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Abstract
Empirical work and models of visual word recognition have traditionally focused on group-level
performance. Despite the emphasis on the prototypical reader, there is clear evidence that variation
in reading skill modulates word recognition performance. In the present study, we examined
differences between individuals who contributed to the English Lexicon Project
(http://elexicon.wustl.edu), an online behavioral database containing nearly four million word
recognition (speeded pronunciation and lexical decision) trials from over 1,200 participants. We
observed considerable within- and between-session reliability across distinct sets of items, in
terms of overall mean response time (RT), RT distributional characteristics, diffusion model
parameters (Ratcliff, Gomez, & McKoon, 2004), and sensitivity to underlying lexical dimensions.
This indicates reliably detectable individual differences in word recognition performance. In
addition, higher vocabulary knowledge was associated with faster, more accurate word recognition
performance, attenuated sensitivity to stimuli characteristics, and more efficient accumulation of
information. Finally, in contrast to suggestions in the literature, we did not find evidence that
individuals were trading-off in their utilization of lexical and nonlexical information.

How do people recognize visually presented words? The ability to read is one of the
towering achievements of human civilization and cognition, with word recognition being a
focus of inquiry since Cattell’s (1886) pioneering work. Insights from this field have
informed a host of domains, including reading acquisition (Adams, 1990; Perfetti, 1994),
literacy instruction (Rayner, Foorman, Perfetti, Pesetsky, & Seidenberg, 2001), automatic
versus attentional processing (Neely, 1977; Posner & Snyder, 1975), the neural correlates of
lexical processing (e.g., Petersen, Fox, Posner, Mintun, & Raichle, 1989), social cognition
(Bargh, Chen, & Burrows, 1996; Devine, 1989), and cognitive aging (Balota & Ferraro,
1996).

Although converging procedures have been developed to study the processes underlying
word recognition, the tasks most often used to study isolated word recognition are speeded
pronunciation and lexical decision. In speeded pronunciation, words (and sometimes,
nonwords, e.g., flirp) are presented, and participants have to read these aloud. In lexical
decision, participants discriminate between words and nonwords, typically with a button
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press. Using these tasks to provide a window into the processes involved in accessing and
using lexical representations (Seidenberg, 1990), researchers have identified many
properties of words that influence word recognition speed and accuracy. For example, more
commonly encountered words (e.g., world) are recognized faster than less common words
(e.g., glitch); this is known as the word-frequency effect. Similarly, words with fewer
syllables (Ferrand & New, 2003) and letters (New, Ferrand, Pallier, & Brysbaert, 2006) tend
to be recognized faster and more accurately. Words also differ with respect to the number of
orthographic neighbors (Coltheart, Davelaar, Jonasson, & Besner, 1977) they possess, where
orthographic neighbors refer to the number of words one can obtain by changing a single
letter in the target word (e.g., sand’s neighbors include band, send, said, and sank). The
general finding is that words with many neighbors are recognized faster than words with few
neighbors (see Andrews, 1997, for a review).

Most studies of word recognition have focused on group-level data that average across
participants. Likewise, computational models of word recognition have rarely considered
individual differences between skilled adult readers (but see Zevin & Seidenberg, 2006, for
an exception). These efforts emphasize the characterization of the “prototypical” reader.
However, an emerging body of work indicates substantial individual differences between
readers. These studies have demonstrated processing differences related to reading skill
(e.g., Ashby, Rayner, & Clifton, 2005; Chateau & Jared, 2000; Jared, Levy, & Rayner,
1999; Schilling, Rayner, & Chumbley, 1998; Unsworth & Pexman, 2003; Yap, Tse, &
Balota, 2009), and it is possible that some of the inconsistencies in the literature may be
driven by individual differences between participants (see Yap et al., 2009, for an example).

The present study harnesses the power of the English Lexicon Project (ELP; Balota et al.,
2007) to explore individual differences in word recognition performance. The ELP is an on-
line repository (http://elexicon.wustl.edu) of behavioral (speeded pronunciation and lexical
decision) measures for 40,481 words. Importantly, the ELP contains trial-level data from
1289 (470 for speeded pronunciation and 819 for lexical decision) participants across six
universities. Each participant contributed approximately 2,500 pronunciation latencies or
3,400 lexical decision latencies. Data were collected over two sessions, separated at most by
one week. Hence, the ELP contains data for almost four million word recognition trials,
sampled across a large population of participants, making it the most comprehensive
resource of its kind presently available. Examining data from such a large sample should
provide an excellent way to estimate individual differences in word recognition behavior.
Finally, vocabulary knowledge (Shipley, 1940; Zachary, 1992) was also measured for each
participant, in order to estimate the integrity of that participant’s lexical representations (see
Yap et al., 2009).

The present study will use the ELP to address three broad questions. First, can subtle
individual differences be reliably detected, and if so, how great is the variation in these
differences? Second, what are the systematic relationships between an individual’s reading
skill, word recognition efficiency, and sensitivity to lexical dimensions? For example, if a
reader produces a large effect of word-frequency, will he or she also produce a large effect
of orthographic neighborhood size? Finally, there is evidence that moving beyond measures
of central tendency when analyzing response time (RT) data provides finer-grained insights
into individual differences in performance (see Balota & Yap, in press, for a review).
Specifically, how is variability in the leading edge and tail of RT distributions systematically
related to other outcomes in word recognition? Do individuals who produce large word-
frequency effects produce more skewing in their RT distribution, and are they less efficient
in accumulating evidence about the stimulus, as reflected by diffusion model (Ratcliff,
1978) parameters? The present investigation represents the first attempt to answer these
interrelated questions in a unified manner, using a very large, well-characterized set of
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words and participants. We will first consider the issue of reliability in word recognition
performance before turning to a selective review of studies exploring individual differences
in word recognition.

Are Word Recognition Measures Reliable?
Reliability is usually assessed in the domain of psychological testing, where one determines
if a measure of an individual is similar at different points in time (Anastasi & Urbina, 1997).
Establishing test-retest reliability is a critical prerequisite for developing valid measures of
individual differences in intelligence, aptitude, personality, interests, values, and attitudes.
Interestingly, the reliability of RT measures is rarely evaluated; instead, researchers’
confidence in a measure increases as effects replicate across different studies (Goodwin,
2009). Indeed, classic measures of cognitive performance, such as the Stroop task, have
relatively low test-retest reliability (see Lowe & Rabbitt, 1998). Low reliability not only
limits the sensitivity of an individual measure but also circumscribes the extent to which that
measure can be expected to correlate with other measures (Lowe & Rabbitt). Furthermore,
and more critically for our purposes, without first establishing reliability, it is unclear
whether variability between readers reflects meaningful individual differences or
measurement noise.

Hence, if one is going to make inferences about individual differences in word recognition
processing, then it is critical that one has some estimate of the stability of pronunciation and
lexical decision performance across time. For example, consider a participant who does the
lexical decision task on two separate occasions, with a different randomly selected large set
of stimuli in each session. Will the participant exhibit qualitatively similar behavior at both
points in time? Despite the intuitive importance of this question, no study, to our knowledge,
has systematically explored the long-range stability or alternate-form reliability of different
word recognition measures. The study that comes closest to doing this is one by Schilling et
al. (1998), who examined performance on the speeded pronunciation, lexical decision, and
eye tracking tasks. Each participant was randomly assigned to two of the three tasks, which
were conducted at least one week apart. Although they could not estimate within-task test-
retest reliability, they observed significant pairwise correlations in mean RT and frequency
effects across tasks, attesting to the cross-task stability of these effects.

Hence, the first objective of the paper is to explore the within-task reliability of word
recognition performance, reflected by both within-session reliability (assessed by correlation
between performance for odd versus even items) and between-session reliability (assessed
by correlation between performance on different sets of stimuli at two time points across
multiple days). One, at the simplest level, the reliability of mean RTs can be evaluated,
which addresses the stability of overall processing speed. Two, beyond mean RTs, one can
also examine the reliability of the RT distributional characteristics for each participant, and
ascertain whether participants carry with them a distributional profile above and beyond
simple mean speed. Three, we can also estimate the reliability of different parameters from a
computational model (the diffusion model) of lexical decision performance. Finally, and
perhaps most importantly, we can assess the extent to which there is stability in participants’
sensitivity to theoretically important variables such as word-frequency, length, and
neighborhood size.

Vocabulary Knowledge and Word Recognition Performance
Reading skill is a complex, multifaceted construct encompassing word decoding efficiency
(Perfetti, 1983, 1985), orthographic and phonological processing skill (Stanovich & West,
1989), and sentence comprehension (Chateau & Jared, 2000). Reading skill is related to
vocabulary knowledge (i.e., knowledge of word forms and meaning) and print exposure
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(i.e., the amount of text a person reads), both of which strongly modulate word recognition
performance. For example, participants with more vocabulary knowledge (as reflected by
the number of words they know the meaning of) pronounce words faster (Butler & Hains,
1979). There is also evidence that performance on the lexical decision and speeded
pronunciation tasks predicts vocabulary size (Katz et al., in press). Likewise, participants
with more exposure to print (as reflected by the number of author names they recognize) are
faster and more accurate on various lexical processing tasks, including speeded
pronunciation, lexical decision, semantic classification, and nonword naming (Chateau &
Jared, 2000; Lewellen, Goldinger, Pisoni, & Greene, 1993). In addition, vocabulary
knowledge and print exposure have been shown to be statistically related, even when
general cognitive ability is controlled for (Stanovich & Cunningham, 1992).

Studies have explored how reading skill, as reflected by vocabulary knowledge or print
exposure, might interact with how stimulus characteristics affect recognition. Consider the
general hypothesis that as readers acquire more experience with words, they become
increasingly reliant on automatic lexical processing mechanisms (LaBerge & Samuels,
1974; Stanovich, 1980). In this case, it is possible that as automatic mechanisms develop,
words may be less influenced by lexical characteristics (Butler & Hains, 1979) and even
context (Stanovich & West, 1983; Yap et al., 2009). This hypothesis seems consistent with
extant data. Specifically, readers with more vocabulary knowledge or print exposure are less
sensitive to a number of lexical dimensions, including number of letters (Butler & Hains,
1979), word-frequency (Chateau & Jared, 2000), and orthographic neighborhood size
(Chateau & Jared. 2000).

These results are compatible with many other findings. For example, faster readers produce
smaller regularity and lexicality effects in speeded pronunciation (Brown, Lupker, &
Colombo, 1994), readers with more years of education produce smaller frequency effects in
lexical decision (Tainturier, Tremblay, & Lecours, 1992), and rapid word decoders produce
smaller frequency effects in speeded pronunciation (Schilling et al., 1998; Seidenberg,
1985). It is worth noting that all the studies listed above, with the exception of Butler and
Hains (1979), did not control for overall processing speed when computing effects. That is,
effects were based on actual, not standardized, RTs. We will revisit this issue in greater
depth later.

However, there are reports that readers who are more skilled do not always produce smaller
effects. For example, Lewellen et al. (1993) compared low- and high-ability readers, who
were contrasted based on their subjective familiarity ratings of words, print exposure, and
vocabulary knowledge. They then measured participants’ frequency and neighborhood
density effects on speeded pronunciation and lexical decision. Interestingly, frequency and
neighborhood size effects were of the same size for low- and high-ability readers in both
tasks, prompting the conclusion that such effects did not interact with reading skill. These
findings obviously conflict with Chateau and Jared (2000), who reported smaller frequency
effects in their low-print-exposure participants. Sears, Siakaluk, Chow, and Buchanan
(2008) suggested that the discrepancy might be due to Lewellen et al. using legal nonwords
(e.g., brone) as distracters in their lexical decision task, and Chateau and Jared using
pseudohomophones (i.e., nonwords that sound like real words, e.g., brane). Indeed, Sears et
al. demonstrated that the moderating effects of print exposure on frequency and
neighborhood size effects were reliable only when pseudohomophones, but not legal
nonwords, were used. Consistent with this, Yap, Balota, Tse, and Besner (2008), who also
used pseudohomophone distracters, observed smaller frequency effects for participants with
more vocabulary knowledge.
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According to Sears et al. (2008), low-print-exposure participants, compared to their high-
print-exposure counterparts, possess less efficient orthographic processing skills, which
results in slower and less accurate recognition of words with lower quality representations,
such as low-frequency words. However, when discriminating between words and legal
nonwords, lower-exposure participants can compensate for their relatively inefficient
orthographic processing by switching to phonological processing, resulting in similar size
word-frequency effects for low- and high-print-exposure participants. This phonological
strategy is not viable in the pseudohomophone condition, since phonology, by definition,
cannot be used to discriminate between words and pseudohomophones. As a result, the low-
print-exposure participants are slowed down, particularly for the low-frequency words,
which exaggerates their word-frequency effect.

While Sears et al. (2008) make a plausible attempt to reconcile the conflicting findings,
there is a simpler alternative. In both Chateau and Jared (2000) and Sears et al.’s
pseudohomophone condition, low-print-exposure participants were reliably slower on the
lexical decision task. In contrast, in Lewellen et al. (1993) and Sears et al.’s legal nonword
condition, there was no significant (by-participants) effect of print exposure on lexical
decision latencies. Faust, Balota, Spieler, and Ferraro (1999) have pointed out that Group ×
Treatment interactions can be difficult to interpret when the groups are not matched on
overall latency (see also Cerella, 1990, 1991; Salthouse, 1985). Specifically, because a
participant’s overall processing time is positively correlated with the magnitude of his or her
effect (i.e., larger effects for slower participants), slower participants can spuriously produce
larger effects due to slowing. Hence, the larger frequency effects seen in low-print-exposure
participants (e.g., Chateau & Jared) may simply result from these participants being slower.
In contrast, when overall response latency was matched across groups, print exposure did
not moderate word-frequency effects (e.g., Lewellen et al.).

One way to rule out processing speed as a confound is to standardize raw latencies using a z-
score transformation1 (see Faust et al., 1999). Consistent with this, Butler and Hains (1979),
who did standardize their effects, were also unable to detect a relationship between
vocabulary knowledge and word-frequency effects. Interestingly however, although
vocabulary knowledge was unrelated to the size of word-frequency effects, high-vocabulary-
knowledge readers still showed smaller effects of length. In summary, the mixed findings
make it unclear if better readers are indeed less sensitive to lexical characteristics.
Furthermore, it is unclear if reader proficiency interacts with certain variables (e.g., length)
but not others (e.g., word-frequency), and if these interactions are task-modulated (e.g.,
lexical decision vs. speeded pronunciation).

Closely related to the foregoing issues is the question of whether there are individual
differences that reflect distinct types of proficient readers. One source of individual
differences could arise from readers emphasizing different strategies or types of information
during reading. If this was the case, one might expect to find trade-offs in a reader’s
sensitivity to different lexical characteristics. For example, are readers who are more
sensitive to word-frequency less sensitive to word length (and vice versa)? This trade-off
could emerge if individuals are differentially emphasizing two distinct reading mechanisms,
where one mechanism is sensitive to frequency and the other is sensitive to length.

1However, note that the z-transformation has mathematical assumptions about the form of distributions and is therefore not theory-
independent. A reviewer also pointed out that z-scoring and standardized regression coefficients fully adjust for processing speed only
if all participants are equally reliable, an assumption which seems intuitively untenable. Future work could explore individual
differences in effects when the influence of reliability is controlled for.
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According to the dual-route perspective (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001), word recognition is mediated by two pathways, a lexical pathway that directly maps
words onto underlying lexical representations, and a nonlexical pathway that assembles the
pronunciations of words via abstract spelling-to-sound rules. This dichotomy was in large
part motivated by studies of acquired dyslexia that revealed a striking dissociation between
the two pathways. Specifically, individuals with phonological dyslexia (Patterson, 1982) can
pronounce real words but perform poorly for non-words, while individuals with surface
dyslexia (Shallice & Warrington, 1980) tend to regularize irregular words (e.g., pronounce
PINT so that it rhymes with HINT). Because the two pathways make independent and
unique contributions to reading, each pathway is sensitive to different properties of a word.
The lexical pathway is sensitive to word-frequency (but not to length), while the nonlexical
pathway is sensitive to length (but not word-frequency).

Early work by Baron and Strawson (1976) suggested that there are different types of readers
who selectively rely on these two pathways; Phoenician readers rely predominantly on
nonlexical processing while Chinese rely predominantly on lexical processing. If this is
correct, one would expect a trade-off between word-frequency and length effects, which
implies a negative correlation between sensitivity to these two variables. Interestingly, using
Baron and Strawson’s methodology, Brown et al. (1994) were unable to meaningfully
separate their participants into Phoenicians and Chinese. There was no evidence for a trade-
off between lexical and nonlexical processing (as suggested by Baron and Strawson’s work).
Instead, participants who relied less on lexical processing also appeared to rely less on
nonlexical processing. While this pattern is difficult for an unembellished dual-route model
to accommodate (see Brown et al. for more discussion), it is consistent with the simpler
notion that faster, more skilled readers are simply less sensitive to a wide array of lexical
variables. In summary, the second objective of this study is to more systematically explore
the intriguing interplay between reader proficiency (as reflected by vocabulary knowledge),
word recognition efficiency (as assessed by RT and error rate), and readers’ sensitivity to
different lexical characteristics.

Response Time Distributions, Word Recognition Performance, and
Individual Differences

As pointed out in the Introduction, most word recognition studies are based on group-level
data that aggregate across participants. In addition to averaging across participants, the
typical word recognition experiment also collapses across trials in each condition to examine
data at the level of mean RTs. There is increasing evidence that finer-grained consideration
of performance at the level of RT distributional characteristics (Balota & Yap, in press;
Hohle, 1965; Luce, 1986; Ratcliff, 1978; Ratcliff, 1979) yields additional insights into
important aspects of human cognition, including selective attention (Castel, Balota,
Hutchison, Logan, & Yap, 2007; Heathcote, Popiel, & Mewhort, 1991; Tse, Balota, Yap,
Duchek, & McCabe, 2010; Spieler, Balota, & Faust, 2000), visual search (Palmer, Horowitz,
Torralba, & Wolfe, 2011), episodic memory (Hockley, 1984; Ratcliff, 1978; Rohrer &
Wixted, 1994), priming (Balota, Yap, Cortese, & Watson, 2008; Kinoshita & Hunt, 2008;
Lyons, Kellas, & Martin, 1995; Tse, Hutchison, & Li, in press; Yap et al., 2009), eye
fixation durations (Staub, White, Drieghe, Hollway, & Rayner, 2010), and isolated word
recognition (Andrews & Heathcote, 2001; Balota & Spieler, 1999; Goh, Suárez, Yap, &
Tan, 2009; Plourde & Besner, 1997; Ratcliff, Gomez, & McKoon, 2004; Yap & Balota,
2007; Yap, Balota, Cortese, & Watson, 2006; Yap et al., 2008).

While there are many different ways to examine the characteristics of an RT distribution
(see Luce, 1986, and Van Zandt, 2000, for reviews), a relatively accessible method, is to fit
RT distributions to a theoretical distribution like the ex-Gaussian (Ratcliff, 1979). The ex-
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Gaussian distribution is a convolution of a Gaussian (normal) and exponential distribution
that approximates the positively skewed RT distribution often seen in empirical data. An ex-
Gaussian distribution contains three parameters; μ and σ respectively reflect the mean and
standard deviation of the Gaussian distribution, while τ reflects the mean and standard
deviation of the exponential distribution. Using maximum likelihood procedures, the ex-
Gaussian function can be fit to empirical data, and changes in μ are consistent with
distributional shifting, while changes in τ reflect modulations in the tail of the distribution. A
very useful aspect of ex-Gaussian analysis is that mean RTs are mathematically constrained
to be the sum of μ and τ. Hence, effects in mean RTs can be partitioned such that one can
evaluate the extent to which the effect is reflected in either distributional shifting or in the
tail of the distribution. Also, it is possible for two conditions with identical mean RTs to be
associated with different underlying RT distribution, due to trade-offs between μ and τ (see
Balota et al., 2008, & Heathcote et al., 1991, for more discussion).

Recently, researchers have used RT distributional analysis to explore questions in individual
differences, particularly in the attention and working memory domain. For example,
individuals with impaired attentional control systems are less able to maintain task goals and
suppress irrelevant information, and may therefore experience lapses in control across time.
Importantly, these lapses are primarily reflected in the slowest RTs, i.e., the tail of the
distribution (see Coyle, 2003, & Larson & Alderton, 1990, for more discussion). Tse et al.
(2010) compared young adults, healthy older adults, and individuals with very mild
dementia of the Alzheimer’s Type (DAT) on three different tasks of selective attention
(Stroop, Simon, and Task Switching). Interestingly, although effects related to healthy aging
predominantly affected μ and σ (the modal portion of the distribution), the slowing due to
early stage DAT was primarily reflected in τ (the tail of the distribution). Structural equation
modeling also revealed that changes in τ were most strongly related to a latent variable that
reflected working memory. In a related study, Schmiedek, Oberauer, Wilhelm, Süβ, and
Wittmann (2007) estimated ex-Gaussian parameters in eight choice RT tasks in young
adults, and showed that τ (but not μ or σ) predicted performance on working memory,
reasoning, and psychometric speed. Furthermore, the predictive power of τ appeared to
generalize across different tasks.

At this juncture, it is worth clarifying that ex-Gaussian analysis primarily serves to provide
an accurate and concise summary of empirical RT distributions (Schwarz, 2001). Ex-
Gaussian parameters do not possess intrinsic theoretical interpretations (Matzke &
Wagenmakers, 2009; Schmiedek et al., 2007), and it is dangerous to map them directly onto
specific cognitive processes (cf. Hohle, 1965; McGill & Gibbon, 1965), unless one has a
specific theoretical framework that makes predictions about the underlying RT distributions.
In order to better understand the behavior of interest, researchers (e.g., Balota & Spieler,
1999; Schmiedek et al., 2007) have recommended linking static RT distributional
characteristics to process-oriented theoretical models that explicitly specify the dynamics of
information accumulation over time. The most well-known of these models is the diffusion
model of binary decision (Ratcliff, 1978; Ratcliff et al., 2004), which is able to
quantitatively fit data from binary decision tasks across various domains, including
recognition memory, numerosity judgments, brightness and color discrimination, visual
search, and lexical decision. More importantly, the diffusion model is able to fit RTs and
error rates simultaneously, while accommodating the shapes of RT distributions for both
correct and error responses.

The central premise of the diffusion model of lexical decision is that binary decision
involves the accumulation of noisy information over time from a starting point (z) toward
one of two decision boundaries, respectively word (a) or nonword (0). Drift rate (v) refers to
the mean rate at which information is accumulated from the stimulus, and is positively
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correlated with the quality of information yielded by processing the stimulus (Ratcliff et al.,
2004). Ter refers to the nondecision component that collectively captures encoding and
response execution. Other model parameters include s (variability in drift within each trial),
η (variability in drift rate across trials), sz (variability in starting point), and st (variability in
the nondecision component). The inclusion of the variability parameters allows better fits of
the model to lexical decision data. In their study, Ratcliff et al. applied the diffusion model
to data from a number of lexical decision experiments and found that the effects of most
variables (e.g., word-frequency, nonword type, repetition) mainly influenced one parameter,
drift rate, indicating that drift rate is the critical parameter for modeling lexical decision
performance. This is perhaps unsurprising as drift rate and τ have been shown to be closely
related. Effects of both parameters are most pronounced on the tail of the distribution, with
steeper drift rates associated with smaller estimates of τ (see Spieler et al., 2000).

Like ex-Gaussian parameters, diffusion model parameters can also be estimated for
individual participants. For example, Ratcliff, Thapar, and McKoon (2010) obtained
diffusion model parameters for three groups of participants (college students, old, and very
old) across three binary decision tasks (numerosity discrimination, item recognition, and
lexical decision); participants also completed the Vocabulary and Matrix Reasoning subtests
of the Wechsler Adult Intelligence Scale – 3rd Edition (WAIS-III; Wechsler, 1997). Ratcliff
et al. observed a robust relationship between drift rate and IQ, with drift rates increasing as
IQ increased; essentially, information accumulation processes were more efficient for the
higher IQ participants. Boundary separation (a) and nondecision time (Ter) were relatively
unaffected by IQ. Intriguingly, age had only minimal effects on drift rates. Older adults were
slower not because their drift rates were decreasing, but because they set more conservative
response criteria and had longer nondecision times. This dissociation between Age and IQ
on different components of the diffusion model provide compelling evidence regarding the
power of this approach.

Although we focus on how the diffusion model explains individual differences in lexical
decision performance, it is important to note that there are important theoretical alternatives,
such as the Bayesian reader model (Norris, 2006), which can also account for the effects of
variables on RT distributions (see Norris, 2009). The Bayesian reader model unifies word
recognition and decision-making processes within an integrated framework that assumes
that readers behave like optimal Bayesian decision-makers when processing words. That is,
during word recognition, posterior probabilities for different words are computed (with their
prior probabilities taken into account), and readers choose the word in the lexicon that best
matches the input. In this light, people recognize high-frequency words faster because high-
frequency words are associated with higher priors than low-frequency words. To carry out
lexical decision, the model computes the probability that the presented letter string is a word
versus a nonword, given the input. Although a detailed comparison of the diffusion and
Bayesian approaches to lexical decision performance is beyond the scope of this paper (see
Norris, 2009, for more discussion), future work could explore individual differences in word
recognition performance by estimating Bayesian reader model parameters for each
participant, and examining how variability in these parameters relate to other outcomes.

To summarize, the extant literature points to stable, task-general individual differences in τ
and diffusion model parameters that are systematically related to outcomes of interest.
Hence, our third and final objective is to extend the individual difference work by
Schmiedek et al. (2007), Tse et al. (2010), and Ratcliff et al. (2010) to the word recognition
domain. As discussed earlier, readers become less reliant on controlled lexical processing
mechanisms as they gain proficiency (LaBerge & Samuels, 1974; Stanovich, 1980). If
controlled processing is marked by larger τ and drift rates (Schmiedek et al.; Tse et al.,
2010), then one would expect fluent lexical processors, operationally defined by their
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vocabulary knowledge, to have lower values on both parameters. In addition to testing this,
we will also be considering how τ and the central diffusion model parameters (i.e., drift rate,
boundary separation, and nondecision time) relate to word recognition efficiency,
vocabulary knowledge, and the extent to which readers are influenced by different lexical
variables. The diffusion model parameters can only be estimated for the lexical decision data
since the pronunciation task has not been modeled using this approach.

Method
Dataset

All analyses reported in this paper were based on archival trial-level data from the English
Lexicon Project. Since a full description of the methodological aspects of the ELP is
available in Balota et al. (2007), we will simply highlight some of the more salient aspects
of the database. There were a total of 1289 participants, with 470 providing data for the
speeded pronunciation task and 819 providing data for the lexical decision task. These
participants, who were all native English speakers, were recruited from six Universities (see
Table 1 of Balota et al. for descriptive statistics of participant demographics) that included
private and public institutions situated in the Midwest, Northeast, and Southeast portions of
the United States. Each participant took part in either the speeded pronunciation or lexical
decision task, and data were collected in two sessions on different days, separated by no
more than one week. Across both sessions, each participant received approximately 2,530
speeded pronunciation trials or 3,374 lexical decision trials. Nonword trials on the lexical
decision task were legal nonwords that did not sound like real words. Evidence from
previous work (e.g., Balota & Spieler, 1998) suggests that an individual participant can
produce stable data for these number of stimuli. Additional demographic information
collected included vocabulary knowledge scores, based on the 40-item vocabulary subscale
of the Shipley Institute of Living Scale (Shipley, 1940), and circadian rhythm, based on the
Morningness-Eveningness Questionnaire scores (Horne & Ostberg, 1976).

Results
We first excluded incorrect trials2 and trials with response latencies faster than 200 ms or
slower than 3000 ms. For the remaining correct trials, RTs more than 2.5 SDs away from
each participant’s mean were also identified as outliers. For ease of exposition, we will first
describe the reliability analyses, before considering the relationships between participants’
vocabulary knowledge, word recognition performance, and sensitivity to different lexical
dimensions.

Analysis 1: Reliability Analyses
We first partitioned the data for each participant, so that trials were organized into Session 1
(S1) trials, Session 2 (S2) trials, odd-numbered trials, and even-numbered trials; trial number
reflects the order in which trials were presented. Briefly, comparing Session 1 to Session 2
trials allows us to assess between-session reliability, while comparing odd- to even-
numbered trials allows us to assess within-session reliability (as reflected by split-half
correlations). For each participant, we then computed the mean and standard deviation of
RTs, along with ex-Gaussian (μ, σ, τ) and diffusion model parameters3 for S1 trials, S2
trials, odd-numbered trials, and even-numbered trials. Ex-Gaussian parameters were
estimated for each participant using continuous maximum likelihood estimation in R4 (R
Development Core Team, 2004). Using Nelder and Mead’s (1965) simplex algorithm,

2Although incorrect trials were generally not analyzed, they were necessarily included in the diffusion model analyses.
3Satisfactory fits could be obtained for 780 of the 819 participants assigned to the lexical decision task.
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negative log likelihood functions were minimized in the R statistics package (see Speckman
& Rouder, 2004), with all fits successfully converging within 500 iterations. The diffusion
model parameters were estimated simultaneously by fitting each participant’s data to the
model. The data for each participant were comprised of the .1, .3, .5, .7, and .9 quantile RTs
for correct and error responses, along with the corresponding accuracy values. A general
SIMPLEX minimization routine was then used that adjusted the parameters of the model in
order to minimize the value of chi-square (see Ratcliff & Tuerlinckx, 2002, for more
information).

Table 1 presents the mean latency, its standard deviation, and ex-Gaussian parameters by
task (speeded pronunciation and lexical decision) and trial type (overall, Session 1, Session
2, odd-numbered trials, even-numbered trials). Diffusion model parameters are also reported
for the lexical decision task. Participants’ latencies tended to be faster and less variable on
the speeded pronunciation task, compared to the lexical decision task. However, although
speeded pronunciation performance was faster at the level of the mean, this mean difference
was mediated fully by τ (change in the tail of the distribution) rather than by μ (shift in the
modal portion). In fact, an individual’s μ parameter for lexical decision was on average 39
ms faster than for pronunciation. These indicate that lexical decision RTs were associated
with a faster leading edge that was offset by a heavier tail in the distribution. That is, for
most words, participants could initiate a response more rapidly in lexical decision than in
speeded pronunciation. However, the most difficult items in lexical decision produced more
responses in the tail of the distribution, and this is consistent with the argument that the
exaggerated tail in lexical decision reflects the postlexical decision processes engaged by the
word-nonword discrimination demands of the task (Balota & Spieler, 1999; Ratcliff et al.,
2004).

Turning to the diffusion model fits for the lexical decision data, the obtained parameters
were in line with estimates reported elsewhere (e.g., Ratcliff et al., 2004). However, it is
noteworthy that compared to Ratcliff et al.’s samples, the ELP participants were associated
with larger boundary separation (a) and nondecision (Ter, i.e., encoding and response
execution) components, suggesting that they were setting more conservative response
criteria and taking longer to encode and respond to stimuli. Importantly, the mean word drift
rate (vword) was similar to Ratcliff et al.’s observed drift rates for low-frequency words (see
their Table 6), because the ELP participants were responding to a diverse set of items that
included a relatively large proportion of difficult, lower frequency words.

Table 2 presents the Pearson correlations between each individual’s response in Session 1
and Session 2 trials, and between odd- and even-numbered trials, for mean RT, standard
deviation, ex-Gaussian parameters, and diffusion model parameters. For all correlations
reported in this paper, bivariate outliers were detected by first computing Mahalanobis
distance (D2) for each pair of scores. This metric reflects the extent to which a particular
participant is discrepant from the rest of the sample, and we excluded participants who
produced D2 with unusually low probability values (i.e., p < .001).

The very high correlations (all rs ≥ .92) between odd- and even-numbered trials point to
impressive within-session reliability for the mean, standard deviation5, and ex-Gaussian
parameters. Within-session reliability was also high for the majority of diffusion model

4QMPE 2.18 (http://www.newcl.org/software/qmpe.htm; Brown & Heathcote, 2003) is a free and user-friendly computer program
that enables users to carry out distributional analyses on their RT data. In fact, QMPE can fit RT data with as few as 40 observations
per condition.
5It is noteworthy that the standard deviation is reliable, indicating that the ELP behavioral dataset has reliable estimates of the amount
of variability in each individual’s RTs. This is relevant when one uses tests of statistical significance that incorporate estimates of this
variability.
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parameters6, particularly for the central ones, i.e., boundary separation (a), nondecision
component (Ter), and drift rate (v). Moreover, when between-session reliability was
assessed, these correlations were also very high for means (rs ≥ .87), and relatively high for
ex-Gaussian (rs from .51 to .94) and diffusion model (rs from .39 to .74) parameters. These
results provide evidence that readers carry with them a particular RT distributional signature
that goes beyond simple mean performance. Indeed, this signature is maintained across days
of testing on different sets of stimuli.

There are a couple of other noteworthy observations. First, the tail (τ) of the RT distribution
seems to be considerably more stable than the modal portion (μ and σ) of the distribution. In
fact, the between-session reliability of τ (.940 and .872 for pronunciation and lexical
decision, respectively) was comparable to that for the mean (.929 and .871 for pronunciation
and lexical decision, respectively). The between- and within-session reliability of word drift
rate (.692 and .814 respectively) were also relatively high. The stability of τ and drift rate is
consistent with the idea that these two parameters serve as markers of individual differences
(Ratcliff et al., 2010; Schmiedek et al., 2007; Tse et al., 2010). Within the present context,
individuals associated with a lower drift rate or larger τ could be seen as less efficient lexical
processors who rely more heavily on controlled word recognition processes. Second, the
between-session reliabilities for the parameters were higher in speeded pronunciation than in
lexical decision, suggesting that speeded pronunciation performance may be inherently more
stable than lexical decision performance.

Having established the reliability of RT distributional characteristics, we next considered the
reliability of individuals’ sensitivity to different lexical characteristics. For example, if a
participant produces large frequency effects on Session 1, will he or she also produce large
frequency effects on Session 2? The most obvious way to approach this question is to
conduct multiple regression analyses at the level of individual participants, and to estimate,
for each participant, regression coefficients for the various lexical variables of interest7 (see
Balota & Chumbley, 1984; Lorch & Myers, 1990). One might be concerned that the
participant-level regression analyses were conducted on different sets of items, since
participants were presented with different sub-lists of the full set of words in the ELP.
However, the counterbalancing procedure ensured that the means, standard deviations, and
ranges of different variables were similar across the different sub-lists.

For each participant, we first partialled out the effects of word initial phoneme by coding
dichotomously for the following 13 articulatory features: affricative, alveolar, bilabial,
dental, fricative, glottal, labiodental, liquid, nasal, palatal, stop, velar, and voiced (see
Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Chateau & Jared, 2003; Treiman,
Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995). Doing this helps control for biases
associated with using the voice key for measuring vocal responses (Kessler, Treiman, &
Mullennix 2002; Rastle, Croot, Harrington, & Coltheart, 2005). After controlling for the
onset, we examined the effects of the following lexical and semantic variables: log-
transformed Hyperspace Analog to Language (HAL; Lund & Burgess, 1996) frequency
(henceforth word-frequency), number of morphemes, number of syllables, number of letters,
orthographic neighborhood size, phonological neighborhood size, orthographic Levenshtein
distance 208 (OLD20, a measure of orthographic distinctiveness; Yarkoni, Balota, & Yap,
2008), phonological Levenshtein distance 20 (PLD20, a measure of phonological
distinctivness; Yap & Balota, 2009), log-transformed number of senses (Steyvers &

6The within-session reliabilities of the η (drift rate variability) and st (nondecision component variability) parameters are lower
because the variability parameters depend on error RT distributions, which have far fewer observations; these parameters are therefore
always more poorly estimated (see Ratcliff & Tuerlinckx, 2002, for more discussion).
7In order to include neighborhood density and number of senses as predictors, we restricted our analyses to the 28,803 words in the
ELP which are represented on both norms.
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Tenenbaum, 2005), which reflects the number of meanings a word has in the WordNet
database (Miller, 1990), and log-transformed semantic neighborhood density (Shaoul &
Westbury, 2010), estimated using co-occurrence information from a billion-word Wikipedia
corpus (Shaoul & Westbury, 2009). Semantic neighborhood density was estimated by the
average radius of co-occurrence (ARC), which is based on the average semantic distance
between a target word and its closest neighbors in high-dimensional semantic space (see
Shaoul & Westbury, 2006). In other words, words with lower ARC values are associated
with denser semantic neighborhoods.

Figures 1 and 2 present the distributions of standardized regression coefficients across
participants as a function of lexical variable, for speeded pronunciation (Figures 1) and
lexical decision (2) respectively. First, note the substantial variability in the magnitude of
effects produced by participants9. For example, although virtually all participants produced
negative regression coefficients for the word-frequency effect (see Figure 1 and Figure 2),
indicating faster latencies for higher-frequency words, the coefficients were normally
distributed. Second, the direction and relative magnitudes of participant-level effects in
speeded pronunciation and lexical decision were generally consistent with item-level effects
reported in the literature. That is, word-frequency was the best predictor in both tasks,
followed by number of letters, number of syllables, and number of morphemes. Generally,
higher-frequency words and words with more morphemes were recognized faster, while
words with more syllables and letters were recognized slower.

One caveat of multiple regression analyses with many lexical predictors is that these
predictors are often correlated (Baayen, Feldman, & Schreuder, 2006; Cutler, 1981). For
example, longer words tend to be lower in frequency and have fewer neighbors; this
collinearity in the predictor matrix (see Table 3) may cause regression coefficients to
fluctuate in magnitude and direction, leading to estimates of individual regression
coefficients that are unreliable due to large standard errors. To alleviate this problem,
principal components analysis (Baayen et al., 2006) was used to reduce the full set of ten
lexical variables to a smaller set of orthogonal principal components. Principal components
analysis was carried out using varimax rotation with Kaiser normalization. Three principal
components, accounting for 85% of the variance, were extracted10. The rotated component
matrix indicated that number of letters, number of syllables, OLD20, PLD20, and number of
morphemes loaded on the first component (PC1)11, orthographic and phonological
neighborhood size loaded on the second component (PC2), and word-frequency, number of
senses, and ARC loaded on the final component (PC3); factor loadings are presented on
Table 4. Thus, PC1 appears to capture the structural properties of words, PC2 neighborhood
size, and PC3 word-frequency/semantics. From the dual-route perspective, one could also

8The Levenshtein-based measures are relatively new measures of orthographic and phonological distinctiveness that are optimized for
longer words. They are based on Levenshtein Distance (LD), a computer science metric reflecting the minimum number of
substitution, insertion, or deletion operations required to convert one string of elements (either letters of phonemes) into another. For
example, the LD from kitten to sitting is 3, reflecting two substitutions (k → s, e → i) and one insertion (insert g at the end). Yarkoni
et al. computed the LD from each word in the ELP to every other word, and this was used to generate LD20 values for each word,
defined as the mean LD between a word and its 20 closest neighbors. OLD20 is based on distances between word spellings, while
PLD20 is based on distances between word pronunciations. Words with higher LD20 values are further from their closest neighbors,
implying they are more orthographically or phonologically distinct. Traditional neighborhood size measures have limited utility for
long words, which have few or no single-letter substitution neighbors. Measures based on LD circumvent this limitation by providing
estimates of distinctiveness for even very long words. Interestingly, Yarkoni et al. have reported that LD-based measures of
orthographic distinctiveness provide a significant advantage over traditional density-based measures in predicting performance on
English word recognition tasks, particularly for longer words.
9According to a reviewer, the distribution of effects reflects both true and residual variance. Consequently, individual differences
between participants may be partly mediated by their variability in residual variance. The extent to which individual differences reflect
true versus residual variance is an interesting question that merits future investigation.
10It is worth noting that the original set of 10 predictors respectively explained 55.4% and 62.5% of the variance in speeded
pronunciation and lexical decision RTs. The principal components respectively accounted for 48.2% and 56.4% of the RT variance,
indicating that the dimensional reduction did not substantially compromise the predictive power of the lexical variables.
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say that PC1 seems to reflect the sublexical properties of words, while PC3 taps whole-word
properties.

We next obtained principal component regression coefficients for each participant across all
trials, S1 trials, S2 trials, odd-numbered trials, and even-numbered trials (see Table 5 and
Figure 3)12. Interestingly, while the between-task differences were in the correct direction
(e.g., effects of word-frequency/semantics were stronger in lexical decision, whereas effects
of structural properties were stronger in speeded pronunciation), they were relatively subtle
compared to those suggested by item-level regression analyses (e.g., Balota et al., 2004; Yap
& Balota, 2009). Of course, those analyses were based on much smaller sets of words (2,428
monosyllabic words for Balota et al., and 9,639 monomorphemic multisyllabic words for
Yap & Balota). For a more appropriate comparison, we also conducted parallel item-level
regression analyses on the full set of items from the ELP; these are presented on an
additional Item column on Table 5. As can be seen, when one considers all the words in the
ELP, the relative magnitudes of the participant- and item-level effects across tasks showed
similar trends, reassuring us that the modest between-task differences are not simply
artifacts of participant-level analyses. It is also worth noting that item-level effects were
consistently larger than participant-level effects. Since item means average across
participants, this might help to decrease measurement error and increase the size of the
effect.

Turning to the reliability analyses, Table 6 presents the Pearson correlations between
Session 1 and Session 2 trials, and between odd- and even-numbered trials, for the three
principal component regression coefficients. Within- and between-session measures of
reliability were quite high in both tasks13, with higher estimates observed in speeded
pronunciation than in lexical decision. In addition, effects of PC1 (structural properties) and
PC3 (word-frequency/semantics) were more reliable than effects of PC2 (neighborhood
size). To summarize, within- and between-session reliabilities are reassuringly high in word
recognition performance, as reflected in RT distributional characteristics, diffusion model
parameters, and in effects of principal components. Reliability was also higher for speeded
pronunciation performance, and this might be related to the additional task-specific
processes entailed by lexical decision (Balota & Chumbley, 1984).

Analysis 2: Vocabulary Knowledge and Word Recognition Performance
We now turn to the relationship between vocabulary knowledge and word recognition
performance. As discussed, readers’ vocabulary knowledge could reflect the integrity of
underlying lexical representations, and the extent to which readers are likely to rely on
relatively more automatic processing mechanisms (Yap et al., 2009). Higher-vocabulary-

11Given that the Levenshtein measures (Yarkoni et al., 2008) have been described as metrics for capturing neighborhood size, one
might find it surprising that OLD20 and PLD20 loaded on a component reflecting structural properties (PC1) instead of neighborhood
size (PC2). However, Yarkoni et al. have shown that although LD20 and neighborhood size are highly correlated for shorter,
monosyllabic words, this relationship is considerably weaker for longer words with more syllables, due to range restriction for
neighborhood size (long words have few or no substitution neighbors). Consistent with this, Table 3 shows that for the full set of
words in our analyses, the LD20 measures are more highly correlated with length than with neighborhood size.
12For ease of exposition, our analyses focus on the principal component effects. However, supplementary tables reporting the
descriptive statistics (Table A1) and reliabilities (Table A2) of effects of individual variables are presented in the Appendix. It is very
clear that reliability estimates are substantially higher for principal component effects than for effects of individual variables (compare
Tables A2 and 6). This attests to the utility of the PCA approach, which provides far more reliable estimates of how stimuli
characteristics affect behavioral data.
13Within-session reliability was consistently higher than between-session reliability, consistent with other studies (e.g., Kimberley,
Khandekar, & Borich, 2008). As the time-gap between two measurements increase, the less similar are the factors that contribute to
error, attenuating correlations (Trochim & Donnelly, 2006). We tested this by examining if the number of days between sessions
moderated the extent to which Session 1 performance predicted Session 2 performance. In both tasks, we found that reliability was
generally significantly lower as the number of intervening days increased, although this trend was seen only in mean RTs and RT
distributional characteristics, but not in effects of principal components.
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knowledge participants should be associated with faster and more accurate word recognition
performance. Specifically, vocabulary knowledge should be negatively correlated with RTs
and positively correlated with accuracy. Figures 4 (RT) and 5 (accuracy) present the
scatterplots between vocabulary knowledge (as assessed by the number of correct responses
on the Shipley, 1940, vocabulary subscale) and word recognition performance, after
excluding participants who were more than 1.5 interquartile ranges below the lower quartile
on a boxplot (3.0% in speeded pronunciation and 3.3% in lexical decision). Vocabulary
knowledge was negatively correlated with mean speeded pronunciation RTs (r = −.402) and
lexical decision RTs (r = −.323), and positively correlated with speeded pronunciation
accuracy (r = .456) and lexical decision accuracy (r = .622).

Schmiedek et al. (2007) and Tse et al. (2009) have shown that the tail of the RT distribution
is a strong predictor of controlled processing, suggesting that this component should be
especially sensitive to variability in word recognition efficiency. If this is correct, then the
correlation between vocabulary knowledge and RTs should be primarily mediated by τ. This
was precisely the pattern observed (see Table 7). Although vocabulary knowledge was
negatively correlated with both μ (leading edge of the modal distribution; rs were −.218 and
−.159 for pronunciation and lexical decision respectively) and τ (tail of the distribution; rs
were −.448 and −.335 for pronunciation and lexical decision respectively), the correlation
was reliably stronger in τ than in μ in both speeded pronunciation (p < .001) and lexical
decision (p < .001). This indicates that variation in recognition performance for difficult
words (e.g., antiestablishment) relative to easy words (e.g., chair), is more systematically
related to individual differences in skill. The predictive power of τ, which has so far been
demonstrated using general binary decision tasks (Schmiedek et al.) and tasks tapping
selective attention (Tse et al.), appears to generalize to lexical processing tasks as well.

We also examined the correlations between the diffusion model parameters and vocabulary
knowledge, lexical decision RTs, and lexical decision accuracy (see Table 8). Although the
full set of model parameters are presented, we are mainly interested in the correlations for
boundary separation (a), nondecision time (Ter), and drift rate (v). Participants who were
faster on the lexical decision task produced smaller values for boundary separation and
nondecision time, and larger values for drift rates. In other words, they were setting more
liberal decision criteria, had a faster nondecision component, and could accumulate
information more rapidly. Notably, individual differences in vocabulary knowledge were
also systematically related to these three parameters. Specifically, higher-vocabulary-
knowledge participants were associated with lower values for boundary separation and
nondecision time, and higher drift rates. At first blush, this might seem inconsistent with
Ratcliff et al. (2010), who found that IQ (which taps vocabulary knowledge) was correlated
with drift rate, but not with boundary separation or nondecision time. However, it should be
noted that the correlations for boundary separation (r = −.085) and nondecision time (r = −.
218) were significantly smaller (all ps < .001) than for drift rate (.536 and −.448 for words
and nonwords, respectively). As the present sample is more than four times larger than
Ratcliff et al.’s sample, the present analyses have more power to detect the more subtle
effects for boundary separation and nondecision time.

Next, we considered the correlations between diffusion model parameters and ex-Gaussian
parameters (see Table 8). Consistent with Schmiedek et al. (2007), drift rates were more
highly correlated with τ than with μ or σ, ps < .001. However, one should note that τ was
also strongly and positively correlated with boundary separation, indicating that participants
producing a large proportion of slow responses were setting more conservative response
criteria. This indicates that there is only limited mapping between ex-Gaussian and diffusion
model parameters, in line with Matzke and Wagenmakers (2009). Having said that, the
relationship between μ and nondecision time was very strong, consistent with the idea that
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the leading edge of a participant’s RT distribution primarily reflects encoding time and
response execution, and is relatively independent of efficiency in accumulating information.

Analysis 3: Vocabulary Knowledge, Diffusion Model Parameters, and Effects of Lexical
Variables

It has been generally assumed that reading proficiency (as reflected by print exposure or
vocabulary knowledge) is negatively correlated with the effect of variables like frequency
(Chateau & Jared, 2000) or length (Butler & Hains, 1979), such that better readers are less
influenced by different variables. To explore this, Table 9 (see also Figure 6) presents the
correlations between participant-level standardized principal component regression
coefficients, word recognition RTs, and vocabulary knowledge (see Table A3 for
correlations based on individual predictors).

In speeded pronunciation, higher-vocabulary-participants were less sensitive14 to a word’s
structural properties (PC1), neighborhood size (PC2), and word-frequency/semantics (PC3).
Similarly, in the lexical decision task, higher-vocabulary-participants produced smaller
neighborhood effects. However, an individual’s sensitivities to the structural and word-
frequency/semantics stimulus dimensions were only marginally related to vocabulary
knowledge. Moreover, the weak correlation between word-frequency/semantics effects and
vocabulary knowledge indicate that effects were larger for participants with more
vocabulary knowledge. These results challenge the assertion that word-frequency effects in
lexical decision performance are negatively related to an individual’s vocabulary knowledge
when processing speed is controlled. The present results are compatible with earlier work by
Butler and Hains (1979), Lewellen et al. (1993), and Sears et al. (2008). It remains unclear
why this pattern is seen in lexical decision but not in speeded pronunciation, where effects
of all three principal components were attenuated as vocabulary knowledge increased.
Further discussion of this intriguing pattern will be postponed to the General Discussion
section.

We now turn to the correlations between diffusion model parameters and principal
component effects (see Table 10 and Figure 7; see Table A4 in the Appendix for correlations
based on individual predictors) in lexical decision performance (since the diffusion model
only applies to binary decision tasks). As before, our discussion will focus on the three
parameters of greatest theoretical interest, i.e., boundary separation (a), nondecision time
(Ter), and drift rate (v). The results for the structural properties principal component (PC1)
are relatively straightforward. Specifically, structural properties (PC1) effects were
positively correlated with boundary separation and nondecision time, and negatively
correlated with drift rate. In other words, individuals with a greater sensitivity to stimulus
length show more conservative response criteria, longer nondecision times, and less efficient
accumulation of evidence. Results for the other two principal component effects are less
clear. Although boundary separation was reliably related to neighborhood (PC2) and word-
frequency/semantics (PC3) effects, such that individuals with larger PC2 and PC3 effects
produced larger values for boundary separation, the correlations were very low and should
be interpreted with caution. Turning to nondecision time, PC2 and PC3 were negatively
correlated, i.e., participants with larger effects on these principal components yielded longer
nondecision times. Finally, greater sensitivity to neighborhood size was associated with
lower drift rates, but greater influence of word-frequency/semantics produced higher drift
rates. Overall, these observations are compatible with the idea that larger effects of lexical

14Note that a negative correlation between the structural component and vocabulary knowledge indicates that length effects decrease
towards zero as vocabulary increase; length and RTs are positively related. In contrast, a positive correlation between the word-
frequency/semantics dimension and vocabulary knowledge indicates that frequency effects increase towards zero as vocabulary
increase; word-frequency/semantics and RTs are negatively related.
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variables are accompanied by lower drift rates and longer nondecision times. The major
anomaly was the positive relationship between word-frequency/semantics effects and drift
rate, wherein larger word-frequency/semantics effects were associated with larger drift rates.
This finding will be explored in greater depth in the General Discussion.

Analysis 4: Relationships Between the Different Principal Component Effects
We now turn to the correlations between individual’s sensitivity to different lexical
dimensions, as reflected by their effects for the three principal components (see Table 11
and Figure 8). Contrary to Baron and Strawson’s (1976) proposal, there was no evidence for
a trade-off between nonlexical and lexical processes, which would be evident in sensitivity
to length (PC1) and word-frequency/semantics (PC3) respectively. Individual differences in
word recognition performance do not appear to reflect a trade-off between Phoenician and
Chinese reading strategies, as Baron and Strawson suggested. Instead, all effects showed
strong positive correlations, i.e., being more sensitive to one lexical dimension is associated
with a higher sensitivity to other dimensions. Importantly, it is worth pointing out that these
correlations are unlikely to be entirely due to scaling or to general slowing, since they are
based on standardized regression coefficients (but see Footnote 1 for caveats). More
generally, we found no evidence of distinct sub-types of readers or trade-offs that might
reflect qualitatively distinct lexical processing strategies. Also, it is intriguing that the
between-component correlations were considerably higher in speeded pronunciation than in
lexical decision, which is compatible with earlier analyses suggesting that speeded
pronunciation performance is more reliable.

General Discussion
The present study is the first large scale investigation of individual differences using trial-
level data from the English Lexicon Project. There were a number of noteworthy findings.
First, across different sets of stimuli, between- and within-session reliability was relatively
high for an individual’s mean RT, RT distributional characteristics, diffusion model
parameters, and sensitivity to underlying lexical dimensions. Second, higher vocabulary
knowledge was associated with faster and more accurate word recognition performance, and
generally attenuated sensitivity to underlying lexical characteristics, along with steeper drift
rates, and shorter nondecision times. Third, there was no evidence for a trade-off between
sensitivity to different types of lexical information. Instead, participants who showed more
influence of one variable also showed more influence of other variables.

Variability and Reliability of Word Recognition Performance
Lexical decision and speeded pronunciation latencies are the most popular dependent
variables in word recognition research. Our analyses established clear and substantial
between-participant variability in word recognition performance, across virtually all the
parameters (e.g., mean RTs, RT distributional characteristics) examined. Characterizing the
scale of these individual differences within a large sample of participants across different
universities should help constrain future work on individual differences, and also inform
studies that attempt to study a “prototypical” reader using group-level analyses. For
instance, the large individual differences between participants may also be responsible for
some of the empirical inconsistencies in the literature (see, for example, Yap et al., 2009).

We began by exploring the reliability of different measures of individual differences in word
recognition performance. Understanding the reliability of the measures is a critical first step
in the study of individual differences. Without first establishing reliability, it is unclear
whether variability between readers reflects meaningful individual differences or
measurement noise. Our analyses identified several measures of word recognition
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performance that are stable within an individual. Specifically, across distinct sets of words,
within-session and between-session reliabilities were generally quite high with respect to
mean RTs, standard deviations, distributional characteristics, diffusion model parameters,
and sensitivity to underlying dimensions (as reflected by both individual predictors and
principal components). Remarkably, cross-session correlations for the τ parameter estimates
from the ex-Gaussian analyses (.940 and .872 for pronunciation and lexical decision
respectively) were as stable as those for the mean (.929 and .871 respectively), further
underscoring the utility of RT distributional analyses.

Broadly speaking, these results suggest that participants carry with them a relatively stable
distributional and processing profile that goes beyond one’s average processing speed. The
reliability of τ and drift rate (see Table 2) nicely inform claims (e.g., Schmiedek et al., 2007;
Tse et al., 2010) that stable individual differences in these parameters are systematically
related to controlled processing. Of course, τ is a descriptive parameter, whereas drift rate
has the advantage of being an explanatory parameter that can be directly mapped onto an
underlying process (Matzke & Wagenmakers, 2009).

Another striking finding is that reliability seems to be consistently higher in speeded
pronunciation than in lexical decision, in terms of distributional characteristics and
sensitivity to underlying lexical dimensions (see Tables 2 & 6). The reliability of speeded
pronunciation performance is intriguing, given the possible extra sources of measurement
noise in speeded pronunciation (e.g., variations in sensitivity of the voice-key to different
speaker characteristics). However, in contrast to the pronunciation task, lexical decision may
be driven by familiarity-based information and hence taps both lexical mechanisms as well
as postlexical decision-based mechanisms (Balota & Chumbley, 1984; Ratcliff et al., 2004).
In other words, lexical decision performance may be inherently less reliable because it is
jointly influenced by variability in both lexical and postlexical processing. We will comment
further on this intriguing pattern in the next section.

The Interplay Between Vocabulary Knowledge, Word Recognition Performance, and
Diffusion Model Parameters

A second issue addressed in this paper concerns the relationship between vocabulary
knowledge and word recognition performance. Vocabulary knowledge was systematically
related to many other measures of word recognition performance. For example, participants
with higher vocabulary knowledge were associated with faster and more accurate speeded
pronunciation and lexical decision performance. The ex-Gaussian analyses further revealed
that the relationship between vocabulary and speed was predominantly mediated by τ (see
Table 7), in both speeded pronunciation and lexical decision. In other words, vocabulary
knowledge was more strongly correlated with slower, compared to faster, RTs. This extends
the worst performance rule (Coyle, 2003), whereby IQ is most strongly related to the
slowest RTs. Typically, this finding has been observed more strongly in measures of fluid
intelligence.

Vocabulary knowledge was also related to the diffusion model parameters in interesting
ways. In lexical decision, more vocabulary knowledge was associated with larger drift rates
(r = .536), suggesting that as vocabulary increases, individuals process stimuli more
efficiently (see Table 8). These results converge with Ratcliff et al.’s (2010) observation that
IQ was strongly and positively related with drift rate, but not with other diffusion model
parameters. However, vocabulary knowledge was also negatively related to boundary
separation (r = −.085) and nondecision time (r = −.218), consistent with more liberal
response criteria and shorter nondecision times. Obviously, these correlations were not as
strong as the correlation for drift rate, but they suggest that vocabulary size can have
additional effects on the parameters from the diffusion model. Interestingly, although IQ did
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not reliably predict boundary separation and the nondecision component in Ratcliff et al.’s
sample, their correlations (see their Table 5) were in the same direction as the corresponding
correlations in the present study. Of course, the very large ELP sample affords more
statistical power to detect less powerful effects.

We were also interested in the relationship between vocabulary knowledge and sensitivity to
underlying lexical dimensions. Our preliminary hypothesis was that larger effects of lexical
variables should be produced by readers with less vocabulary knowledge. This was
motivated by the perspective that readers who are less skilled should be more reliant on
controlled lexical processing mechanisms, which ought to show a greater influence of
lexical characteristics (LaBerge & Samuels, 1974; Stanovich, 1980). As discussed in the
Introduction, a number of studies (e.g., Brown et al., 1994; Butler & Hains, 1979; Chateau
& Jared, 2000; Schilling et al., 1998) support the view that skilled readers produce smaller
effects of lexical variables. Of course, most of these studies did not control for overall
processing speed, making it possible that these results simply reflect spurious Group ×
Treatment interactions that are driven by scaling differences (Faust et al., 1999).

In order to address this issue, we examined participants’ standardized regression coefficients
for the three principal components of interest, where PC1 reflected structural properties,
PC2 neighborhood size, and PC3 word-frequency/semantics. The results from speeded
pronunciation were very clear. There was a negative relationship between vocabulary
knowledge and the three components, consistent with skilled readers being more reliant on
relatively automatic lexical processing mechanisms, and hence showing less influence of
word characteristics. The findings from lexical decision task are more intriguing. While
high-vocabulary-participants indeed produced smaller neighborhood (PC2) effects, effects
of structural properties (PC1) and word-frequency/semantics (PC3) were only marginally
related to vocabulary knowledge. These results suggest that word-frequency effects in
lexical decision are not negatively related to print exposure/vocabulary knowledge when
processing speed is controlled for, converging with reports by Butler and Hains (1979),
Lewellen et al. (1993), and Sears et al. (2008).

The foregoing findings are also compatible with results from the Ratcliff et al. (2010) lexical
decision study. Recall that their participants (young adults, older adults, very old adults)
responded to high-frequency (HF), low-frequency (LF), and very-low-frequency (VLF)
words in lexical decision, and that vocabulary knowledge was measured for each participant.
We plotted the drift rates for the three frequency classes of words as a function of
vocabulary knowledge and participant age (see Figure 9). As shown, drift rate was generally
positively correlated with vocabulary knowledge, as described earlier. However, the
relationships between drift rate and vocabulary knowledge for the different frequency
classes were represented by parallel lines, indicating that the magnitude of word-frequency
effects was not modulated by vocabulary knowledge15. In addition to the pattern described
above, we also found that when participants showed more of an influence of lexical
variables in lexical decision, this was accompanied by lower drift rates and longer
nondecision times. The major exception to this trend was the positive relationship between
word-frequency/semantics effects and drift rate, whereby larger word-frequency/semantics
effects yielded steeper drift rates.

15The only exception to this trend was seen in the line representing HF words in the young adult data, where there appears to be no
relationship between drift rate and vocabulary knowledge. However, this needs to be qualified by the instability of the HF word drift
rate estimates for these young adults, which were driven by fitting problems associated with very low error rates and some
problematic RTs (see Ratcliff et al., 2010, and Ratcliff & Tuerlinckx, 2002).
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Why are word-frequency effects smaller for high-vocabulary-knowledge participants in
speeded pronunciation, but not in lexical decision? In speeded pronunciation, the effect of
word-frequency is limited to lexical processes and possible production characteristics
(Balota & Chumbley, 1985), but word-frequency affects both lexical access and postlexical
decision-making stages in lexical decision (e.g., Balota & Chumbley, 1984). If the negative
relationship between word-frequency effects and vocabulary knowledge reflects lexical
processes, but word-frequency effects in lexical decision performance predominantly
reflects decision-making mechanisms, this might explain the dissociation between the two
tasks. To further examine this in a more fine-grained manner, we examined the correlations
between vocabulary knowledge and word-frequency effects at different regions of the RT
distribution across both tasks (see Table 14). For each participant, we first obtained the
following quantiles (.1, .3, .5, .7, .9) (Ratcliff, 1979) for high-frequency (25% most frequent)
and low-frequency (25% least frequent) words, which yielded frequency effects for the
fastest to the slowest responses in the RT distribution. Instead of raw RTs, we used
standardized residuals as the dependent variable, which control for correlated variables (e.g.,
length and neighborhood size) and processing speed.

The between-task differences were quite striking. In speeded pronunciation, the correlations
between vocabulary knowledge and word-frequency effects were negative and generally
reliable throughout the RT distribution. In contrast, for lexical decision, reliable positive
correlations between vocabulary knowledge and frequency effects were seen only in the
fastest quantiles. These findings suggest that higher-vocabulary participants, compared to
individuals with less vocabulary, are better able to take advantage of familiarity-based
information (such as word-frequency) in lexical decision; this facilitates responses to high-
frequency words, particularly those at the leading edge. This suggestion is compatible with
the finding that steeper drift rates accompany larger word-frequency/semantics effects (see
Figure 7). Specifically, participants who are more sensitive to familiarity-based information
(which can be used to drive lexical decisions) are also able to accumulate information about
a letter string more rapidly.

Obviously, these explanations are speculative and post hoc, and future investigations are
needed. However, these results suggest that for the ELP dataset, speeded pronunciation
performance is more consistently related to vocabulary knowledge in a predictable manner
than lexical decision performance. This is surprising as one may have expected lexical
processing to be diluted in pronunciation due to the reliance on the sublexical pathway. In
this light, it is noteworthy that the ELP included a large number of low-frequency long
words, which might have attenuated the influence of sublexical processing.

While our analyses focused on vocabulary knowledge, it is important to remember that
reading skill ultimately is a complex, multidimensional concept that subsumes decoding
speed (Perfetti, 1985; Stanovich, 1980, 1986), orthographic (Ehri, 2005) and phonological
(Rayner et al., 2001) processing, and sentential-level comprehension. Ideally, reading ability
should be assessed using multiple constructs, but the archival nature of the English Lexicon
Project dataset constrained us to assess reading skill rather narrowly by vocabulary
knowledge, i.e., knowledge of word forms and meaning. Nonetheless, despite its limitations,
the utility of vocabulary knowledge for predicting word recognition performance in the
present study is quite impressive.

Relationships Between ex-Gaussian and Diffusion Model Parameters
In the present paper, we fit individual-level RT data from the lexical decision task to the ex-
Gaussian distribution and to the diffusion model, and were able to obtain both ex-Gaussian
and diffusion model parameters for each participant. Consistent with the notion that a
participant’s slowest RTs reflect attentional lapses (Coyle, 2003; Larson & Alderton, 1990),
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a number of researchers (e.g., Schmiedek et al., 2007, & Tse et al., 2010) have suggested
that τ may be more related to controlled processing (see Matzke & Wagenmakers, 2009, for
more examples). While ex-Gaussian parameters provide a finer-grained characterization of
RTs, diffusion model parameters additionally map onto psychological processes. In the
preceding section, we considered how vocabulary knowledge relates to ex-Gaussian and
diffusion model parameters, but the relationships between the two sets of parameters are
also interesting. There is evidence from simulations (e.g., Spieler, 2001) that of the three ex-
Gaussian parameters, τ is most closely associated with drift rate, while μ is most closely
associated with the nondecision component. These trends were replicated in the present
analyses (see Table 8). Having said that, we also observed a robust relationship between τ
and boundary separation, in line with Matzke and Wagenmakers’ (2009) claim that ex-
Gaussian parameters cannot be uniquely ascribed to specific parameters of the diffusion
model. With that qualification, the very strong positive correlation between μ and
nondecision time (r = .89) is at least consistent with the possibility that the leading edge of a
participant’s RT distribution primarily reflects a nondecision component, while the tail of
the distribution (i.e., τ ) serves as a marker of decision processes. Clearly, as with all
dependent measures, converging evidence is needed to understand the relationship between
the parameters and underlying mechanisms.

Are There Distinct Types of Readers?
Baron and Strawson (1976) were the first to propose that there were distinct types of readers
who selectively relied on lexical or sublexical processing, a perspective that predicts that
participants who show larger frequency effects should show smaller length effects, and vice
versa. Our study makes it clear that although there are undoubtedly a great deal of variation
in how people recognize words, there is no clear evidence for a trade-off between readers’
sensitivities to different lexical characteristics. Instead, we found strong positive correlations
between effects of the three principal components after overall processing speed is
controlled for, which is more compatible with Brown et al.’s (1994) finding that increased
reliance on lexical processing is associated with increased reliance on sublexical processing.
Of course, this pattern can be easily accommodated by the general claim that as readers get
better, they rely increasingly less on controlled processing (Stanovich, 1980), which is
reflected in a decreased sensitivity to the various characteristics of a word. Also, it is
noteworthy that there may be a subset of participants that show trade-offs, but clearly these
participants are not prevalent in this database.

Modeling Individual Differences
The overarching goal of this work was to characterize individual differences in word
recognition behavior. For instance, we found that an individual’s vocabulary knowledge was
related to their sensitivity to lexical characteristics (see Table 9). This characterization is
generally consistent with the proposal that better readers utilize a more automatic reading
process (Stanovich, 1980). However, this obviously does not explain how or why some
individuals become better readers, how or why they shift to an automatic reading process,
and how or why automatic processes are less sensitive to lexical variables. Building a theory
that addresses these questions will require convergent methodologies.

Traditional experimental (e.g., Lewellen et al., 1993; Sears et al., 2008) and neurobiological
(e.g., Frost et al., 2009; Pugh et al., 1997) studies will continue to inform theories of
individual differences. In addition, computational modeling may be particularly well suited
to addressing the behavioral patterns we presented. To date, models have focused on
normative and dyslexic reading behavior (e.g., Coltheart et al., 2001; Harm & Seidenberg,
1999; McClelland & Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Perry, Ziegler, &
Zorzi, 2010; Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland,
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1989; Sibley & Kello, 2004), with relatively less attention given to individual differences
within a typically developing population (but see Zevin & Seidenberg, 2006).

Computational modeling has offered numerous insights about reading behaviors, and can
potentially contribute to theoretical accounts of individual differences in word recognition.
To do this, models will have to go beyond capturing group-level effects and instead help us
understand the source of these individual differences. For example, can the individual
differences reported in the present paper be simulated by training a population of models,
such that different models are imbued with slightly different cognitive mechanisms or
capacities, or are exposed to different learning experiences (e.g., Rueckl, 2010)?
Alternatively, one could also use the computational modeling approach to test the hypothesis
that individual differences phenomena reflect varying positions along the developmental
trajectory of a single model. Clearly, the present results will provide fodder for capturing the
nature of individual differences in standard word recognition tasks.

Limitations and Future Directions
In the present study, we conducted trial-level analyses of the ELP, an on-line behavioral
repository of nearly four million speeded pronunciation and lexical decision trials from over
1,200 participants. We found evidence that word recognition performance is reliable, and
that there are systematic relationships between vocabulary knowledge and word recognition
performance. Of course, there are a number of limitations inherent in the present work. For
example, due to the archival nature of the dataset, our only measure of vocabulary
knowledge is a single measure. In addition, we only considered the linear effects of lexical
predictors that were available for most (if not all) the ELP words. Hence, we did not model
non-linear effects (Baayen et al., 2006) nor did we include variables that have been
theoretically influential, such as phonological consistency (Chateau & Jared, 2003) and
morphological characteristics (Baayen et al., 2006) (see Yap and Balota, 2009, for further
discussion). Third, despite the scope of the ELP, one could argue that a sample based on
college students, who are selected for their vocabulary knowledge, will show a restricted
range of vocabulary knowledge relative to readers in general. Hence, we might be
underestimating the strength of the relationships between vocabulary knowledge and word
recognition performance. Finally, it would be useful to have multiple lexical processing
measures on the same participants to determine the consistency of lexical processing across
tasks including eye fixations and possibly semantic categorization (see Schilling et al., 1998,
for a step in this direction).

In summary, the present study provides the first comprehensive analysis of individual
differences in speeded word recognition tasks across a large set of stimuli and participants.
The results produced clear evidence of stable lexical processing characteristics at the
individual level. In considering how to best conceptualize lexical processing (an important
and critical step in literacy), we believe it will be increasingly important to develop models
that not only capture mean level performance but also capture the variability across
individuals. The present study provides a stable set of empirical relationships that will be
necessary for the next step in understanding visual word recognition.
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Figure 1.
Distributions of standardized regression coefficients across participants as a function of
lexical variable for speeded pronunciation.
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Figure 2.
Distributions of standardized regression coefficients across participants as a function of
lexical variable for lexical decision.
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Figure 3.
Distributions of standardized regression coefficients across participants as a function of
principal component for speeded pronunciation (left) and lexical decision (right).
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Figure 4.
Scatterplots (with 95% confidence intervals) between vocabulary knowledge and speeded
pronunciation (top) and lexical decision (bottom) response times.
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Figure 5.
Scatterplots (with 95% confidence intervals) between vocabulary knowledge and speeded
pronunciation (top) and lexical decision (bottom) accuracy.

Yap et al. Page 32

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Scatterplots (with 95% confidence intervals) between vocabulary knowledge and principal
component effects in speeded pronunciation (left) and lexical decision (right).
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Figure 7.
Scatterplots (with 95% confidence intervals) between principal component effects and
diffusion model parameters in lexical decision performance.
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Figure 8.
Scatterplots between principal component effects in speeded pronunciation (top) and lexical
decision (bottom).
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Figure 9.
Scatterplots between vocabulary knowledge and drift rates for high-frequency (HF), low-
frequency (LF), and very-low-frequency (VLF) words in young adults, older adults, and
very old adults.
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Table 2

Correlations between Session 1 and Session 2 parameters, and odd- and even-numbered trial parameters. With
the exception of mean RT and the diffusion model parameters, overall mean RT was partialled from each
correlation.

Speeded Pronunciation Lexical Decision

S1-S2 Odd-Even S1-S2 Odd-Even

Mean RT .929*** .998*** .871*** .997***

SD .958*** .992*** .924*** .993***

μ .865*** .993*** .717*** .983***

σ .732*** .920*** .509*** .921***

τ .940*** .987*** .872*** .988***

a .708*** .906***

z .720*** .910***

Ter .736*** .930***

η .403*** .649***

sz .388*** .812***

st .497*** .647***

vword .692*** .814***

vnonword .645*** .827***
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Table 4

Rotated component matrix for the three principal components extracted.

Component

1 2 3

1. Number of letters 0.901 −.0.284 −.0.146

2. Number of syllables 0.870 −.0.253 −.0.071

3. Phonological Levenshtein distance 0.845 −.0.314 −.0.195

4. Orthographic Levenshtein distance 0.819 −.0.348 −.0.221

5. Number of morphemes 0.796 −.0.050 −.0.130

6. Orthographic neighborhood size −.0.293 0.886 0.134

7. Phonological neighborhood size −.0.329 0.865 0.133

8. Semantic neighborhood density −.0.065 −.0.042 0.883

9. Word-frequency −.0.224 0.138 0.873

10. Number of senses −.0.143 0.308 0.551
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Table 6

Correlations between Session 1 and Session 2 participant-level principal component effects, and odd- and
even-numbered trial participant-level principal component effects.

Speeded Pronunciation Lexical Decision

S1-S2 Odd-Even S1-S2 Odd-Even

PC1 (Length/OLD/PLD) .706*** .799*** .647*** .753***

PC2 (ON/PN) .534*** .623*** .377*** .429***

PC3 (Frequency/Semantics) .625*** .677*** .515*** .638***
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Table 7

Vocabulary knowledge as a predictor of mean RT and ex-Gaussian parameters in speeded pronunciation and
lexical decision.

Mean μ σ τ

Speeded Pronunciation −.402*** −.218*** −.335*** −.448***

Lexical Decision −.323*** −.159*** −.241*** −.335***
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Table 8

Relationships between diffusion model parameters and mean RT, mean accuracy, and vocabulary knowledge.

Diffusion Model Parameters Mean RT Mean Acc Vocabulary
Knowledge

a .744*** .127*** −.085*

z .682*** .191*** −.083*

Ter .636*** −.097** −.218***

η −.311*** .084* .082*

sz .359*** .018 −.053

st .425*** −.334*** −.250***

vword −.476*** .580*** .536***

vnonword .526*** −.568*** −.448***

Diffusion Model Parameters μ Σ τ

a .449*** .237*** .776***

z .388*** .170*** .731***

Ter .891*** .459*** .350***

η −.106** −.168*** −.338***

sz .120*** .121*** .472***

st .475*** .653*** .220***

vword −.239*** −.343*** −.509***

vnonword .274*** .407*** .569***
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Table 9

Correlations between participant-level standardized regression coefficients, vocabulary knowledge, and mean
RT.

Speeded pronunciation (n = 456) Lexical decision (n = 792)

Vocabulary
knowledge Mean RT Vocabulary

knowledge Mean RT

PC1 (length/OLD/PLD) −.200*** .033 −.060† .205***

PC2 (ON/PN) .323*** −.189*** .201*** −.063†

PC3 (frequency/semantics) .280*** −.394*** −.083* .125***

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2013 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yap et al. Page 46

Ta
bl

e 
10

C
or

re
la

tio
ns

 b
et

w
ee

n 
pa

rti
ci

pa
nt

-le
ve

l s
ta

nd
ar

di
ze

d 
re

gr
es

si
on

 c
oe

ff
ic

ie
nt

s a
nd

 d
iff

us
io

n 
m

od
el

 p
ar

am
et

er
s.

a
z

T e
r

η
s z

s t
v w

or
d

v n
on

w
or

d

PC
1 

(le
ng

th
/O

LD
/P

LD
)

.1
87

**
*

.2
09

**
*

.2
31

**
*

−
.0
44

.0
78

*
.0

73
*

−
.1
03
**
*

.0
66

†

PC
2 

(O
N

/P
N

)
.0

74
*

.0
72

*
−
.2
09
**
*

−
.0
32

.0
17

−
.2
31
**
*

.2
04

**
*

−
.1
44
**
*

PC
3 

(f
re

qu
en

cy
/s

em
an

tic
s)

.1
11

**
.0

32
−
.1
22
**
*

−
.2
05
**
*

.0
92

**
.0

86
*

−
.1
45
**
*

.2
84

**
*

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2013 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yap et al. Page 47

Table 11

Correlations between the participant-level principal component effects.

Speeded pronunciation (n = 470)

PC1 PC2 PC3

1. PC1 - −.565*** −.516***

2. PC2 - .547***

3. PC3 -

Lexical decision (n = 819)

PC1 PC2 PC3

1. PC1 - −.371*** −.411***

2. PC2 - .197***

3. PC3 -
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Table A2

Correlations between Session 1 and Session 2 participant-level standardized regression coefficients, and odd-
and even-numbered trial participant-level standardized regression coefficients.

Speeded Pronunciation Lexical Decision

S1-S2 Odd-Even S1-S2 Odd-Even

Word-frequency .685*** .753*** .577*** .742***

Number of morphemes .238*** .305*** .135*** .155***

Number of syllables .320*** .472*** .257*** .284***

Number of letters .416*** .493*** .459*** .483***

Orthographic neighborhood size .194*** .179*** .087* .068†

Phonological neighborhood size .129** .151** .113*** .112**

Orthographic Levenshtein distance .353*** .355*** .101** .146***

Phonological Levenshtein distance .121** .133** .038 .036

Number of senses .126** .124** .103** .084*

Semantic neighborhood density .078† .027 .010 −.017
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Table A3

Correlations between participant-level standardized regression coefficients, vocabulary knowledge, and mean
RT.

Speeded pronunciation (n = 456) Lexical decision (n = 792)

Vocabulary
knowledge Mean RT Vocabulary

knowledge Mean RT

Word-frequency .298*** −.446*** −.080* .186***

Number of morphemes .236*** −.106* −.009 .035

Number of syllables −.143** .180*** .071* −.106**

Number of letters −.128** −.120* −.057 .281***

Orthographic neighborhood size .148** −.154** .099** .120***

Phonological neighborhood size .043 .024 .183*** −.141***

Orthographic Levenshtein distance −.094* −.214*** −.066† −.154***

Phonological Levenshtein distance −.066 .077 −.063† .062†

Number of senses .011 −.134** −.094** .038

Semantic neighborhood density −.165*** −.016 −.093** −.024
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