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Abstract In this paper we propose a computational

model of bottom–up visual attention based on a pulsed

principal component analysis (PCA) transform, which

simply exploits the signs of the PCA coefficients to gen-

erate spatial and motional saliency. We further extend the

pulsed PCA transform to a pulsed cosine transform that is

not only data-independent but also very fast in computa-

tion. The proposed model has the following biological

plausibilities. First, the PCA projection vectors in the

model can be obtained by using the Hebbian rule in neural

networks. Second, the outputs of the pulsed PCA trans-

form, which are inherently binary, simulate the neuronal

pulses in the human brain. Third, like many Fourier

transform-based approaches, our model also accomplishes

the cortical center-surround suppression in frequency

domain. Experimental results on psychophysical patterns

and natural images show that the proposed model is more

effective in saliency detection and predict human eye fix-

ations better than the state-of-the-art attention models.
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Introduction

There exists an information bottleneck along our visual

pathway since the human brain has limited neural resources

(Itti and Koch 2001). Accordingly, a visual mechanism

referred to as attention selection has evolved, which rapidly

shifts across the scene under view and selects a small area

for further cortical processing (Treisman and Gelade 1980;

Koch and Ullman 1985; Desimone and Duncan 1995;

Crick and Koch 1998; Bundesen and Habekost 2008; Gu

and Liljenstrom 2007; Haab et al. 2011). Typically,

attention selection is either driven in bottom–up manner or

controlled by top-down cues (Itti and Koch 2001; Treisman

and Gelade 1980; Koch and Ullman 1985). Top-down

attention is largely task-dependent, whereas bottom–up

attention is scene-dependent, i.e., it only depends on the

salience of the scene under view.

This paper is primarily concerned with the computa-

tional modeling of bottom–up attention, which has already

attracted intensive investigations in the area of computer

vision in relation to robotics, cognitive science and neu-

roscience. One of the most influential computational

models of bottom–up attention was proposed by Itti et al.

(1998), which is designed according to the neural archi-

tecture of the human early visual system and thereby has

biological plausibility. Itti’s model (ITTI) has been shown

to be successful in detecting salient objects and predicting

human fixations. However, the model is ad-hoc designed

and suffers from over-parameterization.
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Some recent works addressed the question of ‘‘what

attracts human visual attention’’ in an information theoretic

way, and proposed a series of attention models based on

information theory. Bruce and Tsotsos (2005, 2009) pro-

posed an Attention model based on Information Maximi-

zation (AIM) which projects the input image into the

independent component analysis (ICA) space and uses

Shannon’s self-information to measure saliency. Other

attention models based on information theory include the

graph-based visual saliency approach proposed by Harel

et al. (2006), and the discriminant center-surround

approach proposed by Gao et al. (2007). While these

models offer good consistency with psychophysical and

physiological data, they are more computationally expen-

sive than ITTI, and difficult to implement in real-time

systems.

Another kind of attention approaches are implemented

in the Fourier transform domain. These approaches are not

at all biologically motivated, but they have fast computa-

tional speed and good consistency with psychophysics.

These Fourier transform-based approaches include spectral

residual (SR), proposed by Hou and Zhang (2007), and

phase spectrum of quaternion Fourier transform (PQFT),

proposed by Guo and Zhang (2010). Following SR and

PQFT, a later work proposed by Bian and Zhang (2010)

asserted that the operation of whitening the Fourier

amplitude spectrum is almost equivalent to the center-

surround operation in the spatial domain, and hence pro-

vided a link between biologically based spatial domain

models and Fourier transform-based approaches.

In this paper we propose a bottom–up attention model

based on principal component analysis (PCA). Our atten-

tion model, referred to as pulsed PCA (P2CA), simply

projects the whole image into the PCA space and exploits

the signs of the PCA coefficients to generate the saliency

information of the visual space. This reduces computa-

tional complexity because unlike the spatial domain mod-

els based on Gabor filters or ICA basis functions (e.g., ITTI

and AIM), our model does not need to decompose the input

image into numerous feature maps separated in orientation

and scale. Compared with Fourier transform-based

approaches, our model has more neurobiological and

developmental implications in that PCA projection vectors

can be obtained by some typical neural networks with

Hebbian rule (Haykin 2001). Moreover, the outputs of a

pulsed PCA transform, i.e., the signs of the PCA coeffi-

cients, have the same binary fashion with the neuronal

pulses in the human brain. Essentially, the Fourier ampli-

tude spectrum describes the principal components of nat-

ural scenes. Therefore, normalization of the PCA

coefficients is equivalent to the operation of whitening the

Fourier amplitude in many Fourier transform-based

approaches. Toward this end, our model also accomplishes

the center-surround operation in biologically based spatial

domain models and thereby is capable of producing visual

saliency of the input scene.

While P2CA is neurobiologically motivated, projection

of the whole image into the PCA space is performed in a

relatively high dimensionality. Such an operation may be

quick for the massively parallel connections of the human

brain, but is slow for computer processors. Moreover, PCA

is a data-dependent technique, and therefore we can hardly

find a set of fixed transform vectors that are suitable for all

saliency search tasks. In order to overcome this disadvan-

tage, we propose a very simple and data-independent

model by employing a discrete cosine transform (DCT) to

replace the PCA. This DCT-based attention model is

referred to as pulsed cosine transform (PCT) in this paper.

It can be shown that DCT is asymptotically equivalent to

the PCA for signals coming from a first-order Markov

model, which is a reasonable model for digital images

(Hamidi and Pearl 1976; Oja 1992; Rao and Yip 1990).

Therefore, PCT may offer better performance than P2CA in

saliency detection.

The remainder of this paper is organized as follows.

Section ‘‘Model architecture’’ gives an overview of the

proposed computational model of bottom–up attention as

well as its neurobiological and developmental plausibili-

ties. Section ‘‘Psychophysical consistency’’ shows the

consistency of our model with psychophysics. Section

‘‘Experimental validation for natural images’’ quantifies

the consistency of our model with eye fixation data. Sec-

tion ‘‘Motion saliency’’ shows our model’s capability of

detecting motion saliency. Section ‘‘Discussions’’ gives

some discussions about the proposed model, and finally a

conclusion is drawn in section ‘‘Conclusion’’.

Model architecture

PCA computes the eigenvectors of the covariance matrix of

the observed data, and the dominant eigenvectors account

for the greatest part of the covariance (Haykin 2001). Many

studies (e.g., Oja 1982; Foldiak 1989; Sanger 1989; Weng

et al. 2003) suggested that Hebbian learning in neural

networks can find the principal components of incoming

sensory data. In this section we begin by introducing a

bottom–up attention model based on PCA transform, and

then extend the model to a DCT-based framework.

Pulsed PCA model

Li (2002, 2006) hypothesized that the computation of sal-

ience is conducted in the neural dynamics arising from

some type of intra-cortical center-surround interactions

between V1 simple cells. Her spiking neuron model is
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capable of saliency detection. Simoncelli and Schwartz

(1998) used divisive normalization to model center-sur-

round suppression of cortical cells. Their experimental

results were consistent with recordings from macaque V1

simple cells from Cavanaugh et al. (1997). Recently, Bian

and Zhang (2010) suggested that divisive normalization

can be performed in frequency domain. They showed that

whitening the Fourier amplitude spectrum in frequency

domain is equivalent to the center-surround operation in

the spatial domain.

On the other hand, Field (1989, 1993, 1994) showed that

the Fourier amplitude spectrum describes the principal

components of a natural scene when the principal axes in

the data space are determined by a population of images

with stationary statistics. Inspired by this relation between

the principal components and the amplitude spectra of

natural images, we believe that the computation of salience

can be conducted in the PCA space. Notice that Fourier

transform-based approaches conduct the center-surround

operation by whitening the Fourier amplitude spectrum.

Accordingly, we normalize the principal components to

accomplish this center-surround operation in spatial

domain.

In practical applications, the PCA projection vectors can

be easily obtained by some efficient numerical methods

such as eigenvalue decomposition or the QR algorithm,

given a large set of image samples (Golub and van Loan

1996). After all PCA projection vectors are obtained, we

reshape the n-pixel input image X into an n-dimensional

vector x. Then, the lexicographically ordered vector x is

projected into the PCA space. Next, we normalize the PCA

coefficients of x by use of a signum function. This PCA

projection followed by a normalization process can be

simply formulated as

p ¼ sign Cxð Þ; ð1Þ

where C denotes an n 9 n orthonormal basis matrix with

its rows as PCA projection vectors. The notation ‘‘sign(�)’’
denotes the signum function. Equation 1 is called pulsed

PCA (P2CA) transform because it only retains the signs of

the principal components. Its output vector p are expressed

in binary codes (i.e., 1s and –1s), which incidentally mimic

the neuronal pulses in the human brain. Specifically, 1s and

–1s correspond to the firing and non-firing states of neu-

rons, respectively. The network architecture of Eq. 1 is

illustrated in Fig. 1. Note that the signum function, which

normalizes the PCA coefficients, corresponds to the center-

surround operation in spatial domain. Therefore, by using

Eq. (1), we accomplish the computation of salience in the

PCA space.

To recover the saliency information in the visual space,

we conduct an inverse PCA transform on the binary vector

p, which can be formulated as

f ¼ abs C�1p
� �

; ð2Þ

where C -1 denotes the inverse PCA transformation matrix,

and the notation ‘‘abs(�)’’ is an absolute value function.

Afterward, we reshape the obtained vector f into a matrix F

that has the same size as the input image. Normally F is

post-processed by convolution with a Gaussian filter for

smoothing, which is formulated as

S ¼ G � F2; ð3Þ

where G denotes a 2-dimensional Gaussian function, and

S is the corresponding saliency map of the input image

X. Note that F is squared for visibility.

It has been shown that early visual features such as

color, intensity and orientation are processed in parallel at a

pre-attentive stage (Treisman and Gelade 1980). Accord-

ingly, we decompose an input image into primitive feature

maps before computing the saliency map. With r, g, and

b being the red, green, and blue channels of the input

image, an intensity map XI is computed as

XI = (r ? g ? b)/3. Similar to Itti et al. (1998), three

broadly-tuned color maps for red, green, and blue are

created as follows: XR = r – (g ? b)/2 for red, XG = g -

(r ? b)/2 for green, and XB = b - (r ? g)/2 for blue

(negative values are set to zero).

In order to avoid large fluctuations of the color values at

low luminance, we first calculate a weighting factor for

each feature map as follows: wI = max(XI) for intensity,

wR = max(XR) for red, wG = max(XG) for green, and

wB = max(XB) for blue. Then the overall saliency infor-

mation is calculated as

F ¼ wRFR þ wGFG þ wBFB þ wIFI; ð4Þ

where FR, FG, FB, and FI are the reshaped maps generated

by Eqs. 1 and 2 using feature maps XR, XG, XB, and XI,

respectively. Finally, the saliency map is obtained by

Eq. 3.

The complete flow of the proposed algorithm is illus-

trated in Fig. 2. The input image is initially decomposed

into four biologically motivated channels: three color maps

and an intensity map. Each of the four feature maps is then

subjected to a pulsed PCA transformation, which produces

a binary representation (i.e., pulsed code) for each channel

by use of a normalization operation. Afterward, we conduct

an inverse PCA transformation on each binary represen-

tation to obtain a conspicuity map for each channel.

Finally, a saliency map is obtained by a weighted sum-

mation of the four conspicuity maps. Note that the saliency

map is a topographically arranged map that represents

visual saliency of a corresponding visual scene. The objects

or locations with high saliency values can stand out or

pop out relative to their surroundings, and thus attract

our attention. From Fig. 2, it can be seen that the salient
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objects are the mountain tents, which pop out from the

background.

Extending to pulsed cosine transform

In the previous subsection we proposed a bottom–up

attention model based on the PCA transform. However, the

computational complexity of a PCA transformation could

be rather high for real-time saliency detection. This is

because the dimensionality of the PCA space is equal to the

number of pixels of the whole image. Although we can

employ a down-sampled image (e.g., resized to 64 9 64

px) instead of using a full-size image (usually containing

several mega pixels) to calculate the saliency map, a

4096-dimensional PCA transformation is still computa-

tionally expensive for a real-time system. Moreover, PCA

is a data-dependent technique, and therefore the perfor-

mance of our PCA-based attention model could be affected

by the choice of the training data. To overcome this dis-

advantage, we propose a data-independent attention model,

which is more suitable for most visual search tasks, based

on the principle of the P2CA model.

Ahmed et al. (1974) proposed a discrete cosine trans-

form (DCT) and compared its performance with the

Karhunen–Loeve transform (also known as PCA) in image

processing applications. After that, a number of studies

(e.g., Shanmugam 1975; Hamidi and Pearl 1976; Clarke

1981; Uenohara and Kanade 1998) have mathematically

proved the asymptotic equivalence between the DCT and

the PCA for Markov-1 processes, which is commonly used

to approximate image data. This means that PCA for

Markov-1 signals approaches the DCT as the number of

training samples tends to infinity. Therefore, DCT can be

considered as a fully trained PCA for image data. To this

end, we replace the PCA transform by a 2-dimensional

DCT and thereby derive a data-independent attention

model, which is referred to as pulsed cosine transform

(PCT) in this paper. Besides the advantage of data-inde-

pendency, DCT has many fast algorithms for its calcula-

tion. The 2-dimensional DCT transformation is performed

in a separable decomposition in rows and columns, and

therefore its computational complexity is significantly

lower than a PCA transformation.

Note that the PCT model is similar to the pulsed PCA

model except that it uses DCT instead of PCA. Thus, the

PCT model can be briefly summarized as follows. First, the

input image is decomposed into four biologically moti-

vated channels: three color maps and an intensity map.

Then, each of the four maps is subjected to a DCT trans-

formation. Next, the DCT coefficients are normalized by

setting all positive coefficients to a value of 1 and all

negative coefficients to a value of –1. Afterward, we con-

duct an inverse DCT transformation on each binary rep-

resentation to obtain a conspicuity map for each channel.

Fig. 1 The network architecture for the computation of salience. Feedforward connections are represented by the PCA transform with image

sequences as visual input. The outputs, normalized by a signum function, become binary codes (1s and –1s) that mimic the neuronal pulses

Fig. 2 The pulsed PCA

algorithm from original image

(left) to saliency map (right).

Note that the conspicuity maps

and the saliency map are

normalized in the same range

between 0 and 255 for visibility
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Finally, a saliency map is obtained by a weighted sum-

mation of the four conspicuity maps.

It should be noted that, in the two versions of our model,

if the PCA or the DCT coefficients were not normalized,

the inverse PCA or DCT transformation would have

reconstructed the initial map on the channel; but due to the

normalization, the inverse PCA or DCT transformation

produces a conspicuity map instead of the initial map.

Figure 3 gives the model responses to three natural

images. As can be seen, the animals and swimmers, which

are perceptually salient, pop out relative to the back-

grounds. Moreover, the saliency maps generated by P2CA

and PCT are significantly similar. Note that we resize the

image to a width of 64 px and keep its aspect ratio before

calculating the saliency map. This spatial scale is chosen

according to the heuristics of Itti and Koch (2000) and

Fourier transform-based approaches (Hou and Zhang 2007;

Guo and Zhang 2010). Accordingly, we estimate the PCA

projection vectors using one million image patches that are

gathered from 340 training images. This collection of

training images contains 100 images used in Guo and

Zhang (2010) and 240 images downloaded from the

Internet. All 340 images have a resolution of 800 9 600.

Psychophysical consistency

In this section we show the consistency of PCT and P2CA

with some well-known properties of psychophysics,

including feature pop-out, search asymmetry, conjunction

search and missing items. For each psychophysical pattern,

we calculate the saliency maps for PCT, P2CA and 3 state-

of-the-art attention models: PQFT from Guo and Zhang

(2010), AIM from Bruce and Tsotsos (2009), and ITTI

from Itti et al. (1998). The results are shown in Figs. 4, 5, 6

and 7.

Figure 4 shows four psychophysical patterns of color

pop-out and orientation pop-out. In each pattern, one sali-

ent object is present. The first pattern is an example of

color pop-out. The pop-out locations for PCT and P2CA are

consistent with perception, but for PQFT, AIM and ITTI,

the disparity between saliency values of target and di-

stracters are not as clear. The second pattern is an orien-

tation pop-out, where the target possessing a vertical bar

pops out from distracters of uniformly horizontal bars.

PCT, PQFT, AIM highlight the salient location success-

fully, but P2CA and ITTI fail in this case. In the third

pattern, a target curve among distracter bars is perceptually

salient. The pop-out locations for all 5 models are consis-

tent with perception, but for ITTI the disparity between

saliency value of target and distracters is unclear. In the

fourth pattern, a target ‘‘O’’ among distracters ‘‘0’’ is

salient object. PCT, P2CA and PQFT identify the target,

but AIM and ITTI fail in this case.

Search asymmetry is a psychophysical phenomenon in

human visual behavior (Treisman and Souther 1985; Tre-

isman and Gormican 1988). Figure 5 gives an example of

such search asymmetry. A unique target ‘‘Q’’ in the top row

Fig. 3 Responses to three

natural images
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pops out from distracters ‘‘O’’. However, when the target

and distracters become switched as in the bottom row, the

target ‘‘O’’ among distracters ‘‘Q’’ does not pop out. In

general, targets with an added feature are perceptually

salient, whereas targets with a missing feature do not pop

out (Treisman and Gelade 1980). PCT, P2CA, PQFT, and

AIM have such pop-out asymmetry like human beings, but

ITTI fails in this test.

A target with a unique feature from its distracters

pops out, but a target does not pop out when it contains

no single unique feature but a unique conjunction of two

or more features, which makes the visual search a

Fig. 4 Responses to color pop-

out and orientation pop-out

Fig. 5 Responses to search

asymmetry

Fig. 6 Responses to

conjunction search
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difficult task (Li 2006; Treisman and Sato 1990). An

example of such conjunction search is shown in Fig. 6,

where the target is located in the center of each pattern.

The target in the top row has a horizontal bar, a feature

which is unique in the visual space. Therefore, the target

is perceptually salient. In the bottom row, the horizontal

bar is no longer unique to the target. Rather, the target is

unique in that it consists of a unique conjunction of the

two oriented bars, and in this case the target does not

pop out. The responses to these visual stimuli of PCT,

P2CA, AIM and ITTI agree with human behavior. For

PQFT, there exist large disparities between saliency

values amongst distracters even when there is no

pop-out.

Missing items in regularly placed distracters are also

perceptually salient. Two such psychophysical patterns are

shown in Fig. 7. PCT, P2CA and PQFT can locate the

missing items, which agree with human behavior. AIM and

ITTI fail in the second pattern.

To sum up, it can be seen that PCT is the best performer,

which is highly consistent with human perception in these

psychophysical patterns. P2CA and AIM miss some salient

targets, and PQFT sometimes finds salient locations in

patterns where there is no pop-out. ITTI offers a relatively

poor performance.

Experimental validation for natural images

In this section we quantify the consistency of PCT and

P2CA with fixation locations for human subjects during

free viewing. For this experiment we use the dataset of

120 color images from an urban environment and cor-

responding eye fixations from 20 subjects, which is

provided by Bruce and Tsotsos (2005). For PCT and

P2CA, we resize the image to a with of 64 px and keep

its aspect ratio. Once again, this spatial scale for saliency

calculation is chosen following the heuristics of Itti and

Koch (2000) and Fourier transform-based approaches

including PQFT (Guo and Zhang 2010), which uses the

same scale for this dataset.

Eye fixation prediction for natural images

A number of recent papers (e.g., Bruce and Tsotsos 2005;

Harel et al. 2006; Gao et al. 2007; Tatler et al. 2005) used

receiver operating characteristic (ROC) curve to evaluate a

saliency map’s ability to predict human eye fixations.

Given a threshold value, a saliency map can be divided into

the target region and background region. According to the

eye fixations from all subjects, each image can be divided

into the fixation points and non-fixation points. Thus the

fixation points that fall into the target region are regarded

as true positive points, and the non-fixation points that fall

into the target region are regarded as false positive points.

The percentage of true positive points out of all fixation

points is called a true positive rate (TPR), and the per-

centage of false positive points out of all non-fixation

points is called a false positive rate (FPR). Then the ROC

curve of TPR vs. FPR is generated by varying the thresh-

old. The area under the curve is called ROC area.

We plot the ROC curve for each image using fixation

data as ground truth, and then calculate average ROC area

over 120 images for PCT, P2CA and 3 other state-of-the-art

models: PQFT, AIM and ITTI. The results are given in

Table 1. Note that larger ROC area denotes better capa-

bility of eye fixation prediction. AIM parameters for this

image set are optimized by its authors to produce the best

results. For ITTI, we tune the parameters to obtain as good

results as possible. Results show that PCT provides the best

performance, and P2CA is the second with better perfor-

mance than PQFT, AIM and ITTI.

We also provide a visual comparison of saliency maps

for 7 selected images in Fig. 8. A fixation density map,

generated for each image by convolution of the fixation

map for all subjects with a Gaussian filter, serves as ground

Fig. 7 Responses to missing

items

Table 1 ROC area for state-of the art attention models according to

human fixations

Model PCT P2CA PQFT AIM ITTI

ROC area 0.7982 0.7897 0.7846 0.7816 0.7599
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truth (Bruce and Tsotsos 2005). It can be seen that PCT and

P2CA offer better performance in both easy predictions

(first 4 images) and difficult tasks (last 3 images). Good

performance with respect to color pop-out is also observed

with PCT and P2CA compared to the other models. For

example, PCT and P2CA are able to locate a small pop-out

in the 3rd image, which other models fail to detect.

Besides, they find salient objects in the 5th and 6th images,

whereas other models offer poor performance on these

complex scenes. Note that due to top-down influences,

human fixations often focus on certain objects or locations

that are not as salient in a bottom–up manner. This would

cause some disparities between eye fixation data and the

saliency maps (the 7th image).

Computational cost

An authoritative method for evaluating the computational

cost of an attention model is to analyze its computational

complexity. In this subsection, we initially analyze the

computational complexity of our model, and then compare

the time cost for 5 attention models that are implemented

within the same computer platform.

Our PCT model primarily concerns a DCT transformation

and an inverse DCT transformation. One classical algorithm

for DCT employs the fast Fourier transform (FFT) and has

the same computational complexity as FFT, i.e.,

O(MN log2(MN)), where the M and N denote the size of the

image. Therefore, our PCT model has a computational

complexity of O(MN log2(MN)). Note that PQFT also uses

FFT as its basic computation and thereby has a computa-

tional complexity of approximately O(MN log2(MN)) (see

Guo and Zhang 2010). For our P2CA model, we need to

reshape an input image into a vector before performing a

PCA transformation. Therefore, our P2CA model has a

computational complexity of O((MN)2). The computational

procedures of AIM and ITTI are comparatively complex (see

Bruce and Tsotsos 2009; Itti et al. 1998), and some com-

putational details were not shown in literature, but in their

toolboxes that are coded in Matlab. Therefore, it is difficult

for us to give a precise computational complexity of these

two models.

Fig. 8 Test on natural images. From left: natural images from Bruce and Tsotsos (2005), corresponding fixation density maps, saliency maps

generated using P2CA, PCT, PQFT, AIM and ITTI
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Note that the toolboxes of PQFT, AIM and ITTI, which

are employed in our experiments, are optimized by their

respective authors. We compare the time cost for 5 atten-

tion models in the eye fixation prediction experiment. All 5

models are implemented using Matlab 7.0 in such com-

puter environment as Intel 2.53 GHz CPU with 2 GB of

memory. We calculate the time cost per image for each

model averaged over the 120 images. The results are given

in Table 2. As can be seen, PCT performs nearly three

times faster than PQFT, and hundreds of times faster than

ITTI and AIM. Note that P2CA is slower than PCT and

PQFT due to its high computational dimensionality.

However, it is still considerably faster than AIM and ITTI.

Motion saliency

Motion saliency is another important visual feature that

attracts our attention (Cavanagh 1992; Treue and Trujillo

1999). It has been shown that visual motion perception is

closely related to the cortical activities in the MT area (V5)

(Nowlan and Sejnowski 1995). In this section we start by

introducing two calculation schemes that are capable of

generating motion-based saliency maps, and then continue

with the description and analysis of the test results on video

sequences.

Calculation schemes

Scheme 1: Practically motion-based saliency maps can be

easily obtained by an attention model with the differences

between consecutive frames (i.e., inter-frame differences)

as input quantities. This way has already been pursued by

many attention models (e.g., the PQFT model from Guo

and Zhang (2010)). Given two consecutive frames X(t) and

X(t – 1) at sampling time t and t – 1, a motion-based inter-

frame difference is calculated as

Xmotion tð Þ ¼ X tð Þ � X t � 1ð Þ: ð5Þ

With the inter-frame difference Xmotion(t) as input quanti-

ties, Eqs. 1–3 can calculate a corresponding motion-based

saliency map.

Scheme 2: On the basis of the aforementioned attention

model, we propose a new scheme that is able to detect

motion-based saliency. Given two consecutive frames

X(t) and X(t – 1), their respective binary vectors p(t) and

p(t – 1) are first calculated by Eq. 1. Then a motion-based

difference vector can be calculated as

pmotion tð Þ ¼ p tð Þ � p t � 1ð Þ: ð6Þ

Finally, a motion-based saliency map is obtained by Eqs. 2

and 3, with the vector pmotion(t) as input quantities. It

should be noted that a hypothetical neural mechanism for

motion-based saliency is based on Scheme 2, which will be

discussed in section ‘‘Discussions’’.

Test on video sequence

Detection of motion saliency is very important for various

computer vision applications. Usually, motion saliency can

be obtained by use of the differences between consecutive

frames. However, motion saliency is not trivial to detect

when there is ego-motion. If a camera is moving itself, the

moving objects (relative to the background) is easily con-

founded with background variation due to the camera’s

motion. This is illustrated in Fig. 9, which shows several

frames from a video sequence captured with a moving

camera. The camera motion introduces significant variation

in the background, which makes the detection of fore-

ground motion (the auk) a difficult task. The saliency maps

produced by motion-based PCT with Schemes 1 and 2 are

shown in columns (c) and (d), respectively. As can be seen,

our methods are able to disregard the background variation

and concentrate nearly all saliency on the animal’s body.

This example shows that motion-based PCT is very robust

to the presence of ego-motion. Note that the results pro-

duced by Schemes 1 and 2 are very similar. This means

that the difference vectors obtained by Eq. 6 contain ade-

quate information about motion saliency. For comparison,

column (e) gives the spatiotemporal saliency maps gener-

ated by PQFT.

Discussions

In this section we give some discussions about the pro-

posed model and show a hypothetical neural mechanism

for saliency generation.

Estimating the PCA projection vectors

PCA is a popular statistical approach, and its projection

vectors can be estimated by using a collection of data

samples. Theoretically, one can obtain a set of optimal or

nearly optimal PCA projection vectors from far more nat-

ural images than the number of image pixels. However, a

digital image may contain more than one mega pixels, and

it is therefore difficult to collect sufficient image samples

for an accurate estimation of the PCA projection vectors.

Table 2 Average time cost per image for state-of the art attention

models

Model PCT P2CA PQFT AIM ITTI

Time (s) 0.0124 0.5509 0.0356 11.9371 2.7845
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While we down-sample the image to 64 9 64 px con-

forming to the heuristics described by Guo and Zhang

(2010), it is still difficult for us to collect enough natural

images relative to a 4096-dimensional space.

An alternative method is to employ a collection of sub-

images (image patches) to estimate the PCA projection

vectors. In this work we collected one million 64 9 64

sub-images that were gathered by sampling from 340 nat-

ural images. Many studies have investigated the scale

invariance with respect to the statistics of natural scenes,

which shows that the large-scale down-sampled images and

the small-scale sub-images have the same principal com-

ponents (Field 1987; Ruderman 1997). Therefore, the

principal components of the sub-images can describe the

down-sampled images as well.

PCT is better than P2CA

As has been mentioned before, PCA projection vectors can

be obtained by some Hebbian-based neural networks.

Therefore, our PCA-based model has some biological and

developmental implications. Moreover, saliency informa-

tion in our model can be expressed in a binary form, which

mimics the firing pattern of neurons.

While our PCA-based model is biologically motivated,

how well it performs depends on the choice of the training

dataset. Due to data-dependency, the PCA is not suitable

for all saliency detection tasks when it is obtained from

finite image samples. As has been mentioned, there exists

an asymptotic equivalence between DCT and the PCA for

Markov-1 signals (Hamidi and Pearl 1976; Rao and Yip

1990). This means that the PCA for digital images

approaches the DCT as the number of training samples

tends to infinity. Thus, DCT can be considered as a PCA

basis estimated from infinite image samples. Apart from

data-independency, the DCT can be implemented using a

fast algorithm. Therefore, in our experiments PCT is

superior to P2CA in terms of both computational speed and

capability of saliency detection.

Difference from DCT-based image compression

DCT has been widely used in image compression (Gonz-

alez and Woods 2002). Conventionally, after acquisition of

an image, DCT is performed on the image using the pixel

values. Afterward, many DCT coefficients that contain

negligible energy are discarded before quantization and

entropy coding. By this means, most digital images can be

heavily compressed without much loss in perceptual

quality. This technique of image compression is derived

from PCA, which is optimal to retain the principal infor-

mation of the original image using few components.

Fig. 9 Test on video sequence. a Representative frames from a video

sequence. b Corresponding inter-frame differences showing the

presence of ego-motion. c Motion saliency maps obtained by

PCT ? Scheme 1. d Motion saliency maps obtained by

PCT ? Scheme 2. e Spatiotemporal saliency maps obtained by PQFT
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For our PCT model, we normalize the DCT coefficients

(either positive or negative) by use of a signum function.

Thus, the normalized coefficients are either –1s or 1s.

Afterward, an inverse DCT is performed on these binary

coefficients so as to produce the saliency information rather

than the principal information of the original image.

Therefore, our PCT is distinctly different from a DCT-

based image compression.

A hypothetical neural mechanism

Li (2002, 2006) suggested that salience is strongly tied to

primary cortical activities, and that the output firing rate of

V1 neurons represents the salience of the visual input. Her

spiking neuron model, which mimics lateral interactions

between V1 simple cells by a recurrent network of excit-

atory and inhibitory weights, is capable of saliency detec-

tion. Furthermore, Li and Dayan (2006) argued that the

influence of higher cortical areas on pre-attentive selection

is as yet unclear. To this end, our work provides a heuristic

model of saliency detection.

In this work we proposed a novel scheme (i.e., Scheme 2

in section ‘‘Motion saliency’’) to calculate motion-based

saliency maps. Can such a process as Eq. 6 be implemented

in the human brain? We have no enough biological evi-

dence. Nevertheless, we propose a hypothetical neural

mechanism that is able to generate both spatial and motional

saliency. A schematic depiction of this neural mechanism is

shown in Fig. 10. As can be seen, the computation of sal-

ience can be accomplished in existing neural mechanism of

the human brain. Equation 6 can be conducted by the

interactions between inhibitory and exhibitory neurons that

are connected forwardly to neurons in V5. Note that the

minus sign and time delay in Eq. 6 can be produced when

the neuronal pulses come through a group of inhibitory

neurons. We expect that our work has a heuristic implica-

tion for future investigations on motion detection.

Conclusion

In this paper we manifested that the saliency map of an

image can be calculated by using the signs of the PCA

coefficients. Thus, we proposed a bottom–up attention

model called P2CA, which has more neurobiological and

developmental plausibilities than the Fourier transform-

based approaches but offers similar performance. The

discovery of the PCA coefficients’ effect on visual saliency

provides us with an easy way to extend the P2CA model to

the PCT model, which employs the DCT coefficients of an

image to obtain the saliency map. The PCT model is very

simple and fast in computation, and can be potentially used

in real-time saliency detection. Experimental results

showed that our PCT model outperforms the state-of-the-

art approaches in terms of both saliency detection and

computational speed.

This paper only investigates the computational modeling

of bottom–up visual attention. It has not considered a top-

down influence. Future research will focus on a task-

dependent attention system. It is possible to add top-down

influences for developing more intelligent robot vision

systems so as to accomplish various visual search tasks in

engineering applications.

Note that some attention models aim at detecting salient

proto-objects (e.g., Bundesen 1990; Wischnewski et al.

2010). In these models, the salient units are proto-objects

rather than the image pixels, and the implementation of

saliency computation is based on the medium-level visual

features of proto-objects. Our work does not consider

proto-objects as the elements of saliency computation. In

our future works, we may modify our attention model to

detect salient proto-objects that can be used for accurate

image segmentation.
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