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Abstract
We investigate the spatial correlations of orientation and color information in natural images. We
find that the correlation of orientation information falls off rapidly with increasing distance, while
color information is more highly correlated over longer distances. We show that orientation and
color information are statistically independent in natural images and that the spatial correlation of
jointly encoded orientation and color information decays faster than that of color alone. Our
findings suggest that: (a) orientation and color information should be processed in separate
channels and (b) the organization of cortical color and orientation selectivity at low spatial
frequencies is a reflection of the cortical adaptation to the statistical structure of the visual world.
These findings are in agreement with biological observations, as form and color are thought to be
represented by different classes of neurons in the primary visual cortex, and the receptive fields of
color-selective neurons are larger than those of orientation-selective neurons. The agreement
between our findings and biological observations supports the ecological theory of perception.
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Introduction
The ecological theory of perception states that early sensory processing by the brain is
adapted to the statistics of the natural environment. According to this view, the adaptation
shaped by evolutionary pressure provides for an efficient transmission of information from
the periphery to the higher order centers of the brain (Atick, 1992; Barlow, 1961; Field,
1987), given unavoidable constraints imposed on the transmission channel in terms of
dynamic range, connectivity, and number of fibers and neurons. These ideas are best
exemplified by the processing in the early visual pathway, where the expected redundancies
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in the input are eliminated. This results in a drastic reduction of the high dimensionality of
retinal information arising from sampling of the visual field (from the sheer number of rods
and cones), thereby facilitating the transmission of this information by a limited number of
retinal ganglion cell fibers. Perhaps the most striking use of this approach was shown by
Atick and Redlich (1992), who derived the spatial receptive field properties of retinal
ganglion cells as an optimal filter for the two-point correlations of contrast in natural
images. These correlations, well characterized by a power-law spectrum s(k) ~ k−1, imply
that nearby photoreceptors are highly redundant (Ruderman, 1997; Ruderman & Bialek,
1994), and therefore, their information need not be transmitted in full. Similarly, the lagged-
x cells of the geniculate are optimal filters for removing temporal redundancies (Dan, Atick,
& Reid, 1996). Srinivasan, Laughlin, and Dubs (1982) discussed redundancy removal by
predictive coding done by the center–surround antagonism of receptive fields. Similarly,
Buchsbaum and Gottschalk (1983) derived the receptive field structure of retinal ganglion
cells from optimality considerations.

There are few comparable results, however, for applications of the ecological theory to
cortical processing. In particular, features that are statistically more common, such as
vertical and horizontal lines or iso-orientated edges, tend to be over-represented (Betsch,
Einhauser, Kording, & Konig, 2004; Li, Peterson, & Freeman, 2003; Sigman, Cecchi,
Gilbert, & Magnasco, 2001). Here, we ask to what extent the organization of cortical
response selectivity to color and orientation can be predicted by the statistics of natural
images. While the physiology of orientation selectivity has been widely studied, color
remains a more elusive feature. Some studies have suggested that color and orientation are
represented in cytochrome oxidase (CO) blobs and interblobs, respectively (Lu & Roe,
2008; Ts’o & Gilbert, 1988). It was also found that color-selective cells in V1 and V2 that
are unselective for orientation have larger receptive fields than orientation-selective ones
(Johnson, Hawken, & Shapley, 2008; Roe & Ts’o, 1995; Solomon, Peirce, & Lennie, 2004).
Because the blobs occupy less than half as much area as the interblobs do, these studies
suggest that color information is processed in V1 by fewer cells with relatively larger
receptive fields as compared to orientation information. One may wonder whether such
differences are the result of the adaptation to the statistics of natural images. In the present
study, we found evidence that supports the role of adaptation, by explicitly computing the
spatial autocorrelation of color and orientation as vector fields in a large ensemble of natural
images. Moreover, we collected evidence suggesting that color and orientation information
are statistically independent.

The visual cortex is one of the most researched brain areas; in particular, its response to
orientation has been very well characterized at the single-cell as well as the population
levels, revealing a spatial structure of orientation columns, punctuated by point and line
discontinuities (Blasdel & Salama, 1986; Bonhoeffer & Grinvald, 1991; Grinvald, Lieke,
Frostig, Gilbert, & Wiesel, 1986). Other visual attributes such as visual field position
(Tootell, Silverman, Switkes, & De Valois, 1982), spatial frequency (Everson, Prashanth,
Knight, Sirovich, & Kaplan, 1998; Issa, Trepel, & Stryker, 2000; Xu et al., 2004), direction
(Weliky, Bosking, & Fitzpatrick, 1996), and ocular dominance (Blasdel, 1992) are mapped
in similar fashion. Hyvarinen and Hoyer (2001) have used a sparse coding framework to
explain how cortical topographic orientation maps can arise from a learning process applied
to natural image inputs.

In comparison with orientation, the cortical response to color attributes in the visual field has
been more difficult to characterize. Functional brain imaging studies in humans have
uncovered cortical areas that are preferentially activated by chromatic stimuli. Moreover,
psychophysical and lesion reports suggest the existence of a specialized color processing
system that is, to some extent, unconcerned with the processing of other visual features. The
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pioneering work of Livingstone and Hubel (1984) revealed that the cytochrome oxidase
dense blobs in the primary visual cortex (V1), and the regions between them (interblobs),
contain populations of neurons that differ in their selectivity for color or orientation. More
recently, Xiao, Casti, and Kaplan (2007), Xiao, Rao, Cecchi, and, Kaplan (2007, 2008), and
Xiao, Wang, and Felleman (2003) demonstrated, using optical imaging, that color
information is reliably encoded by spatial patterns of activity across V1 and the extra-striate
area V2; moreover, color and orientation are mapped in segregated compartments and
display different spatial properties. Using a support-vector machine (SVM) methodology to
identify regions that contained the most information in discriminating color and orientation,
they showed that areas that process color are relatively small, and far apart. On the other
hand, areas that process orientation are comparatively larger and closer to each other. In the
present study, we demonstrate that these differences can be related to the statistical
properties of natural images.

Statistics of natural images
The scaling analysis of contrast and luminance has been the focus of many studies. Scaling
measurements involve studying how the probability of finding a co-occurring pair changes
as a function of the relative distance. A classic result in the analysis of natural scenes is that
the luminance of pairs of pixels is correlated and that this correlation is scale-invariant
(Atick & Redlich, 1992; Field, 1987; Ruderman & Bialek, 1994). This invariance indicates
that statistical dependencies between pairs of pixels do not depend on whether the observer
zooms in on a small window or zooms out to a broad vista. The scale invariance results from
stable physical properties such as a common source of illumination and the existence of
objects of different sizes and similar reflectance properties (Ruderman, 1997).

Few studies have focused on the structure of long-range correlations of other visual
attributes. A report by Sigman et al. (2001) analyzed the spatial distribution of orientation
information in natural scenes. They showed that information about the presence of iso-
oriented lines in natural images is correlated over relatively short distances, following
specific power-law statistics for co-linearity; other pairwise arrangements display shorter
correlations. This study also suggested a possible relationship between orientation statistics
and the extra-classical receptive field properties of neurons in the visual cortex.

The long-range statistics of the color field, in particular, has been addressed only
tangentially. A report by Johnson, Kingdom, and Baker (2005) studied the cross-correlation
of the responses of band-pass filters applied to the luminance, R–G, and B–Y channels
obtained from color images. Though the spatial structure of an image is taken into account at
the local level, they did not compute correlations across different spatial locations. Similarly,
Tailor, Finkel, and Buchsbaum (2000) derived the (local) independent components of
natural images and showed that they contain oriented luminance edge filters and color-
opponent red–green and blue–yellow filters; even though the authors did not explicitly
compute the joint probability distribution between color and orientation, this result suggests
that these fields are statistically independent and parallels the finding that luminance and
contrast are statistically independent in natural scenes (Mante, Frazor, Bonin, Geisler, &
Carandini, 2005).

Burton and Moorhead (1987) examined the spatial structure of color variation in natural
scenes but restricted their analysis to vertical and horizontal axes and to individual colors
(red, green, and blue receptor values). In contrast, our analysis is carried out over the full
visual field and assumes a continuous 2D vector representation for color. A more detailed
analysis of color space was performed by Ben-Shahar and Zucker (2004), who represented it
by a 2D field formed of hue vectors, i.e., a hue field. Structural similarities between hue and
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orientation fields were observed, in terms of the use of discontinuities in the fields to
perform image segmentation; they did not, however, examine the spatial correlation
properties of this hue field over a large set of natural images, as we do in our work.

Parraga, Brelstaff, Troscianko, and Moorehead (1998) investigated the spatial frequency
content of color and luminance information in a set of 29 images of natural scenes.
However, they did not compute orientation information in these images.

Johnson et al. (2005) analyzed color natural image scenes for their spatial frequency content
in luminance, red–green, and blue–yellow channels. Their work differs from ours in that
they computed correlation between spatial frequency bands, whereas we compute long-
range spatial correlations for orientation and color representations.

Research on the relation between color image statistics and the neural representation of color
has been focused on the spectral response properties of the LMS cones (Simoncelli &
Olshausen, 2001). Several studies have examined the statistical relation between the
components of color, as described by three channels comprising a luminance channel, an R–
G channel, and a B–Y channel (Johnson et al., 2005; Ruderman, 1997). It is reasonable to
expect that peripheral processing of color be highly determined by the statistics of the input;
however, there is evidence of a link between the independent components of color natural
images and the receptive field properties of cortical V1 simple neurons (Caywood,
Willmore, & Tolhurst, 2004). The main motivation for our work was to provide a robust
characterization of the joint color/orientation statistics, as we expect them to influence the
organization of early visual cortical processing.

Natural image analysis
In order to compute the spatial autocorrelation of orientation and color in natural images, we
computed their corresponding fields as described below. The orientation field was computed
following similar approaches in the literature (Sigman et al., 2001). For color, we used a 2D
hue field computed as described below. We first performed a conversion from RGB to CIE
L*a*b* coordinates using the ITU recommended D65 white point reference in the ITU BT.
709 standard, by using the equations given in Wyszecki and Stiles (1982, p. 166). For the
sake of notational convenience, we use (L, a, b) to denote CIE L*a*b*. We also performed
our analysis using a calibrated LMS space, as provided by the creators of the image database
(Olmos & Kingdom, 2004). The results we obtained were virtually identical for the two
color spaces.

We present a brief overview of the method for local orientation estimation in images, and
details may be found in Rao and Shunck (1991).

There are five steps to estimating the local orientation in an image, i.e.,

1. Smooth the image with a Gaussian filter;

2. Compute the gradient of the smoothed image;

3. Find the local orientation angle;

4. Average the local orientation estimates over a small neighborhood

5. Compute a measure of the coherence (the degree of anisotropy) of the pattern.

The coherence is a measure for how strongly anisotropic the image edges are within a local
neighborhood. The coherence can be interpreted as the magnitude of an orientation vector,
and the direction of the vector is given by the angle of orientation.
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Let the gradient vector at location x⃗ in the image have the polar representation Gx⃗eiθx⃗. The
estimate of the dominant orientation θ̂ at the center x⃗ of a neighborhood N of the image is
given by

(1)

where the angular brackets denote the average computed over the neighborhood. The
estimated orientation angle at x⃗ is then θ̂x⃗ + π/2, since the gradient vector is perpendicular to
the direction of anisotropy.

Let θ̂x⃗ denote the estimated orientation angle at point x⃗, found in the earlier step. To find the
coherence at point x⃗, consider point y⃗, which lies within a window W of prescribed size
around point x⃗. The measure of coherence is defined by

(2)

Thus, one can obtain a description of the orientation field by using Equations 1 and 2. The
filter sizes used were g1 for estimating the orientation angle in 1, and g2 for estimating the
coherence in 2. The values of g1 and g2 are described in Figure 1 and range from small to
large spatial scales as indicated.

For calculating the color field, the following steps were used.

1. The images were converted into the LAB space, to yield for each pixel the vector
(L, a, b).

2.
The color field was computed as Ψc(x⃗) = eiθc, where .

Note that both the color and orientation analyses produce a vector field over the spatial
image coordinates. The vector fields are subject to the following analysis.

For each field, the autocorrelation function was computed over a representative ensemble of
natural images, assuming translational and rotational invariance,

(3)

where the brackets signify average over x⃗ and over the ensemble of images, Ψ̅ is the average
field, * is the complex conjugate operator, ℜ is the real part operator, and σ is the variance,
defined as

(4)

where, as in Equation 3, the average is over x⃗ and the ensemble of natural images. The
invariance assumptions allow for a fast implementation via the Fourier transform; we have
observed in previous work that rotational invariance might not be fully warranted (Sigman et
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al., 2001), as vertical and horizontal orientations tend to be over-represented. For the sake of
completeness, we will show in the Results section that these differences are present in our
database; however, given their measured values, we do not expect them to affect the results
on scaling behavior reported here.

We also computed the joint spatial statistics of color and orientation as follows. Consider the
vector ΨOC formed by concatenating the vectors Ψo(x⃗) and Ψc(x⃗) as follows:

(5)

We compute the correlation of the vector ΨOC(x⃗) over all translations of x⃗, in a manner
analogous to Equation 4.

The database of natural images consists of 850 color calibrated pictures from the McGill
Calibrated Colour Image Database and includes pictures of animals in their environment,
foliage, land and water landscapes, shadows in natural and man-made settings, close-ups of
natural and fabricated textures, close-ups of flowers, fruits, and vegetables, and city scenes
(Olmos & Kingdom, 2004). We use this database because it contains color-calibrated
pictures, as opposed to other databases in the literature that contain grayscale pictures.

Results
The results of the spatial autocorrelation analysis for orientation and color in natural images
are presented in Figure 2. This plot shows that the orientation correlation decays with
distance much faster than that of color. The orientation correlation approaches a power-law
(i.e., algebraic) scaling, as demonstrated by the linear stretch in the double-log plot. The
color correlation decays slowly as a power law until a distance of about 100 pixels, after
which a more rapid decay is observed. We compute the correlations at three spatial scales:
small, medium, and large. The size of the filters applied for orientation estimation in
Equations 1 and 2 determines the scale, as shown in Figure 1.

The multi-scale variation in Figure 2a shows that the large-scale orientation vectors have
distinctly higher spatial correlation than medium- and small-scale orientation vectors.
However, the difference between the spatial correlations for large-scale and small-scale
color vectors is not as high as that of the orientation vectors.

We used a two-sample t-test of the distributions for color and orientation that are
summarized in Figure 2. For each displacement, the autocorrelation value for color over all
the samples produces a first distribution, and that for orientation produces a second
distribution. We used the function ttest2 in MATLAB for this computation using data
generated from the small-scale filters. The result rejected the null hypothesis that the data in
these two distributions are independent random samples from normal distributions with
equal means but unknown variances. The p value associated with the test was less than
10−10 for each positive pixel distance.

In Figure 2, we computed the autocorrelations averaged over all directions, as this provides
a compact way of viewing the differences in these functions. The orientation and color
vectors were scaled such that the maximum magnitude of the orientation and color vectors
in each image was set to 1. This facilitates a comparison with the joint orientation–color
statistics, to be shown later in Figure 6.

We also calculated the autocorrelations across specific directions, and the results are
presented in Figure 3. Note that the same overall trend is observed, in that the correlation
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function for orientation decays faster than that of color. Moreover, the correlation function
for color is anisotropic and falls off more slowly in the horizontal direction as compared to
the other directions. The implication of this finding is examined in the Discussion section.
Finally, we observe that the orientation field is more correlated along the horizontal and
vertical directions than others. This finding is consistent with the so-called oblique effect, as
reported by Betsch et al. (2004).

We also performed a randomization in order to provide a reference for the comparison of the
spatial structures. We first computed the orientation and color vectors at each pixel, and then
randomized the locations of these vectors. We then computed the spatial correlations over
these randomized orientation and color fields. The spatial correlation decays significantly
faster in the randomized images compared to the correlation in the original images. We do
not show this explicitly in a 2D plot, as the correlation function decays too fast to be
meaningfully displayed. Rather, the 1D correlation function is displayed in Figures 2c and
2d.

In order to compare the results summarized by Figures 2a–2d to a different, more structured
null hypothesis, we compared the correlation structure of natural images with a specific type
of man-made imagery, which consisted of five paintings of the American painter Jackson
Pollock. We chose these abstract art paintings because of the apparent lack of correlation
structure in them. We applied the same methodology as before to compute the correlation
statistics for orientation and color. The result is shown in Figure 2e. Next, we randomized
the locations of the computed orientation and color vectors in these paintings and computed
the correlation statistics, as shown in Figure 2f. The results in Figure 2e show that the
correlation values for color and orientation in Pollock’s paintings fall more rapidly than
corresponding values in natural images.

We applied our algorithm to compute image statistics on a second image database, known as
the Berkeley Segmentation Dataset and Benchmark (Martin, Fowlkes, Tal, & Malik, 2001).
This database consists of 300 color images. Though the database contains segmentation
labels, these were ignored for the purpose of computing orientation and color statistics. The
results are shown in Figure 4 and demonstrate the same relationship between orientation and
color correlations that exist in Figure 2 for a different data set.

We also computed the joint statistics of orientation and color as follows. We estimated the
pairwise joint probability distributions of orientation angle θe with each of the color (L, a, b)
values, giving rise to three distributions, (θe, L), (θe, a), and (θe, b). The plots in Figure 5
clearly indicate that the pairwise product of the marginal probability density functions is
equal to the joint probability distribution functions P(θe, L), P(θe, a), and P(θe, b). Thus,
P(θe, L) = P(θe)P(L), where P(θe) is the probability density function of θe and P(L) is the
probability density function of luminance, L.

In order to make the measurement of independence more rigorous, we computed the
pairwise mutual information between (θe, L), (θe, a), and (θe, b), respectively. The mutual
information between two variables A and B is defined in terms of their entropies, H(A) and
H(B) as follows. Let A possess N finite states, {a1, a2, …aN}. The entropy H(A) is given by

(6)

The entropy H(B) is similarly defined, where B possess M finite states. The joint entropy
H(A, B) is defined by

Cecchi et al. Page 7

J Vis. Author manuscript; available in PMC 2011 October 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

The mutual information, MI(A, B), is defined by

(8)

The mutual information is zero when A and B are statistically independent.

We estimated the pairwise mutual information MI(θe, L) = 0.0022 bits, MI(θe, a) = 0.0019
bits, and MI(θe, b) = 0.0029 bits. We also measured the mutual information between θe and

the hue angle  to be MI(θe, θc) = 0.0028 bits. Since these pairwise mutual
information measures are close to zero, we conclude that orientation is independent of the
(L, a, b) color components. This observation suggests that an efficient scheme of
representing natural images is to represent color and orientation information in separate
pathways.

Finally, we show the results of computing the joint spatial distribution of orientation and
color information, using Equation 5. Figure 6 shows that the correlation of the joint
orientation and color vector decays more rapidly than the color vectors alone. The plot in
Figure 6d can be compared with the one in Figure 2a. Furthermore, Figure 7 explicitly
compares the joint spatial distribution of orientation and color information with the
individual distributions. The implication of this observation is that there is less redundancy
that can be exploited if the visual system tries to encode color and orientation information
jointly. Given the spatial statistics of natural images that we have obtained in this paper, and
the independence of the color and luminance channels, the best coding strategy is one where
color and orientation are processed through independent channels. Furthermore, color
information needs to be sampled less densely due to the larger spatial scale that exists for
color; this seems to be precisely the coding strategy employed by the visual cortex.

Discussion
We have presented novel results showing that orientation and color attributes in natural
images display different spatial structure of autocorrelations: color is more significantly
correlated over longer distances than orientation. Though orientation has been studied much
more than color, the specific question that we have asked in the present manuscript, that of
the relationship between the spatial properties of visual attributes and that of their cortical
representations, also requires a new look at the well-established properties of orientation
maps.

We also demonstrated the statistical independence of orientation and color information in
natural images, similar to the reported independence of luminance and contrast (Mante et al.,
2005), and in agreement with the finding of independent components for orientation and
color (Tailor et al., 2000). Fine, MacLeod, and Boynton (2003) showed that the luminance
and color information of surfaces in natural scenes are relatively independent. Hansen and
Gegenfurtner (2009) showed that color and luminance edges in natural images are
independent. This indicates that it would be desirable to process orientation and color
information in separate channels, as is observed in the early stages of the human and primate
visual systems. The spatial correlation structure of orientation and color information may
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also govern the spatial organization of units in the orientation-processing and color-
processing channels, respectively.

Our approach was explicitly motivated by the ecological theory of perception. This theory
has been dominated by information-theoretic concepts, i.e., the idea that the function and
architecture of the nervous system needs to maximize the efficiency of information
transmission in the context of biological constraints. At present, experimental confirmation
of this theory has come from local neural features, such as the response properties of
individual neurons. Our results point, however, to a more general interpretation of the
ecological theory, in which the input space shapes the organization of neural responses at a
population level. This organization might be ultimately related to the need to satisfy
information-theoretic constraints, but it seems more likely that it is the result of processes
with explicit spatial constraints. In particular, models of cortical organization that emphasize
the role of spatial structure in coding and processing can make testable predications about
the relationship between the input ensemble and the neural map of responses.

The finding that color information in natural scenes is correlated over longer distances than
orientation information implies that a coarser sampling of color information will suffice for
cortical representation purposes. This prediction is consistent with physiological findings
that V1 contains a larger proportion of orientation-selective cells than color-selective ones
(Shapley & Hawken, 2002). Most studies of color-processing areas in the cortex
(Livingstone & Hubel, 1984; Xiao, Rao et al., 2007, 2008) confirm that they are relatively
small and far apart. However, the nature of cortical color processing is far from understood.
For instance, it is still controversial which class(es) of V1 cells code information about color
of object surfaces (for a review, see Lennie & Movshon, 2005). A likely candidate is the
class of cells with strong color opponency, which are also called color-preferring cells
(Johnson, Hawken, &, Shapley, 2001, 2004). Unlike other classes of color-sensitive cells,
such as color-luminance cells (Johnson et al., 2001), strongly color-opponent cells have
chromatic tuning that is invariant with stimulus orientation, size, and contrast (Johnson et
al., 2001; Solomon & Lennie, 2005). Since the strongly color-opponent cells make up about
10% of V1 cells (Johnson et al., 2001; Lennie & Movshon, 2005), the argument that they are
the color-coding cells in V1 is consistent with our result that color varies more gradually
than orientation in natural scenes.

A class of V1 cells that may also code information about object color are double-opponent
cells, although the spatial organization and cone inputs of their receptive fields are still
under debate (Conway & Livingstone, 2006; Johnson et al., 2001, 2008; Livingstone &
Hubel, 1984). Several studies also gave different estimates regarding the percentage of
double-opponent cells among V1 cells. In one study that mapped receptive fields of V1 cells
with cone-isolating stimuli, the estimate was about 6% (Conway & Livingstone, 2006); in
the same study, double-opponent cells and other types of color-opponent cells were
estimated to comprise about 10% of V1 cells. Given that the majority of V1 cells are
selective for orientation (Hubel & Wiesel, 1968), these results are also consistent with our
prediction.

Since a given visual field is covered by fewer color-coding cells than orientation-coding
ones, the former needs to have larger receptive fields in order to fully tile the visual field.
This prediction is supported by a recent finding that the average receptive field size of
strongly color-opponent neurons in V1 is 1.5 times as large as that of orientation-selective
ones (Solomon et al., 2004). Solomon and Lennie (2007) also observed that the receptive
fields of color-preferring neurons lack spatial structure, which renders them unsuitable of
encoding fine detail. This observation is consistent with the results of Johnson et al. (2004)
that color-preferring cells in primate V1 have low-pass spatial transfer functions, compared
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with luminance-preferring cells, which have band-pass spatial transfer functions. Double-
opponent cells have band-pass spatial transfer functions, but their receptive fields are larger
than those of neurons that subserve visual features such as form and motion (Conway,
2009). These observations are consistent with the prediction of our results.

Color-selective cells in V2 with no orientation selectivity tend to have larger receptive fields
than similar cells with broad-band orientation selectivity (Roe & Ts’o, 1995), whereas the
thin cytochrome oxidase stripes, which are selective for color, display greater receptive field
size and scatter as compared to disparity stripes. While it is quite difficult to relate these
findings to psychophysical measures of color, form, and disparity perception (Mullen,
1985), it has been argued that the color system would require a less precise mapping than
either the form or disparity system (Roe & Ts’o, 1995). Our findings provide quantitative
measurements for a different interpretation of these results: a sparse sampling of a redundant
variable need not compromise resolution.

Likewise, in concordance with our results, an independent component analysis of the
chromatic structure in 7 × 7 pixel patches of natural scenes showed that the achromatic basis
functions are localized and oriented (Figure 5 in Wachtler, Lee, & Sejnowski, 2001). In
contrast, the chromatic basis functions are relatively less localized, indicating that they
sample from a wider image area.

If the color statistics are isotropic, we would expect color-sensitive cells to possess
circularly symmetric receptive fields. However, the anisotropy of color statistics that we
report in Figure 3 suggests that some group of color-sensitive cells should not display
circular symmetry. This seems to be confirmed experimentally, although the findings are
still tentative (Conway, 2009).

In summary, we have presented evidence suggesting that the selectivity and relative sparsity
of color over orientation processing in cortical cells are linked to the statistical regularities
of the corresponding visual attributes, namely the independence of color and orientation, and
the relative longer range of their spatial correlations. More precise measurements of large-
scale cortical orientation and color responses should provide for a firmer ground to further
test this idea.

Our analysis technique can be applied to investigations of spatial correlations of image
texture measures, and it is possible that there may be other visual features that show a
gradual spatial variation of correlation, similar to that of color. For instance, the spatial
autocorrelation of luminance information depicted in Figures 3e and 3f shows that
luminance variations are similar to that of color.

Finally, we would like to emphasize that even though we focused on orientation and color,
the ideas developed in the present manuscript might be valid for other significant visual
attributes, as well as the other primary perceptual modalities.
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Figure 1.
The sizes of the filters used for extracting small-, medium-, and large-scale orientation and
color fields.
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Figure 2.
(a) Spatial autocorrelation of the orientation field in natural images. The orientation is
computed at three different spatial scales, ranging from large to small scale. The standard
error for the measurements shown is too small to be meaningfully depicted in this figure.
For instance, the standard error for the orientation correlation at small scale is 0.0028796 for
a pixel distance of 1 and 0.00037322 for a pixel distance of 100. (b) Spatial autocorrelation
of the color field in natural images. The color is computed at three different spatial scales,
ranging from large to small scale. The original images were smoothed with a Gaussian filter
of varying size, as described in Figure 1. The standard error is 0.0022356 for a pixel distance
of 1 and 0.0039698 for a pixel distance of 100. (c) The spatial correlation statistics of
orientation when the location of orientation vectors is randomized. (d) The spatial
correlation statistics of color when the location of color vectors is randomized. In all these
plots, the correlations for a given distance have been averaged over all directions. (e) The
correlation statistics gathered over five Jackson Pollock paintings. (f) The correlation
statistics computed over randomized versions of Jackson Pollock paintings. The locations of
existing orientation and color vectors were randomized.
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Figure 3.
(a) Spatial autocorrelation of the orientation field in natural images, shown over specific
directions. The large-scale filters were used for smoothing the image before orientation and
color computations. (b) An enlarged version of the autocorrelation for orientation. Contour
plots are used to depict these functions, using the MATLAB command contourf. (c) Spatial
autocorrelation of the color field. (d) An enlarged view of the autocorrelation for color. (e)
Spatial autocorrelation of luminance. (f) An enlarged view of the autocorrelation for
luminance.
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Figure 4.
The correlation statistics for orientation and color computed over the images in the Berkeley
Segmentation Dataset and Benchmark (Martin et al., 2001). Small-scale filter sizes were
used in this computation, as shown in Figure 1. (a) The correlation statistics for orientation.
(b) The correlation statistics for color.
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Figure 5.
The marginal probability density functions are displayed in the first two columns. The
probability density function for orientation P(θe) is shown in the first column. The second
column contains probability density functions for L, a, and b. The third column shows the
pairwise product of the two marginal probability density functions in the first two columns.
The fourth column shows the joint probability distribution for the variables in the first two
columns. These plots show that the joint probability distributions appear similar to the
marginal probability density functions, suggestive of statistical independence of the
variables represented in the first two columns.
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Figure 6.
(a) The 2D correlation statistics of the joint orientation and color vector as described in
Equation 5. (b) An enlarged view of the correlation function around the origin. (c) For this
correlation plot, the locations of the 4D vectors were randomized. We show an enlarged
view around the origin. (d) A 1D plot for the correlation, generated by summing the
correlations within an annulus at a given radius of the function shown in (a).
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Figure 7.
The 2D correlation statistics of the joint orientation and color vector as described in
Equation 5 are compared with the statistics of the individual color and orientation fields. A
1D plot for each case is generated by summing the correlations within an annulus at a given
radius of the 2D correlation function.
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