be obtained from the data [5, 22, 23]. For example, the ATE is the sum of all
MTE across all distinct values of UD, weighted equally (conditional on X). A more formal
description of these weights is given below.

Equation (15) shows that the MTE is identified on the support of S(Z, X), i.e., specific values
of S(Z, X) define the specific margin of indifference UD = uD. An average treatment effect at
each level of UD can be obtained by integrating MTE (x, uD) over the distribution of X
conditional on UD = uD. That is,

(16)

Additionally, by integrating these conditional ATEs over the distribution of UD (which by
construction is Uniform(0, 1)) we can obtain the (unconditional) Average Treatment Effect:

(17)

Here, the last term in (17) drops out because EUD E(U1 − U0|UD = uD) = E(U1 − U0) = 0.
Equation (17) suggests that the weights for the MTE(x, uD) that yield the ATE can be
constructed from the empirical joint distribution of (X, S(Z, X)) directly. Alternatively, since
UD is distributed as Uniform(0, 1), simply integrating ATE(uD) over the full support of UD
yields ATE.

Obtaining the weights to estimate TT and the IV estimator is a bit more complicated than
determining the weights for ATE, but they can be computed readily using the data at hand.
Intuitively, for TT, the weights for MTE evaluated at high values of UD are relatively larger
than those evaluated at low values of UD. This is because, by definition, larger values of UD
represent greater propensity to select treatment based on unobserved characteristics. The TT
weights can be written as
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(18)

Weights for other parameters such as the IV effect can be found in [23]. Using these weights
one can reconstruct the traditional IV estimator based on the estimated distribution of MTEs.
Such a reconstructed estimator will be denoted as the LIV-based IV estimator. It is used to
show that a certain combination of MTEs can be used to explain the traditional IV results.

2.3.4 Estimators for MTEs and Other Mean Treatment-Effect Parameters—The
method of local instrumental variable can be used to identify and estimate the MTE over the
support of the propensity score, estimated using IVs in the choice equation, for selecting
treatment [19, 22, 23]. In the LIV approach the outcome is modeled as a nonlinear function
of all the X’s and the whole propensity score, P(Z), and interactions between them. What is
important in this approach is to have a way to fully capture the nonlinearity of the outcome
with respect to P(Z). Now, if one takes the rate of change of the mean outcome with respect
to P(Z) evaluated at a particular value of S(z, x) = 1 − P(z, x), one gets

(19)

where K(P(z, x)) is a differentiable function of P(z, x). A formal derivation is given in the
Appendix. Equation (19) shows that the key element for the estimation of MTE is the
function K(P(z, x)). This function can be estimated using different econometric techniques,
such as using flexible approximation to K(P(z, x)) based on a polynomial of the propensity
score in a regression estimator or using fully non-parametric matching techniques.
Specifically, in a regression context, (19) is implemented by regressing the outcome Y on all
covariates, the estimated propensity score P̂(z, x), the interaction of the propensity score
with all covariates, and a polynomial on the propensity score and then computing the partial
derivative of the regression estimand with respect to the propensity score. Once MTE is
estimated via LIV, the other mean treatment-effect parameters can also be estimated using
different weighted averages of the estimated MTE, and these weights can be constructed
from the data at hand. One of the limitations of LIV, however, is that it requires a
sufficiently large sample size so as to identify the entire support of the propensity score.
When this is not achieved, the LIV method can only produce upper or lower bounds to the
mean treatment parameters, nevertheless, making this limitation explicit.

2.4 Comparative Effectiveness of Breast Cancer Treatments
2.4.1 Data—Our data come from the OPTIONS (Outcomes and Preferences in Older
Women, Nationwide Survey) project [13]. The OPTIONS sample was designed to be
representative of all female elderly Medicare beneficiaries (aged 67 or older) with newly
diagnosed, early-stage breast cancer in Medicare’s-fee-for service program between 1992
and 1994. Details of the specific exclusion criteria used can be found elsewhere [5, 14, 33].
These data provide a unique opportunity to analyze a large national sample of Medicare
beneficiaries with confirmed local stage of breast cancer. The final sample consists of 2,517
patients of whom 1,813 patients had a MST and the remaining had BCSRT. The distribution
of patient characteristics by treatment type is published elsewhere [33]. The outcome
variable is 3-year survival rates, which was measured without any censoring.
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The covariates that we control for are variables that are both measurable and theoretically
predictive of survival. In addition to the treatment indicator, we include age at the time of
surgery, cancer stage, Charlson co-morbidity index, race and urbanacity. These are also the
typical covariates that are adjusted for in an RCT setting. The primary goal of the analysis is
to estimate the distribution of marginal treatment effects (MTEs) and also to recover
estimates for the average treatment effect (ATE) and the effect on the treated (TT) parameter
on 3-year survival associated with BCSRT as compared to MST. Additionally, we compare
these parameter estimates to the estimates produced by traditional IV analysis. We present
two sets of analyses: (1) where confounder “age” is intentionally omitted and therefore this
confounder contributes toward unobserved confounding and (2) where “Age” is included in
the observed set of covariates.

The variables used as valid instruments include a regional dummy variable (NORTH) to
represent regional variations in practice patterns, and a continuous variable that represents
the Medicare physician fee differential (FEEDIF) between mastectomy and breast-
conserving surgery calculated at the 3-digit zip-code level of the treating physician. NORTH
represented a geographical variation in treatment selection, perhaps through a historical
practice style, which is plausibly independent of underlying health, preferences and
outcomes of the patients. In particular, women residing in the Northeast, Midwest and
Pacific census divisions (represented by indicator NORTH) were more likely to receive
BCSRT compared to MST. Medicare fees are assumed to be exogenous and independent of
unobservable health of patients and preferences of patients and physicians because they
were determined by a combination of the resource-based fee specified by the Medicare Fee
Schedule, which is independent of any particular physician’s or patient’s characteristics, and
the average historical Medicare payment in the geographic area. Further details and
justification for these instruments are available in [13].

2.4.2 Methods—First, we estimate the propensity score of treatment choice as a function
of all covariates and also the instruments NORTH and FEEDIF using a probit regression
model. We use another probit regression model for the binary 3-year survival outcome (S).
We implement the traditional IV estimator using a residual inclusion approach [45], where
the first-stage (choice model) residuals are included as additional regressor in second-stage
(outcome regression) estimation. For the LIV approach, we run the probit outcome
regression on all covariates (X), the estimated propensity score (p̂), the interaction of
propensity score with all covariates, and a polynomial on the propensity score, K(p̂; d):

(20)

The degree of polynomial, d, is selected based on both a likelihood-ratio test and a Wald-test
of the joint test of significance for the polynomial coefficients. We use the derivative of the
polynomial formulation as our LIV estimand, which is used to predict MTE(x, uD). The
predicted values of the propensity score allow us to define the values of UD over which
MTE can be identified [19]. The larger the support of the propensity score, the bigger the set
over which MTE can be recovered.5

We reduce the dimensionality of X by using deciles of the estimated linear predictor in the
LIV estimand that is only a function of the X and not the propensity scores.6 We denote

5With parametric approaches, assumptions about functional form can estimate MTE over ranges of uD that are not identified with our
choice model and sample. This is not the case when non-parametric techniques are used instead.
6This is implemented by predicting X · β ̂2, where β ̂2 corresponds to the estimated coefficients on the interaction term of X and P(Z, X)
in the LIV outcomes regression.
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these deciles as ηq hereon, where q = 1, 2, …, 10. Thus, using our coefficient estimates from
the above regression (20) we estimate MTE(ηq, uD) by varying uD between 0 and 1 and
using average predicted MTE(x, uD) for each ηq. Note that MTE estimates using a value of
P(Z, X) = p are associated with uD = (1 − p). Using the empirical joint density of (ηq, uD),
which also represents the weights for MTE(ηq, uD) required to calculate the empirical ATE
(estimated over the observed common support), we estimate the MTE(uD).

Next, we calculate the weights associated with ATE, TT and IV effect and use them to
construct the respective treatment-effect estimates. Standard errors for MTE(uD) and all the
mean treatment-effect parameters are estimated via 1000 bootstrap replicates.

3 Results
3.1 With Age Omitted

Both instrumental variables are significant predictors of treatment choice (p < 0.001 for
each). The left vertical panel of figures in Fig. 1 correspond to the analyses with confounder
“age” omitted. Figure 1(a) illustrates the distribution of the predicted propensity score for
choosing BCSRT separately for patients who chose BCSRT and those who chose MST. It
also depicts the identified support where we find positive density of the propensity score for
both treatment sub-samples. We cannot identify MTE over the entire (0, 1) support.
Although we do find people near 0, there is essentially no mass close to 1. This means
(unconditional) ATE is not identified in the sample without further assumptions [19, 22].
We, therefore, did not attempt to estimate am unconditional ATE but rather estimate an
empirical ATE that was based on the margins of choices that we observe in the data [5].

The standard regression-based (IV-naive) estimate of the treatment effect was found to be
0.05 (Std. err. = 0.012) that was significant at 5% level. However, the standard IV-based
estimate was −0.07 (Std. err. = 0.13). Although point estimate point toward harm caused by
BCSRT over MST, it was not significant. The empirical estimation of the LIV estimand
found that a cubic specification of the estimate propensity score was most appropriate for
K(p̂; d).7 The ATE(x) is displayed in Fig. 1(b) and shows no significant variation over ηq.
The ATE(uD) is displayed in Fig. 1(c) and shows considerable variation in treatment effects.
In this figure, for uD between 0.65 and 0.75 (higher values for UD represents patients with
latent characteristics that make then most likely to choose BCSRT compared to MST), the
ATE(u) is significantly negative indicating that BCSRT is harmful for these margins. This
effect disappears for the lower values of UD, where ATE(u) estimates are close to zero and
not significant. At higher values of UD, ATE(u) estimates are positive favoring BCSRT over
MST but these do not reach statistical significance. Since we could not identify the higher
end of the support for P(Z, X), we could not estimate MTE for the patients least likely to
choose BCSRT (i.e. low uD) based on their unobserved characteristics.

The estimated mean treatment-effect parameters are shown in Table 1. The LIV-based IV
estimator produces as estimate of 0.10 (Std. err. = 0.10).8 The unconditional TT and the
empirical ATE estimates show a larger negative effect of BCSRT over MTE than the IV
estimator, but were not significant.

7The Wald-F test for all higher order polynomials in a cubic specification was significant (p = 0.02). Compared to a quadratic
specification, the likelihood-ratio test for the cubic specification was significant (p = 0.007). However, a quartic specification for our
LIV estimand, compared to a cubic specification was marginally significant using the Wald-F test (p = 0.05) but not using the
likelihood-ratio test (p = 0.53).
8This estimate is similar to the traditional IV estimator but not identical. We would not expect identical results between the two
because the LIV based estimator considers the full interaction of treatment with observed confounders while the traditional IV
estimator does not.
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3.2 With Age not Omitted
Both instrumental variables are again significant predictors of treatment choice (p < 0.001
for each). Age categories also found to be significant predictors of choice. Specifically, 32%
of 65–74 year olds choose BCSRT; compared to them, 75–79, 80–84 and 85+ year old
patients choose BCSRT less by 5%pts (p = 0.006), 11%pts (p < 0.001) and 22%pts (p <
0.001), respectively.

The right vertical panel of figures in Fig. 1 correspond to the analyses with confounder
“age” observed and not omitted from the regressions of the outcomes. The distribution of the
predicted propensity score for choosing BCSRT separately for patients who chose BCSRT
and those who chose MST (Fig. 1(a)) show similar margins of choice as those estimated
without age.

The standard regression-based (IV-naive) estimate of the treatment effect was found to be
0.03 (Std. err. = 0.010) that was significant at 5% level. However, the standard IV-based
estimate was −0.14 (Std. err. = 0.11). Although the point estimate was larger than when age
was omitted and points toward harm caused by BCSRT over MST, it was not significant.
The empirical estimation of the LIV estimand found that a linear specification of the
estimate propensity score was most appropriate for K(p̂; d).9 The ATE(x) is displayed in
Fig. 1(b) and now shows significant variation over ηq. In fact the ATE(x) is significantly
negative at the lower two deciles, η1 and η2. The ATE(uD) is displayed in Fig. 1(c) and now
shows considerably less variation in treatment effects as expected from a LIV estimand with
a linear specification for K(p̂; d) within a probit regression model. The estimated ATE(u) is
consistently flat over all values of UD and does not reach statistical significance at any point.

The estimated mean treatment-effect parameters are shown in Table 1. As expected, since
treatment effects were not found to vary over uD. The LIV-based IV estimator and the
empirical ATE estimator produce similar estimates of −0.17 (Std. err. = 0.13) (Table 1). The
unconditional TT estimate is −0.15 (Std. err. = 0.13).

3.3 Discussion of Results
The differences in the estimated treatment-effect distributions and mean treatment-effect
parameters between the two sets of analyses, where age is observed or not, highlight the role
of treatment-effect heterogeneity over omitted variables in casual estimation using IV.

In order to better understand the differences, we computed the ATE for each age category in
the same way we computed ATE(x) for any ηq. We found that the average treatment effect
for age categories 64–74, 75–79, 80–84 and 85+ year olds are −0.07 (Std. err. = 0.12), −0.47
(0.22), −0.13 (0.24), and 0.018 (0.19), respectively. These estimates are in line with clinical
intuition. MST does represent the most aggressive approach to remove the breast tumor.
With BCSRT, one leaves open the possibility that the entire tumor was not removed from
the body. Severity of diagnosed cancer increases with age. At younger ages, BCSRT may
not be harmful compared to MST as the cancer is usually diagnosed at a very early stage. At
older ages, the MST may not be beneficial as patients may die of many competing risks.
However, somewhere in between, and in our analysis, from ages 74–79 years, the cancer is
severe enough and competing risks of dying are low enough that MST provides significant
survival benefits over BCSRT (p = 0.03).

9Neither of the higher order specification (quadratic, cubic or quartic) specification passed both the Wald-F and the likelihood-ratio
tests.
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The IV estimator estimates an effect for the margin in the population that are induced to
choose BCSRT due to levels of the instruments. This IV effect is usually conditional on a
specific level of unobserved confounder. When age is omitted, the heterogeneity in
treatment effects over age manifests as unobserved treatment-effect heterogeneity.
Consequently, the IV estimator identifies a local effect corresponding to the specific level of
unobserved confounder that the IVs hold constant. That is why the IV effect came out to be
different than ATE or TT in our application but the difference was not statistically
significant. The LIV method, however, divulged the distribution of ATE(u) in the population
and identified certain margins where BSCRT was harmful compared to MST. Such
information can spur further research to study risk factors that may be driving such negative
BSCRT in these margins of the population.

In our application, such a risk factor was age as evident from our second set of analysis
where age was included as an observed confounder. Treatment effect no longer varied over
unobserved confounder but showed significant variability over observed confounder,
especially age. In this case, the IV estimator produces a consistent estimate of ATE.
Although not necessary, in our application the effect on the treated also seems fairly similar
to the average treatment effect in this population. This is because the marginal distribution
of age categories 64–74, 75–79, 80–84 and 85+ year olds in the population is 0.59, 0.24,
0.12, and 0.05, while the marginal distribution of the same conditional on BCSRT choice is
0.66, 0.22, 0.09, and 0.02. For patients 75–79 years old, where the treatment effect is largest
and significant, the proportion among BCSRT choosers is the same as that in the general
patient population.

Clinical trial results and average IV results fails to divulge such heterogeneity. It is intuitive
to assume that patients who enrol in clinical trials may not have strong preference for either
BCSRT or MST. If they do, they would directly receive those treatments instead of enrolling
in a clinical trial. In our analysis, if we look at the margins of choice given by uD, which
represents propensity to select treatment based on unobserved confounders, and focus on uD
close to 0.5, we can see that the average treatment effect at those margins are close to zero.
It is quite possible that the clinical trials are estimating the effect only at these margins.
However, a confirmatory analysis for this hypothesis is beyond the scope of this paper and is
left for future work.

4 Conclusions
These results have many implications for future CER studies. During 1990–1992, from
when this dataset belong, both the average effect and the effect on the treated for BCSRT
versus MST appear to be negative. Although these estimates do not reach statistical
significance, the LIV approach reveal distinct margins where BCSRT produces significant
negative effects on survival compared to MST. However, clinical trials results and other
traditional IV analyses that concluded that on average BCSRT has equivalent effect on
survival as MST may have been influential in the diffusion of BSCRT over the years. It is
plausible that a similar analysis with more recent data may reveal that effect on the treated
for BCSRT as compared to MST may have exacerbated. Therefore, estimating and correctly
interpreting treatment-effect heterogeneity appears to be critical for any CER study.

Our analyses also have implication about how cautious we have to be in generating
comparative effectiveness information. Generating internally valid estimates of treatment
effects (such as those in randomized clinical trials) is not sufficient for realizing the
anticipated goals of CER. Understanding the generalizability of such estimates and
promoting research in exploring the full distribution of treatment effects in the population
will be crucial for the purpose of effective translation of CER results to practice.
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The local instrumental variable provides a novel and important approach to explore
observed and unobserved heterogeneity in comparative treatment effects.
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Appendix: Derivations for (19)

where the last equality follows as D = (UD > S(z, x)) and therefore,

Now, if we take the rate of change of the mean outcome with respect to the probability of
receiving treatment evaluated at a particular value of S(z, x) = 1 − P(z, x):

The formal proof of consistency for this estimator can be found in [23].
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Fig. 1.
(a) Estimated propensity for choosing BCSRT among BCSRT and MST receivers. (b)
Heterogeneity in treatment effects across deciles (ηq, q = 1, …, 10) of Xβ2. (c) Heterogeneity
in treatment effects across UD, propensity to select BCSRT based on unobserved
confounders. (Solid circles in (b) and (c) represent treatment effects that are significant at
5% level)
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Table 1

Mean treatment effects

Treatment effects With age omitted With age observed

Mean (se) Mean (se)

Naive estimate 0.05 (0.012) 0.03 (0.01)

IV estimate −0.07 (0.13) −0.14 (0.11)

LIV-based estimates

IV effecta −0.10 (0.10) −0.17 (0.13)

Empirical ATE −0.15 (0.09) −0.17 (0.13)

TT −0.12 (0.09) −0.15 (0.13)

a
This is the reconstructed IV estimator based on the estimated distribution of MTEs and the IV weights [23]. It is used to show that a certain

combination of MTEs can be used to explain the traditional IV results
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