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Summary

While interleukin (IL)-1b plays an important role in combating the invading
pathogen as part of the innate immune response, its dysregulation is respon-
sible for a number of autoinflammatory disorders. Large IL-1b activating
platforms, known as inflammasomes, can assemble in response to the detec-
tion of endogenous host and pathogen-associated danger molecules. Forma-
tion of these protein complexes results in the autocatalysis and activation of
caspase-1, which processes precursor IL-1b into its secreted biologically active
form. Inflammasome and IL-1b activity is required to efficiently control viral,
bacterial and fungal pathogen infections. Conversely, excess IL-1b activity
contributes to human disease, and its inhibition has proved therapeutically
beneficial in the treatment of a spectrum of serious, yet relatively rare, heri-
table inflammasomopathies. Recently, inflammasome function has been
implicated in more common human conditions, such as gout, type II diabetes
and cancer. This raises the possibility that anti-IL-1 therapeutics may have
broader applications than anticipated previously, and may be utilized across
diverse disease states that are linked insidiously through unwanted or height-
ened inflammasome activity.
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Introduction

Several families of germline encoded pattern recognition
receptors (PRRs) have been identified that mediate critical
aspects of the innate and protective immune responses
required for control of microbial and viral infection. These
include the Toll-like receptor (TLR) family, the retinoid-
inducible gene 1 (RIG-I) like receptors (RLRs), the C-type
lectin receptors and the nucleotide binding domain (NOD)-
like receptor (NLR) family. Activation of PRRs results from
the recognition of a number of conserved microbial and viral
components, such as cell wall proteoglycans, pore-forming
toxins and pathogen RNA and DNA [pathogen-associated
molecular patterns (PAMPs)]. In addition, several host PRR
activators [damage-associated molecular patterns (DAMPs)]
have been identified, such as extracellular adenosine
5′-triphosphate (ATP), host DNA, hyaluronan and monoso-
dium urate crystals. DAMPs can accumulate as a result of
metabolic disorders or may be released upon cellular damage
caused by trauma (i.e. myocardial infarction) and infection.
They can therefore contribute to sterile-inflammation and
wound responses, as well as pathogen-associated immune
responses.

While TLRs detect extracellular and intracellular vacuolar
stimuli, NLRs appear to respond to cytosolic disturbances.
The NLR family contains several proteins (see below) that
act as scaffolds and oligomerize into large protein complexes
(~700 kDa) to induce inflammasome formation via activa-
tion of the inflammatory caspase, caspase-1, which proteoly-
ses and thereby activates precursor interleukin (IL)-1b and
IL-18, and can also lead to the release of IL-1a [1,2]. Acti-
vated IL-1b is a potent endogenous pyrogen and induces
flu-like symptoms such as chills, rigors, fever, nausea, vom-
iting, headache and fatigue when injected into humans at
1–10 nanograms/kg of body weight [3,4]. Both IL-1b and
IL-1a bind to the IL-1 receptor (IL1-R) and induce the for-
mation of a high-affinity ternary complex with the IL-1R
accessory protein. The resulting downstream signalling
cascade leads to transcription factor induction of proinflam-
matory cytokines and chemokines, and includes genes
required for angiogenesis and the recruitment of immune
effector cells into the extravascular space. It can also result in
the activation of lymphocytes and epithelial cells. While
these responses to IL-1b are critical for host protection
from many types of viruses and microbes and may aid in
cellular and tissue repair responses as discussed below, the
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dysregulation of IL-1b activity is now implicated in a variety
of seemingly divergent diseases such as type II diabetes and
gout. Clinical blockade of IL-1 has not only proved to be
beneficial in the treatment of these conditions, but is sur-
prisingly well tolerated, which will hopefully expedite the
clinical evaluation of IL-1 activity in other pathologies in the
near future.

In this review we highlight the benefits of nucleotide-
binding domain (NOD)-like receptor protein 3 (NLRP3)
inflammasome function in the host defence against invad-
ing pathogens (the good), the relatively rare heritable
inflammasomopathies that cause excessive IL-1b activation
and a number of related diseases (the bad) and the experi-
mental and clinical evidence for unwarranted inflam-
masome activity contributing to common pathologies
affecting millions of people, such as cancer and diabetes
(the ugly).

Inflammasome structure

Twenty-two human NLRs exist that have been delineated
based on their domain structure and phylogenetic relation-
ships [5,6] (Fig. 1). In general, NLRs contain a C-terminal
region made up of a variable number of leucine-rich
repeats (LRRs) that are likely to autoinhibit NLR protein
function in the resting state, and undergo a conformational
change following the detection of an activating stimuli
[7]. A central nucleotide binding and oligomerization
(NACHT) domain, common to all NLRs, oligomerizes
upon inflammasome activation in the presence of nucle-
otides such as ATP and is essential for function [8,9]. An
N-terminal effector domain consisting of either a caspase
activation and recruitment domain (CARD), Pyrin or bacu-
loviral inhibitor of apoptosis protein repeat (BIR) domain
precedes the NACHT domain. These N-terminal domains
initiate specific downstream signalling cascades through
homotypic protein interactions. In the case of inflamma-
some formation, the Pyrin domain containing inflamma-
somes (i.e. NLRP3) can bind the Pyrin domain of apoptosis
speck protein (ASC), which subsequently recruits pro-
caspase-1 through CARD–CARD homotypic interactions

(Fig. 1). Other inflammasomes that lack a Pyrin domain
(i.e. NLRC4) appear able to directly recruit caspase-1
through a C- or N-terminal CARD domain, although
they may depend on ASC for optimal function [8].
Pro-caspase-1 recruitment results in proximity-induced
caspase-1 oligomerization and autocatalysis, resulting in the
release of the active catalytic p20 and p10 caspase-1 frag-
ments and subsequent processing of precursor IL-1b into
its biologically active 17 kDa fragment. Notably, basal levels
of IL-1b are low and a nuclear factor kappa B (NF-kB)-
dependent priming signal [often provided by TLR family
members or tumour necrosis factor (TNF)] is required to
induce precursor IL-1b expression before it can be cleaved
by caspase-1, and can also enhance the expression of other
inflammasome components such as NLRP3 [10]. While
inflammasomes are not involved directly in the secretion of
cytokines such as TNF or IL-6 (although IL-1R signalling
can modulate their transcription), caspase-1 is required for
non-conventional protein secretion of a variety of leaderless
proteins involved in inflammation, cytoprotection and
tissue repair [11]; however, any extracellular function for
most of these proteins remains to be determined.

Cleavage of IL-1b by caspase-1 is highly specific and other
caspases, such as apoptotic caspases, are unlikely to activate
IL-1b directly [12]. It has been suggested that a number of
serine proteases may cleave IL-1b near the caspase-1 cleavage
site, thus generating active IL-1b (reviewed in [13]). Similarly,
activation of the TNF superfamily death receptor Fas can
also induce IL-1b maturation in caspase-1 knock-out neutro-
phils [14]. While the relevance of IL-1b cleavage and activa-
tion by caspase-1-independent mechanisms in vivo has yet to
be fully addressed, caspase-1-independent IL-1b activation
can occur in murine models of arthritis, Mycobacterium
tuberculosis infection and following tissue damage, suggesting
that alternate protease processing of IL-1b is physiologically
relevant [15–19].

The good: inflammasome protection against
pathogen infection

To date, potentially five inflammasome scaffold proteins that
respond to different pathogenic stimuli to activate caspase-1
and IL-1b in vivo have been characterized. The inflamma-
somes belonging to the NLR family include NLRP1, NLRC4
and NLRP3. The NLRP1 (NALP1/CARD7) inflammasome
is activated following the detection of anthrax lethal toxin,
the agent responsible for shock-death following systemic
infection by Bacillus anthracis (reviewed in [6]). NLRC4
(IPAF/CARD12) detects flagellin and components of the
type 3 secretion system from pathogenic bacteria such as
Shigella flexneri, Salmonella typhimurium, Listeria monocy-
togenes and Legionella pneumophila (reviewed in [20]).
Outside the NLR family, absent in melanoma 2 (AIM2) is
capable of forming a caspase-1 inflammasome through its
recognition of cytosolic dsDNA from viruses and bacteria,
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Fig. 1. Structure of the nucleotide-binding domain (NOD)-like

receptor protein 3 (NLRP3) inflammasome. NLRP3 activation leads to

homotypic interactions between the NLRP3 and apoptosis speck

protein (ASC) pyrin domains and complex oligomerization. The

caspase activation and recruitment domain (CARD) domains of ASC

and caspase-1 interact and caspase-1 dimerization results in

proximity-induced autoactivation and generation of the active

tetrameric caspase-1 p20 and p10 fragments.
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as well as the host itself [21–23], while the RIG-I inflamma-
some can detect cytosolic viral RNA species such as
5′-triphosphate RNA and dsRNA [24]. While we focus upon
the NLRP3 inflammasome in this review, Table 1 lists the
different inflammasomes involved in PAMP recognition,
and whether gene knock-out murine models have estab-
lished a role for inflammasome function in pathogen immu-
nity in vivo.

The best-characterized NLR capable of forming an inflam-
masome complex is NLRP3 (Cryopyrin/Nalp3/Cias1/
Pypaf1). The extraordinary number of NLRP3 activators
suggests that it may be a general detector of cellular stresses
resulting from sterile trauma, intrinsic metabolic distur-
bances or pathogen infection (Fig. 2). Some of the host-
derived DAMPs that activate NLRP3 include hyaluronan,
cholesterol crystals, extracellular ATP, b-amyloid, DNA and
gout-associated monosodium urate crystals, while environ-
mental DAMPs include asbestos, silica, nanoparticles, skin
irritants and alum adjuvant. PAMPs that stimulate NLRP3
can include pathogen-associated RNA, DNA, pore-forming
toxins and peptidoglycans. While potassium efflux from the
cell is a general requirement for the activation of the NLRP3
inflammasome, this is not required for other inflammasomes
such as the one assembled around NLRC4 [25].

Stress-induced reactive oxygen species (ROS) production
has been hypothesized as a common denominator that may

determine NLRP3 activation status either directly via oxida-
tion, or through an as-yet undetermined intermediate
(Fig. 2) (reviewed in [26]). Other data suggest that lysosomal
rupture and release of intracellular proteases, such as cathe-
psins, may activate NLRP3 (reviewed in [27]). This ‘frus-
trated phagocytosis’ scenario has been implicated in NLRP3
activation from particulate or crystalline stimulants, where
their uptake leads to lysosomal damage and release of poten-
tial NLRP3 activating proteases [28,29]. While cathepsin B
has been reported as taking part in NRLP3 activation based
on chemical inhibitor studies, mice lacking this gene show
normal NLRP3 activity in response to several NLRP3 stimuli
[30]. Therefore, how lysosomal protease release/activation
could induce NLRP3 activity remains unclear, although in
theory it could result from the cleavage of a NLRP3 ligand or
inhibitory protein [27].

While most inflammasome activators induce cellular ROS
and, conversely, ROS scavenging compounds inhibit NLRP3
inflammasome function, the specificity and targets of these
compounds is often questionable. Further, many ROS induc-
ing cellular processes do not result in inflammasome activa-
tion, and the targeted deletion of ROS-producing or
inhibitory genes, arguably the gold standard in analysing
cellular function, has yet to result in a block in NRLP3
inflammasome function. In fact, it was demonstrated that
deletion of the ROS scavenger superoxide dismutase (SOD)
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Fig. 2. Models for nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Cells, typically macrophages or

dendritic cells, must first be ‘primed’ by an appropriate nuclear factor kappa B (NF-kB) transcription factor activating stimuli to induce precursor

interleukin (IL)-1b expression. This often occurs by activation of a Toll-like receptor (TLR) family member (depicted), tumour necrosis factor

(TNF) receptor activation, or even IL-1R activation (not depicted). NLRP3 stimulants all induce K+ efflux. Although this is essential for NLRP3

activity, why and how this occurs remains a mystery. Pore-forming toxins and cell permeable NLRP3 activators can also result in mitochondrial

reactive oxygen species (ROS) production that may amplify or induce NLRP3 activity, possibly via an undetermined intermediate (protein X).

Particulate or crystalline matter is phagocytosed and leads to endosomal/lysosomal damage, resulting in the activation/release of lysosomal proteases

(i.e. cathepsins) that can cause NLRP3 induced caspase-1 activity, which may also depend on mitochondrial ROS induction and/or processing of a

NLRP3 inhibitory or activating ligand.
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Table 1. The good: inflammasome control of pathogen infection.

Organism PAMPS identified

Inflammasome

activated

Inflammasome

importance

established

in vivo? Refs

Helminths

Schistosoma mansoni n.d. NLRP3 Yes [138]

Bacteria

Mycobacterium tuberculosis ESX-1 secretion system NLRP3-dependent

and -independent

mechanism

Yes. In vivo IL-1

production is

independent of

caspase-1

[17,139–142]

Streptococcus pneumoniae Pneumolysin NLRP3 Yes [143,144]

Streptococcus pyogenes Streptolysin O NLRP3 Yes. Not important

in vivo

[145]

Streptomyces hygroscopicus Nigericin NLRP3 n.a. [146]

Klebsiella pneumoniae n.d. NLRP3 Yes [147]

Chlamycia pneumoniae n.d. NLRP3 Yes [148]

Salmonella typhimurium Flagellin and type III secretion system NLRP3 and

NLRC4

Yes [149,150]

Francisella tularensis DNA AIM2 Yes [146,151,152]

Legionella pneumophila Flagellin NLRC4 Yes [153]

Listeria monocytogenes Flagellin, Listeriolysin O, DNA AIM2, NLRP3,

NLRC4

Yes* [146,154,155]

Pseudomonas aeruginosa Flagellin, Type III secretion system NLRC4 Yes [156–158]

Shigella flexneri Type III secretion system NLRC4 Yes [157,159]

Neisseria gonorrhoeae Lipo-oligosaccharide NLRP3 No [160]

Staphylococcus aureus Peptidoglycan

Haemolysin

NLRP3 Yes [146,161–165]

Virbrio vulnificus and

Vibrio cholerae

Haemolysins NLRP3 No [166]

Bacillus anthracis Anthrax lethal toxin NLRP1 Yes [167–170]

Escherichia coli Type III secretion system, flagellin NLRC4 No [157]

Chlamydia trachomatis Type III secretion system NLRP3 No [171]

Protozoa

Toxoplasma gondii n.d. NLRP1 No [172]

Plasmodium species;

falciparum, berghei,

chabaudi

Haemozoin, MSU NLRP3 Yes† [30,136,173]

Fungal

Candida albicans Hyphae, b-glucan NLRP3 Yes [174]

Aspergillus fumigatus n.d., b-glucan NLRP3 No [175,176]

Saccharomyces cerevisiae n.d., b-glucan NLRP3 n.a. [174]

Viruses

Sendai virus RNA NLRP3 No [177]

Influenza virus RNA, M2 ion channel NLRP3 Yes [177–181]

Adenovirus DNA NLRP3 Yes [182]

Vaccinia virus DNA, RNA AIM2 No [23,155]

Mouse cytomegalovirus DNA AIM2 Yes [155]

Vesicular stomatis virus 5′-triphosphate ssRNA RIG-Ic, NLRP3 Yes. Not important

in vivo

[24,183]

Encephalomyocarditis virus RNA NLRP3 Yes. Not important

in vivo

[24,183]

*Flagellin importance only determined. †In a Plasmodium berghei mouse model, NLRP3 has been suggested to protect from cerebral malaria in a

NLRP3-dependent, but caspase-1, apoptosis speck protein (ASC) and interleukin (IL)-1b-independent manner [184]. cThe requirement of retinoid-

inducible gene 1 (RIG-I) for vesicular stomatis virus (VSV)-induced IL-1 is unclear as, unlike the initial finding, it was reported recently to not be

required [183]. PAMP: pathogen-associated molecular pattern; ESX: early secreted antigenic target, 6 kDa secretion system; MSU: monosodium urate;

n.d.: not determined; n.a.: not applicable.
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resulted in enhanced IL-1b activation, and it was suggested
that ROS oxidizes specific caspase-1 cysteine residues result-
ing in caspase-1 inhibition [31]. Similarly, monocytes from
chronic granulomatous disease patients who lack NADPH
oxidase activity, and its associated ROS production, display
increased IL-1b maturation in response to NLRP3 stimu-
lants [32,33].

Recently it has been proposed that the mitochondria, and
not NADPH oxidase activity, may be the source of ROS
required for NLRP3 activation (Fig. 2) [34]. In support of
this, it was reported that monocytes from patients who
harbour missense mutations in TNFR1 and suffer from
an autoinflammatory condition termed TNF-receptor-
associated periodic syndrome (TRAPS) display increased
mitochondrial respiratory capacity and ROS generation com-
pared to normal monocytes, leading to enhanced cytokine,
including IL-1b, production [35]. It will be interesting to
determine if monocytes from patients harbouring activat-
ing NLRP3 mutations also display enhanced mitochondrial
respiration and ROS and if this effects IL-1b maturation
[35].

Understandably, a variety of both host and pathogen
mechanisms have evolved to inhibit inflammasome activity.
Several viral POPs (Pyrin domain-only proteins) and
serpins (protease inhibitors) have been identified that can
bind and inhibit caspase-1, while bacteria have been shown
to interfere with caspase-1 function via type III secretion
effector molecules or pore-forming virulence factors
(reviewed in [36]). Host inhibitors include a secreted IL-1
receptor antagonist (Il-1Ra) that competes for receptor
binding with IL-1, and an IL-1 decoy receptor (IL-1RII).
Deletion of IL-1Ra in mice increases IL-1b serum levels
and leads to severe inflammatory distress and disease
phenotypes resembling rheumatoid arthritis [37–39].
Mutations in Pyrin cause familial Mediterranean fever
and increased IL-1b activation is also observed in Pyrin
knock-out mice [40]. The exact mechanism for Pyrin inhi-
bition of inflammasome function remains unclear,
although it is likely to compete with caspase-1 for binding
to ASC [40]. Sequestration or inhibition of ASC and
caspase-1 can also be achieved through the Pyrin or
CARD-only protein families in humans (reviewed in [41]).
TNF superfamily ligand stimulation, autophagy and type I
IFN treatment can also result in diminished inflammasome
function, although how they do so is still being unravelled
[42–45].

The bad: cryopyrin-associated periodic syndromes
and autoinflammatory disorders

The NLRP3 inflammasome has attracted considerable
attention ever since its initial characterization due to its
implication in the pathogenesis of several human inflam-
matory diseases [6]. In particular, mutated NLRP3 has been
identified as the cause of a group of inflammatory diseases

known as the cryopyrin-associated periodic syndromes
(CAPS).

Cryopyrin-associated periodic syndromes

Gain of function mutations in the NACHT domain of
NLRP3 were identified as being responsible for three chronic
aseptic inflammatory diseases: familial cold autoinflamma-
tory syndrome (FCAS), Muckle–Wells syndrome (MWS)
and neonatal onset multi-systemic inflammatory disease/
chronic infantile neurological cutaneous articular syndrome
(NOMID/CINCA) [46]. These closely related conditions
form the family of cryopyrin-associated periodic syndromes
(CAPS), a name derived from the original designation of the
NLRP3-encoding gene, then known as cryopyrin. Together,
they constitute a spectrum of diseases with increasing sever-
ity, with FCAS, MWS and NOMID/CINCA representing the
mildest, intermediate and most severe forms, respectively
[47]. Clinically, they are characterized by recurrent fevers,
urticarial-like skin rashes, joint and ocular symptoms, amy-
loidosis and, in the case of NOMID/CINCA, severe neuro-
logical complications [47,48] (Table 2).

In FCAS, MWS and NOMID/CINCA, several point muta-
tions target the NACHT domain of the NLRP3 protein,
resulting in gain-of-function mutations that constitutively
activate the NLRP3 inflammasome [49,50]. In accordance,
monocytes and macrophages isolated from MWS patients
display a basal, spontaneous secretion of mature IL-1b in the
absence of any external stimulus [49]. Collectively, these
observations provided a convincing rationale for a novel
therapeutic approach to these patients, namely through the
inhibition of inflammasome activity. Strikingly, treating
these patients with anakinra, a non-glycosylated recombi-
nant form of the naturally occurring IL-1 receptor antago-
nist (IL-1Ra) which blocks inflammasome-dependent IL-1b
signalling, resulted in a complete cessation of clinical symp-
toms and biochemical changes within hours of administra-
tion [51,52]. The efficacy of anti-IL-1b therapy was
demonstrated across the CAPS spectrum, even in children
with the more severe phenotype of NOMID/CINCA [53,54].

The clinical availability of IL-1 inhibitors has thus been
critical to the identification of the NLRP3 inflammasome as
a critical regulator of inflammation in vivo. The prototypic
anti-IL-1b therapy has been based so far on the daily subcu-
taneous injection of anakinra [55] (Table 3). Anakinra was
first developed as a promising therapy for sepsis and septic
shock [56], but subsequent large-scale studies have been dis-
appointing in that regard [57–59]. However, in 2001 it was
approved by the Food and Drug Administration (FDA) as a
second-line treatment for rheumatoid arthritis patients
suffering from a moderate to severe form of the disease
that is unresponsive to at least one disease modifying
anti-rheumatic drug (DMARD) therapy.

In preliminary clinical studies, anakinra has been widely
successful in treating CAPS patients. Indeed, all cases
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reported in the literature to date responded to the therapy,
albeit with various dosage requirements [47]. Overall, anak-
inra has a perhaps surprisingly robust record of safety
[60,61], considering the prominent role of IL-1b in inflam-
matory and immunological responses. Conversely, patient

tolerance for anakinra is often poor, due to substantial mor-
bidity associated with injection-site reactions and upper res-
piratory tract infections.

Recently, two additional IL-1 antagonists have been app-
roved for clinical use in CAPS patients (Table 3). Rilonacept is

Table 2. The bad I: cryopyrin-associated periodic syndromes.

FCAS MWS NOMID/CINCA

Inheritance Autosomal dominant Usually autosomal dominant, rare

sporadic cases

Mostly sporadic, rarely autosomal

dominant

Onset of disease Neonatal or infancy (< 6 months) Variable, usually infancy, up to

adolescence

Neonatal or early infancy

Flares Cold-triggered, usually 1–2 h after

exposure, episode < 24 h

No clearly identified trigger

(possibly cold exposure, stress).

Spectrum of continuous

symptoms to recurrent flares

lasting 1–3 days

Usually continuous symptoms, with

aggravation during flares

Relative severity Low Medium High

Cardinal symptoms Cold-induced fever, urticarial-like

skin rash, arthralgia,

conjunctivitis, sweating, fatigue,

extreme thirst, nausea

Recurrent low-grade fever,

urticarial-like skin rash,

sensorineural hearing loss,

arthritis, conjunctivitis, AA

amyloidosis

Inconstant mild fever, urticarial-like

skin rash, chronic aseptic

meningitis, sensorineural hearing

loss

Skin Maculopapular, migratory, urticarial-like, usually non-pruritic skin rash

Joints Arthralgia Arthralgia, arthritis Arthralgia, arthritis, bony

overgrowth arthropathy of the

knees (25–50%)

Eyes Conjunctivitis Conjunctivitis, uveitis Conjunctivitis, uveitis (75%),

chronic papilledema possibly

progressing to blindness

Sensorineural hearing loss Rare Frequent (75%), onset during

adolescence

Frequent (50%), onset during

childhood

Central nervous system None None Severe headaches, high intracranial

pressure, chronic aseptic

meningitis, possibly leading to

mental retardation

Amyloidosis Rare (< 2%) Frequent (25–50%), adult-onset Frequent (25%), adult-onset

FCAS: familial cold autoinflammatory syndrome; MWS: Muckle–Wells syndrome; NOMD/CINCA: neonatal onset multi-systemic

inflammatory disease/chronic infantile neurological cutaneous articular syndrome; AA amyloidosis: amyloid AA amyloidosis.

Table 3. Current approved anti-interleukin (IL)-1 therapies.

Anakinra (Kineret) Rilonacept (Arcalyst) Canakinumab (Ilaris)

Nature Recombinant IL-1Ra Cytokine trap (fusion protein including

IL-1R and IL-1Ra)

Humanized monoclonal antibody

against IL-1b
Target IL-1R IL-1b (and IL-1a, IL-1RAcP) IL-1b
Half-life 4–6 h 8·6 days 26 days

Administration 100 mg, daily, subcutaneous 320 mg loading dose then 160 mg

maintenance, weekly, subcutaneous

150 mg, every 8 weeks, subutaneous

(or intravenous)

Common side-effects Major injection site reactions,

URI, infections

Minor injection site reactions, URI,

infections

URI, vertigo (MWS patients), negligible

injection site reactions,

Indications Second-line therapy for RA

(FDA 2001, EMEA 2002).

CAPS (off-label use)

FCAS and MWS patients aged more

than 12 years (FDA 2008, EMEA

2009)

FCAS and MWS patients aged more

than 4 years (FDA and EMEA 2009)

IL-1Ra: IL-1 receptor antagonist; IL-1R: IL-1 receptor; IL-1RAcP: IL-1 receptor accessory protein; URI, upper respiratory tract infections; CAPS;

cryopyrin-associated periodic syndromes; RA: rheumatoid arthritis; FCAS: familial cold autoinflammatory syndrome; MWS: Muckle–Wells syndrome;

FDA: Food and Drug Administration; EMEA: European Medicines Agency. Regarding NOMID/CINCA: the only currently approved therapy is

Canakinumab (approved by the EMEA but not the FDA).
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a dimeric fusion glycoprotein that acts as a soluble decoy
receptor with high affinity for both IL-1a and IL-1b [62]. It
has proved effective in treating FCAS and MWS patients
in two clinical studies [62,63]. Rilonacept is administered
subcutaneously once-weekly due to its longer half-life,
and presents a safety profile comparable to that of
anakinra.

Canakinumab is a fully humanized monoclonal antibody
against IL-1b with a half-life of about 4 weeks that has proved
safe and effective in treating CAPS patients [64]. Both
the above compounds are attractive additional anti-IL-1b
therapies because of their weekly (rilonacept) or bimonthly
(canakinumab) schedule of administration, in contrast to the
requirement for daily injections of anakinra.

Autoinflammatory syndromes

Cryopyrin-associated periodic syndromes are part of the
greater family of hereditary autoinflammatory syndromes, a
concept first proposed in 1999 to describe a group of inher-
ited disorders characterized by recurrent attacks of fever and
multi-systemic inflammation [65]. In contrast to autoim-
mune diseases, autoinflammatory disorders lack high-titre
autoantibodies or antigen-specific T cells [66]. The NLRP3
inflammasome has been implicated in the pathogenesis of
several additional autoinflammatory syndromes aside from

CAPS, on the basis of their favourable response to anti-IL-1b
therapy [6,50] (Table 4).

Familial Mediterranean fever (FMF) and pyogenic arthri-
tis, pyoderma gangrenosum and acne (PAPA) syndrome are
caused by mutations in the genes encoding for Pyrin and
PSTPIP1, respectively [50]. While FMF is an autosomal
recessive disease characterized by episodes of fever lasting
1–3 days associated with severe abdominal pain, pleuritic
chest pain, arthritis and a skin rash [67], PAPA syndrome
is inherited in a dominant manner, and characterized by
recurrent pyogenic but sterile arthritis coupled to skin mani-
festations such as pyoderma gangrenosum and acne [68,69].
Interestingly, Pyrin has been shown to interact with NLRP3
inflammasome components, and the mutated form respon-
sible for FMF was found to result in NLRP3 inflammasome
activation [70]. Moreover, PSTPIP1 was shown to associate
with Pyrin, and mutated forms responsible for PAPA syn-
drome had a higher affinity for Pyrin [71]. Taken together,
these findings suggest that both FMF and PAPA syndrome
might be inflammasome-dependent pathologies, and the
term of ‘extrinsic inflammasomopathies’ has thus been pro-
posed [50]. Accordingly, IL-1 antagonism has proved to be
an effective treatment for both conditions [72–74]. Other
autoinflammatory disorders have been linked to dysregu-
lated inflammasome activity on the basis of their favourable
response to anti-IL-1 therapy; however, in most of these

Table 4. Additional autoinflammatory syndromes possibly linked to dysregulated inflammasome activity.

Disease Cause Cardinal symptoms Current treatment

Successful

anti-IL-1 therapy

Hyper IgD with periodic

fever syndrome

Mutations in

mevalonate

kinase

Recurrent fever, lymphadenopathy, abdominal pain,

diarrhoea, headaches, hepatosplenomegaly,

arthralgia, skin rash (< 1 week)

None, supportive care [185–187]

TNF receptor-associated

periodic syndrome

Mutations in

TNR receptor I

Recurrent fever, abdominal pain, severe myalgia,

painful skin rash (> 1 week)

NSAIDs, corticosteroids,

etanercept

[188]

Systemic juvenile

idiopathic arthritis

Unknown Daily recurring fever, anaemia, hepatosplenomegaly,

macular salmon-coloured skin rash of trunk and

extremities, myalgia, arthritis (late symptom)

NSAIDs, corticosteroids,

DMARDs

[189]

Adult-onset Still’s disease Unknown Daily recurring fever, hepatosplenomegaly, arthritis,

salmon-colored skin rash of trunk and extremities,

myalgia

NSAIDs, corticosteroids,

DMARDs

[189]

Relapsing polychondritis Unknown Intermittent fever, skin rash, auricular / nasal /

respiratory tract chondritis, ocular inflammation,

arthritis, audiovestibular damage

Systemic corticosteroids,

methotrexate

[190,191]

Schnitzler’s syndrome Unknown Chronic urticarial skin rash, recurrent fever, arthralgia,

myalgia

Anakinra [192]

Sweet syndrome Unknown,

neutrophil-

dependent

Fever, skin lesions (violet papules, plaques or nodules),

pulmonary symptoms (dyspnoea, cough)

Corticosteroids [193]

Behçet’s disease Unknown Painful oral aphtous ulcers, painful genital ulcers,

uveitis

Corticosteroids [194,195]

Anti-synthetase

syndrome

Unknown Myositis, interstitial lung disease, arthritis, fever,

Raynaud’s phenomenon

Corticosteroids [196]

NSAIDs: non-steroidal anti-inflammatory drug; DMARD: disease-modifying anti-rheumatic drug; IL: interleukin; IgD: immunoglobulin D; TNF:

tumour necrosis factor; TNR: tenascin R.
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cases the molecular basis for the putative link is largely
unclear (Table 4).

The ugly: common human diseases linked to
NLRP3 inflammasome activity

In addition to its central role in the pathogenesis of autoin-
flammatory disorders, the NLRP3 inflammasome has
emerged recently as an unexpected sensor for metabolic
danger and stress [75,76]. Indeed, it has been implicated in the
development of major diseases such as gout, type 2 diabetes
and obesity-induced insulin resistance. Moreover, the NLRP3
inflammasome is increasingly suspected of playing a major
role in other human pathologies such as cancer,asbestosis and
Alzheimer’s disease.

Gout

Gout is a sterile inflammatory disease caused by monoso-
dium urate (MSU) crystal deposition in various tissues. The
prototypical clinical manifestation is acute monoarthritis,
where MSU crystals precipitate in the joint, triggering an
acute local inflammatory response [77]. MSU crystals were
demonstrated to specifically activate the NLRP3 inflamma-
some, both in vitro and in vivo [78]. Uric acid is normally
produced as the end result of the metabolic pathway govern-
ing the degradation of purines, and hyperuricaemia is thus a
main risk factor for the development of gout [77]. Taken
together, this suggests that the NLRP3 inflammasome has
evolved as a sensor of metabolic endogenous danger, in
addition to its pathogen-detecting functions.

Excitingly, preliminary clinical trials involving in vivo
IL-1b blockade by anakinra or rilonacept in gout patients
demonstrated high efficacy and the absence of adverse effects
[79,80]. These findings require confirmation in large-scale
controlled studies, and it will be interesting to see whether
long-acting therapies such as canakinumab are able to tame
chronic gout flares over time. Of special interest, anti-IL-1
therapy might be attractive to patients for which mainstream
gout therapies are inefficient or contraindicated [81].

Type II diabetes

Another key metabolic danger signal resides in chronically
elevated blood sugar levels and associated insulin resistance,
which are hallmarks of type 2 diabetes. During recent years
there has been a growing interest in the inflammatory com-
ponent of the disease [75], and in particular in the role of
IL-1b [82]. Indeed, IL-1b has been proposed to play a critical
role in the loss of b cell mass in the course of type 2 diabetes
[83], and a current hypothesis suggests that the relative
balance between IL-1b and endogenous IL-1Ra regulates
pancreatic islet inflammation associated with the disease
[84]. Remarkably, a recent clinical trial supports the notion
that IL-1b is indeed a key player in type 2 diabetes, as

patients receiving IL-1b antagonists featured improved gly-
caemic control and b cell mass [85]. Notably, diabetic
markers such as increased levels of saturated fatty acids and
islet-derived amyloid polypeptide have been reported as
capable of activating the NLRP3 inflammasome [86,87], and
NLRP3- and ASC-deficient mice fed a high-fat diet display
improved insulin sensitivity when compared to control mice
[86].

Obesity-induced insulin resistance

Further experimental data suggest that the NLRP3 inflam-
masome is an important regulator of adipocyte differentia-
tion and insulin sensitivity [88]. Adipocytes are rendered
more metabolically active and insulin-sensitive upon NLRP3
inflammasome inhibition in murine models of obesity [88].
Strikingly, calorie restriction and exercise-mediated weight
loss in obese type 2 diabetes patients is associated with a
decreased NLRP3 expression in adipose tissue, coupled to
decreased inflammation and improved insulin sensitivity
[89]. Collectively, these findings suggest that the NLRP3
inflammasome is able to sense obesity-associated danger
signals and contribute to the development of inflammation
and insulin resistance [89].

Cancer

The tumour microenvironment has been likened to a non-
resolving wound response, with an inflammatory milieu
capable of stimulating tumour survival, growth, angiogen-
esis, invasion and metastasis, immune suppression and
genetic mutation [90,91]. Studies suggest that IL-1, like the
other key proinflammatory cytokine TNF, is often associated
with tumour promotion. An evaluation of several clinical
trials using recombinant IL-1b or IL-1a showed that neither
had any significant therapeutic benefit when used alone
against ovarian cancer, renal cell carcinoma or melanoma,
and the toxicity associated with IL-1 administration is likely
to outweigh any potential benefits [4].

However, immune-mediated anti-tumour responses
resulting from the production of IL-1b or IL-1a have been
documented. Early reports showed that IL-1 treatment
(alone or in combination with chemotherapeutic treatment)
of cancer cell lines or murine syngenic tumours resulted in
decreased tumour cell growth and often promoted tumour
regression [92–94]. Similarly, when IL-1a transgenic mice
expressing 17 kDa IL-1a under the keratin 14 promoter were
treated with DMBA/TPA (7,12-dimethylbenzanthracene/12-
O-tetradecanoylphorbol-13-acetate), or crossed to mutant
Ha-Ras expressing mice, the IL-1a expressing mice were
completely resistant to papilloma and carcinoma formation
due to enhanced acute inflammatory responses [95]. More
recently it was also demonstrated that the NRLP3 inflamma-
some and subsequent IL-1b priming of T cells is critical
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for immune-mediated eradication of tumours following
chemotherapy [96].

Several groups have also examined the role of NLRP3 and
caspase-1 in inflammatory bowel diseases using the dextran
sulphate sodium (DSS) mouse model of colitis. Ulcerative
colitis and Crohn’s disease predispose to colorectal cancer,
where an inappropriate inflammatory response to commen-
sal bacteria is believed to play a major role in the neoplastic
transformation of the intestinal epithelium. Two studies
have suggested that caspase-1 or NLRP3 deficiency leads to
reduced colitis severity in DSS-treated mice when compared
to wild-type mice [97,98]. However, opposing results
reported by several groups showed that NLRP3, ASC and
caspase-1 knock-out mice are all more susceptible to
DSS-induced colitis and death [99–101]. In inflammasome-
deficient mice, it was reported that a lack of IL-18 activation
prevented the repair of the mucosal barrier following DSS-
induced damage, resulting in systemic commensal bacterial
spread [101]. It was also demonstrated that colitis-associated
cancer, induced by DSS and azoxymethane, is enhanced sig-
nificantly upon genetic deletion of either NLRP3, caspase-1
or ASC, while the role of NLRC4 remains controversial [102–
104]. It has been observed previously that other TLR/IL-1R
family signalling members, such as myeloid differentiation
factor 88 (MydD88), also protect from DSS-associated colitis
and intestinal tumorigenesis [105–107]. Therefore, the accu-
mulative evidence suggests that appropriate innate immune
signalling responses to commensal bacteria, mediated at least
in part by the NLRP3 inflammasome, are a general require-
ment for intestinal homeostasis. Consistent with this notion,
single nucleotide polymorphisms (SNPs) within the NLRP3
region that result in decreased NLRP3 expression have been
identified as contributing to Crohn’s disease susceptibility,
suggesting that the NRLP3 inflammasome may also play a
protective role in inflammatory bowel disease in humans
[108].

Ulcerative colitis results from hyper-responsive inflamma-
tion, and in this context it has been demonstrated that exces-
sive IL-1b and IL-18 production can also contribute to DSS-
induced colitis and possibly cancer, as was observed when
the autophagy gene ATG16L1, or the caspase-1 negative
regulator, caspase-12, were deleted [43,101]. Therefore, the
NLRP3 inflammasome may play an important role in cellu-
lar repair and regeneration following acute tissue damage,
but if tissues are exposed to chronic or excessive inflamma-
some activity, NLRP3 stimulation is likely to enhance
neoplastic processes.

Despite its ability to promote an immune cell-mediated
anti-tumour response, high levels of IL-1 in the tumour
microenvironment often correlate with a poor prognosis
(reviewed in [109]). Tumour-associated macrophages and
dendritic cells are likely to contribute to IL-1b levels within
the tumour infiltrate, while some cancer cell lines, such as
those derived from myeloma, melanoma and acute myeo-
blastic leukaemia, can produce active IL-1b constitutively

which can contribute towards tumour cell growth and inva-
siveness [110–112]. It is notable that some common onco-
genes, such as Ras, can induce IL-1b expression [113] and
IL-1b is a known target for the transcription factor NF-kB,
which is activated in many neoplastic malignancies.

IL-1 receptor signalling can induce either directly or indi-
rectly the production genes that stimulate tumour growth,
angiogenesis and metastasis [i.e. IL-6, IL-8, TNF, matrix met-
alloproteinases (MMPs), basic fibroblast growth factor
(bFGF), vascular endothelial growth factor (VEGF), vascular
cell adhesion molecule 1 (VCAM-1), intercellular adhesion
molecule 1 (ICAM-1), monocyte chemotactic protein-1
(MCP-1), CXCL-2]. Melanoma cells expressing high levels of
IL-1b show reduced tumour growth and metastases when
treated with IL-1Ra in murine xenograft experiments [114].
Similarly, Lewis lung cell carcinoma cells engineered to
produce IL-1b showed increased tumour growth and
increased expression of angiogenic factors when implanted
into mice [115]. In other mouse models, murine B16 mela-
noma growth, invasiveness, lung metastasis and stimulation
of angiogenesis is severely attenuated in IL-1b, and to a lesser
extent IL-1a, knock-out mice [116], an affect which anak-
inra treatment appears to recapitulate somewhat in B16
melanoma injected wild-type mice [117]. Similarly, chemi-
cally induced skin carcinogenesis is severely compromised
in IL-1b knock-out mice and, conversely, tumour growth
accelerated upon genetic deletion of IL-1Ra [118]. The
mechanisms and potential contribution of different inflam-
masome(s) in IL-1b activation in murine cancer models
has yet to be examined in detail, although caspase-1 func-
tion does contribute to B16 melanoma hepatic metastasis
[119].

Cells from acute myeloid leukaemia (AML) patients
can produce and secrete IL-1b and show substantially
reduced proliferation and decreased growth factor levels
[i.e. granulocyte–macrophage colony-stimulating factor
(GM-CSF)] when treated with IL-1Ra, although in a sub-
population of patients AML cells may also proliferate
when exposed to IL-1Ra [112,120–123]. A Phase I safety
trial reported no responses in patients with refractory or
relapsed AML when treated with soluble decoy human
IL-1R [124]. However, it was noted that the decoy IL-1R
serum levels were below those that completely blocked AML
cell growth in vitro and were likely to be even lower within
marrow. It may therefore be worth revisiting the effects of
IL-1 blockade on AML in the clinic using more efficacious
IL-1 inhibitors.

Evidence for the tumorigenic role of IL-1b also comes
from its association with gastric cancer, the second deadliest
form of cancer worldwide after lung cancer [125]. IL-1b is
induced by Helicobacter pylori within the gastric mucosa and
is a potent inhibitor of gastric acid secretion, which may lead
to gastric atrophy, a precursor of gastric cancer. In 2000,
Rabkin et al. described IL-1 gene cluster polymorphisms that
correlated with a predisposition to hypochlorhydria, gastric
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atrophy and gastric cancer in humans infected with H. pylori
[126]. Several studies in different human populations have
since confirmed these observations (reviewed in [127]), and
mice engineered to express IL-1b in the stomach develop
gastric inflammation and cancer [128]. However, it is
still unclear how the human polymorphisms affect IL-1b
production and which, if any, inflammasomes are involved.

The expression of IL-1b by either myeloma cells or
innate immune cells has been associated for some
time with the induction of IL-6, a key growth factor that
promotes myeloma cell survival and proliferation. Recent
clinical trials using IL-1Ra (combined with low-dose dex-
amethasone) demonstrated that IL-1 inhibition induced a
chronic disease state in smouldering or indolent multiple
myeloma patients, and substantially improved progression-
free survival by preventing the transition to active multiple
myeloma [129]. This represents the first demonstration of
the therapeutic benefit of IL-1 inhibition in a human
cancer.

Given the general safety of inhibiting IL-1 in vivo, and its
probable role in cancer metastasis, future clinical trials exam-
ining IL-1 inhibition in cancer are deemed warranted [130]. It
will also be important to determine the mechanisms and
inflammasomes by which cancer cells directly or indirectly
modulate IL-1b activity.

Other diseases

Numerous NLRP3 inflammasome activators have been iden-
tified and characterized in vitro [6]. In some cases, they have
pointed to the unexpected implication of the NLRP3 inflam-
masome in the pathogenesis of various inflammatory
diseases. For example, asbestosis and silicosis have been
shown to activate the NLRP3 inflammasome in murine
models of chronic pulmonary fibrotic disorders [131,132],
raising the intriguing possibility that IL-1b may contribute
to inflammation-induced lung cancer, and that anti-IL-1b
therapy might be beneficial for patients suffering from these
diseases. The fibrillar peptide amyloid-b, which plays a key
function in the development of Alzheimer’s disease, was also
shown to activate the NLRP3 inflammasome [28]. Moreover,
the NLRP3 inflammasome was suggested to be instrumental
in the inflammatory component of the disease and its asso-
ciated brain tissue damage [28]. In the skin, NLRP3 inflam-
masome activation has been linked to UVB-induced damage
[133,134] and contact hypersensitivity [133,135]. Recent
studies have shown that haemozoin, a crystal produced by
plasmodium species in the course of malarial infection,
activates the NLRP3 inflammasome [30,136]. More surpris-
ing still, non-coding NLRP3 mutations were linked to essen-
tial hypertension susceptibility, possibly due to increased
expression of the protein [137].

In most of theses cases, including cancer, the evidence
pointing to an involvement of the NLRP3 inflammasome in
disease development in vivo remains preliminary and awaits

further confirmation. Collectively, however, they stand as a
testimony to the impressive versatility of the NLRP3 inflam-
masome as a danger-detection system with potentially far-
reaching implications for human health.
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