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Abstract This study combines wavelet decomposition

and independent component analysis (ICA) to extract

mismatch negativity (MMN) from electroencephalography

(EEG) recordings. As MMN is a small event-related

potential (ERP), a systematic ICA based approach is

designed, exploiting MMN’s temporal, frequency and

spatial information. Moreover, this study answers which

type of EEG recordings is more appropriate for ICA to

extract MMN, what kind of the preprocessing is beneficial

for ICA decomposition, which algorithm of ICA can be

chosen to decompose EEG recordings under the selected

type, how to determine the desired independent component

extracted by ICA, how to improve the accuracy of the back

projection of the selected independent component in the

electrode field, and what can be finally obtained with the

application of ICA. Results showed that the proposed

method extracted MMN with better properties than those

estimated by difference wave only using temporal infor-

mation or ICA only using spatial information. The better

properties mean that the deviant with larger magnitude of

deviance to repeated stimuli in the oddball paradigm can

elicit MMN with larger peak amplitude and shorter latency.

As other ERPs also have the similar information exploited

here, the proposed method can be used to study other

ERPs.
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Introduction

Independent component analysis (ICA) (Hyvarinen et al.

2001) has been extensively applied to study brain signals

(Vigario and Oja 2008). It belongs to the linear transfor-

mation model, and assumes that the observation is the

mixture of unknown sources. The goal of ICA decompo-

sition is to extract the independent sources from the mix-

tures through exploiting the spatial independence among

different unknown sources (Hyvarinen et al. 2001). ICA

does not essentially utilize other prior knowledge of

sources, such as, temporal or frequency information which

is necessary for the digital or wavelet filter (Kalyakin et al.

2007; Cong et al. 2010a). Using ICA to study electroen-

cephalography (EEG) assumes that EEG collected from

any point of the human scalp includes activities generated

within a large brain area, and that the spatial smearing of

EEG data below 1 kHz by volume conduction does not

result in significant time delay (Hämäläinen et al. 1993;

Makeig et al. 1997; Makeig et al. 1999; Nunez and Srin-

ivasan 2005). Hence, regarding ICA, the electrical activi-

ties of the brain are the sources, and EEG recordings
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are the mixtures. From the view of mechanisms to generate

EEG, components extracted by ICA can be divided into

two types, including the spontaneous ongoing EEG (Chen

et al. 2008) and the event-related potentials (ERPs)

(Vigario and Oja 2008; Pockett et al. 2007). This study is

devoted to the latter application.

Although ICA has been extensively used to study ERPs

(Vigario and Oja 2008; Delorme and Makeig 2004), in the

research of a one of the most interesting ERPs, viz, mismatch

negativity (MMN) (Näätänen et al. 1978; Näätänen 1992;

Duncan et al. 2009), only few studies have reported the

application of ICA to extract MMN (Kalyakin et al. 2009;

Kalyakin et al. 2008; Marco-Pallares et al. 2005). MMN

studies are usually based on the average over hundreds of

single trials of EEG recordings (Näätänen et al. 1978;

Näätänen 1992; Duncan et al. 2009). It is one of the small

ERPs and its peak amplitude is only up to several micro volts

and particularly in children’s MMN, EEG recordings are

much noisier. This results in the difficulty to extract MMN

through ICA (Huovinen and Ristaniemi 2006). Furthermore,

ICA is a novel and complicated signal processing technique,

and it might not be well understood and grasped by

researchers in the MMN society. MMN was first identified by

Näätänen et al. (1978). Since then, many researchers have

been devoted to the study of MMN. From 1998 to 2009, the

world wide MMN conferences have been held five times

already. MMN has been proved to be useful in the research of

cognitive studies, clinical neuroscience, and neuropharma-

cology (Duncan et al. 2009; Garrido et al. 2009).

ICA has been proven to be very promising to study

ERPs (Vigario and Oja 2008). This drives us to discuss the

application of ICA to extract MMN of children from EEG

recordings in details, and to answer the following funda-

mental questions which have not been well treated before:

1. Among the averaged EEG recordings over single trials,

EEG recordings of a single trial, and EEG recordings

of the concatenated trials, which type of the EEG

recordings is more appropriate for the ICA decompo-

sition to extract MMN of children?

2. What kind of preprocessing is beneficial for the ICA

decomposition except the conventionally required

whitening and sphering (Hyvarinen et al. 2001)?

3. Which algorithm of ICA can be chosen to decompose

EEG recordings under the selected type?

4. How to determine the extracted independent compo-

nent as the desired?

5. How to improve the accuracy of the projection of one

desired component in the electrode field?

6. What can we finally obtain with the application of

ICA?

In order to seek solutions for answering these questions,

we exploit the temporal, frequency, and spatial information

of EEG recordings of MMN and formulate a robust and

reliable data processing procedure to extract MMN compo-

nent. As the core technique to decompose the EEG record-

ings in this study is to combine the single channel method,

namely wavelet decomposition (WLD) (Cong et al. 2010a),

and the multichannel method, namely, ICA, together, the

proposed method is denoted as wICA hereinafter. It is

compared with difference wave (DW) and ICA (Kalyakin

et al. 2008) to investigate which method can extract better-

defined MMN.

Method

Experiment

Participants

The EEG data were collected at the University of

Jyväskylä in Finland, and 114 children participated in the

MMN experiment. The children were aged from 8 to

16 years. Data of four subjects were excluded because of

strong noise. The subjects for study consisted of 68

control children, 21 children with reading disability, and

21 children with attention deficit, including 76 boys and

34 girls. The mean age of the children was 11 years

8 months (age range: from 8 years 2 months to 16 years

9 months). Huttunen et al. (2007) shown that both clini-

cal groups in our data set produced MMN, and Kalyakin

et al. (2008) demonstrated that the control children in our

dataset certainly generated MMN. The difference between

the groups is not a topic of this study. Please refer to the

studies of Huttunen et al. (2007) and Huttunen-Scott

et al. (2008) for more information about the group

description. This study focuses on data processing

methods.

Paradigm to elicit MMN

To each subject in the MMN experiment, 700 trials were

collected and the experiment lasted for about 11 min.

Children were asked to pay attention to a subtitled silent

movie while the stimuli were delivered binaurally through

earphones with 65 dB intensity. A passive oddball para-

digm was adopted to elicit MMN by duration deviants

presented in an uninterrupted sound. Figure 1 demonstrates

the experimental paradigm. Two alternating 100 ms tones

of 600 Hz and 800 Hz composed the repeated continuous

tones. The sine wave changed to another frequency without

any pause or alternation in the wave amplitude. The

deviants were 30 ms and 50 ms tones of 600 Hz (denoted

by dev50ms and dev30ms hereinafter) and either of the

deviants randomly substituted 7.5% of the 100 ms standard
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tones of 600 Hz. There were at least three standard pairs

between two deviants.

EEG recordings

Three time intervals of responses were available in a

recorded trace: (1) the responses elicited by the repeated

stimuli; (2) the responses generated by the deviant stimuli;

(3) the responses produced by the offset of the deviant

stimulus and the responses elicited by the following repe-

ated stimuli. A Brain Atlas-system (Bio-Logic, Chicago,

USA) with 50 K gain was used and Tecmar’s Labmaster

12-bit, 16-channel AD-converter and the DSAMP software

package (University of Jyväskylä, Finland) were adopted

for the EEG data acquisition. The sampling frequency was

200 Hz and an analog band pass filter of 0.1–30 Hz was

used. The data was processed offline. Recording started

300 ms before the onset of a deviant stimulus and lasted

350 ms after the onset of a deviant. Thus, each trial con-

tained the recordings of 650 ms, i.e., 130 samples.

EEG at nine locations (frontal F3, Fz, F4; central C3,

Cz, C4; parietal (Pz) and mastoids (M1, M2)) were

recorded with Electro-Cap International 20-electrode cap

using the standard 10–20 system. Silver/silver chloride

electrodes were used for the measurement. The potentials

were referred to the tip of nose. Eye movements were

measured from the upper corner of the left eye (G1) and the

lower corner of the right eye (G2). Impedances were less

than 10 kOhm and in most cases less than 5 kOhm.

wICA

Averaged trace for wICA

MMN has been extracted by ICA from the recordings of

concatenated single trials (Marco-Pallares et al. 2005), and

from the averaged recordings over single trials (Kalyakin

et al. 2009). The former paradigm supplies more samples

for ICA decomposition and benefits the convergence of the

ICA algorithm; however, the latter procedure provides ICA

with better structured MMN waveform for the decompo-

sition. In reality, both methods implicitly assume that the

cognitive processes stay identical from one trial to another.

Another application of ICA to extract the brain activity of

an ERP out is directly from the EEG recordings of a single

trial (Iyer and Zouridakis 2007).

Usually, children’s MMN cannot be significantly visible

from EEG recordings of concatenated single trials or EEG

recordings of a single trial. This is because MMN is very

small, and the signal to noise ratio in the single trial is too

low. The goal to apply ICA in this study is to extract the

MMN component out, i.e., the desired component at least

should possess the well-structured MMN waveform.

However, in practice, the ICA algorithm ‘pays attention’ to

the relatively large activity in the data (Huovinen and

Ristaniemi 2006; Makeig 2002). Therefore, EEG record-

ings of MMN of children in concatenated single trials or a

single trial may be too difficult for ICA to extract the

desired MMN component.

ERPs are usually achieved through averaging and fil-

tering over a number of single trials (Picton et al. 2000), so

does MMN (Näätänen 1992). Provided that there are

enough single trials, MMN activity can at least be roughly

observed in the average trace. Then, ICA decomposition on

the averaged traces may be easier in contrast to the EEG

recordings of a single trial or the concatenated trials.

Subsequently, this study performs wICA on the averaged

traces of each subject to extract MMN component. We will

show the difference between the recordings of single trials

and the averaged trace of MMN of children in the section

‘‘Diagram of wICA on averaged trace.’’

Preprocessing: wavelet decomposition on MMN

Regarding ICA, as stated in the tutorial of EEGLAB, the

quality of the data is critical in order to obtain a good ICA

decomposition (http://sccn.ucsd.edu/eeglab/quickrej.html).

In the previous study, Cong et al. (2010a) has validated that

WLD can extract MMN with better properties from the

ordinarily averaged trace. Thus, before ICA decomposition,

WLD was first used to clean the ordinarily averaged trace

with the reversal biothogonal wavelet of order 6.8. Through

WLD, the ordinarily averaged trace was decomposed into

seven levels, and the coefficients under the fifth and sixth

levels were selected to reconstruct the MMN component

(Cong et al. 2010a). This was because the frequency

responses of such a wavelet filter met the spectral properties

of MMN (Cong et al. 2010a). This is desired when using

wavelet based analysis to study ERPs (Basar et al. 2001).

Another benefit of WLD is that it probably assists to

convert the underdetermined model of data almost to the

Fig. 1 A schematic illustration of the stimulus sequence of the 50 ms

deviant stimulus. Also the standard and deviant sweeps used for

calculating the difference waves are illustrated. The bold solid line of

the stimulus sequence indicates the recording period of 650 ms. The

time window for the quantitative analyses of the MMN is shown.

(Adapted from Kalyakin et al. 2007)
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determined model. In the application of ICA to EEG, the

number of sources is usually assumed to be equal to that of

electrodes in the low-density array and the determined ICA

model is often used (Delorme and Makeig 2004). This

study only collected EEG with nine electrodes. Indeed, the

averaged EEG recordings may have much more sources

than this number (Cong et al. 2011). Hence, in the aver-

aged EEG recordings of our dataset, the ICA model is

definitely underdetermined. Our previous study has dem-

onstrated that the number of sources can be severely

reduced by the appropriate WLD (Cong et al. 2011). Then,

the undetermined model may be probably changed to the

determined ICA model, at least quasi-determined model.

Indeed, we cannot directly validate that the number of

sources in the wavelet-filtered EEG recordings is nine in

this study. Implicitly, if we suppose the number of sources

is nine here and if the ICA decomposition under the

determined model is reliable, we can tell that the

assumption of sources’ number is reasonable. This is val-

idated in the next section.

Estimating ERP component with ICASSO

Before ICA was performed, the data was averaged over

single trials in this study. The signal to noise ratio can be

improved with the proportion to the squared root of the

number of trials under the assumption that additive noise is

of the Gaussian distribution (Harmony 1984). Thus, it is

reasonable to assume that the averaged trace is free to the

sensor noise. Then, the averaged EEG recordings can be

modeled as

xiðtÞ ¼
Xn

j¼1

ai;jsjðtÞ; ð1Þ

where, xi(t) denotes EEG recording at the ith electrode, and

sj(t) is the source of one electrical brain activity, and ai,j

represents the mapping/mixing coefficient from a source in

the brain to an electrode along the scalp. Indeed, ai,j also

reveals the topography information of the corresponding

source (Cong et al. 2010c). The Eq. 1 implies that the EEG

recordings are mixtures of the scaled sources. The

averaged EEG recordings in the matrix form may be

described as

xðtÞ ¼ AsðtÞ; ð2Þ

where, s(t) represents the vector of sources of the electrical

brain activities, x(t) is the vector of recordings at electrodes

along the scalp, and A symbolizes the mapping/mixing

matrix from the sources in the brain to the electrodes along

the scalp.

ICA is to seek such an unmixing matrix W to transform

x(t) into

yðtÞ ¼WxðtÞ; ð3Þ

where, y(t) is the vector of estimated independent

components. To the best performance, i.e., the global

optimization (Cichocki and Amari 2003), what is pursued

is a global matrix C

C ¼WA; ð4Þ

and in each column and row of C, there is only one nonzero

element. Thus, y(t) is the version of permuted and scaled

s(t) under the global optimization (Hyvarinen et al. 2001;

Cong et al. 2010c; Cichocki and Amari 2003).

ICA is usually realized through an adaptive iteration

learning algorithm as below (Hyvarinen et al. 2001),

Wðlþ 1Þ ¼WðlÞ þ l½I� uðyðtÞÞyðtÞT �WðlÞ; ð5Þ

where, u(•) denotes a nonlinear function associated with

the probability function of the source, l represents the

learning rate, i.e., the step size between two iterations, and

W(l) symbolizes the unmixing matrix at the lth iteration.

Usually, the learning converges to some predefined

threshold along the gradient decent algorithm through

iterations to obtain the unmixing matrix W (Hyvarinen

et al. 2001).

However, the threshold may be met when the solution is

locally optimized, i.e., there are more than one nonzero

elements in some columns and rows of the global matrix.

Such a case is called as the local optimization. This hap-

pens very often in high dimensional space when using ICA

to study ERPs (Himberg et al. 2004). Subsequently, the

output is probably uncertain under a single-run ICA

through the adaptive learning algorithm. To resolve this

problem, Himberg et al. (2004) randomly initialized the

learning and ran an ICA algorithm many times. After that,

all these extracted components were clustered into the

predefined number of common components. As a result, the

output from such an ICA procedure can be much more

reliable in estimating sources than the single-run ICA.

They named the software as ICASSO (Himberg et al.

2004). It has been used to estimate the MMN component

by Kalyakin et al. (2008, 2009).

As suggested by Vigario and Oja (2008), the higher order

statistical ICA is more appropriate to decompose EEG

recordings. As summarized by Daubechies et al. (2009), the

extended infomax ICA (Lee et al. 1999) and FastICA

(Hyvarinen 1999) are the most used algorithms in the study

of brain signals. Indeed, the former usually requires a large

number of samples to converge. In this study, we performed

ICA on the averaged trace. The number of samples in such a

signal is quite limited in any ERP study. Consequently,

regarding ICASSO, FastICA (Hyvarinen 1999) was chosen

for the ICA decomposition in this study and tanh (•) was
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defined for the nonlinear function to FastICA. Please refer

to the study of Hyvärinen (1999) for details of FastICA. 100

runs were set for ICASSO, i.e., for the wavelet-filtered

traces of each subject, FastICA was run 100 times. At each

time, the unmixing matrix was initialized randomly, and

nine components were extracted out. Subsequently, 900

components were produced. Finally, those components

were categorized into 9 clusters and each cluster corre-

sponded to each component estimated by ICASSO. For the

clustering, the agglomerative hierarchical clustering with

average-linkage criterion was used (Himberg et al. 2004).

This is also the default of the set in ICASSO software.

Kalyakin et al. (2008, 2009) discussed this software on the

application to the averaged EEG recordings in details. We

used the same decomposition algorithm in this study.

Facilitating ICA to estimate MMN sources elicited by two

deviants

ICA has a special requirement on the number of samples of

the signal to be decomposed. It is usually at least several

times larger than the squared number of estimated sources

(Makeig et al. 1997, 1999). In this study, we assumed nine

sources because of nine electrodes used to collect EEG

data. Thus, the number of samples for ICA should be no

less than 162. As stated in the ‘‘Experiment’’, there were

130 samples in the averaged trace. This number in our

dataset did not match the necessity of ICA. To facilitate

ICA, Kalyakin et al. (2008, 2009) concatenated the aver-

aged traces of different deviants at each channel for each

subject. We repeated this procedure here. Then, the con-

nected averaged trace of two deviants had 260 samples. As

a result, the constraint of ICA on the number of samples

was released.

This paradigm connecting the averaged traces of dif-

ferent deviants is reasonable because the deviant stimui

usually substitute the repeated stimuli randomly in an

oddball paradigm and the cognitive processes elicited by

different deviants are assumed to be identical in the MMN

experiment. Due to such a procedure, the sources of MMNs

elicited by two deviants were estimated by ICASSO at the

same time in this study. However, the following steps of

data processing would be implemented separately for each

deviant.

Choosing MMN component for wICA

After sources are estimated by ICA, the desired compo-

nents are usually chosen for further processing. As intro-

duced by Tie et al. (2008), methods used to choose the

desired components are usually based on spatial patterns,

map polarities, temporal characteristics, spectral criteria,

and so on. For example, the MMN peak amplitude is

positive in the mastoid and negative at the frontal and

central areas with the reference to the tip of nose; MMN

elicited by an uninterrupted sound used in this study is

time-locked and should appear in the time frame from

50 ms to 200 ms after the deviant offset (Huttunen et al.

2007); the optimal frequency band of MMN is between

2 Hz and 8.5 Hz in our dataset (Kalyakin et al. 2007).

We repeated the approach of Cong et al. (2010b, d) to

choose the MMN component in this study. The approach is

to determine which component is the best one containing

MMN information in the time and frequency domains.

Firstly, every extracted component was transformed by the

Morlet wavelet to obtain its time–frequency representation

(TFR); then, the support to absence ratio (SAR) of the TFR

of MMN was calculated for each component; finally, the

component with the largest SAR was chosen as the desired

MMN component.

Generally speaking, the ‘support’ represents the

recordings of the desired responses of the major interest

and the ‘absence’ means other recordings. To SAR of

MMN in this study, the mean value of energy over the

rectangular region of the TFR of a component was the

support. The dimensions of this rectangle were time by

frequency and the frequency range was set as 2–8.5 Hz

(Kalyakin et al. 2007) and the time interval was between

50 ms and 200 ms after the deviant was offset (Huttunen

et al. 2007). The mean value of energy of the rest region in

the TFR of the component was the absence. Then, a larger

SAR corresponded to more evident MMN component.

Hence, such an approach to choose the desired component

was to seek which component among nine extracted

components contained information like MMN as much as

possible in the time and frequency domain. Please refer to

Cong et al. (2009, 2010b, d) for details of the definition of

SAR.

Projecting one component back to electrode field

in practice

After EEG recordings are decomposed into independent

components, projecting a selected component back to the

electrode field often follows to recover the amplitude of

the selected component with the unit of the microvolt

(Makeig et al. 1997, 1999). This is because the variance

and the polarity (positive and negative) of a component

extracted by ICA are indeterminate (Hyvarinen et al.

2001) and the determined peak measurements are the

basis for ERP research (Luck 2005). Regarding ICA, each

column of the inverse of an unmixing matrix W in the

Eq. 3 can be interpolated to show the scalp map associ-

ated with the corresponding component (Makeig et al.

1997, 1999; Cong et al. 2010c), and the back projection

can resolve the ambiguity of the variance and polarity

Cogn Neurodyn (2011) 5:343–359 347

123



problems in theory (Cong et al. 2010c). Without loss of

generality, we assumed n sources and n sensors, and only

one component was projected back to electrodes in this

study. After the unmixing matrix is produced, its inverse

can be obtained as the following

B ¼W�1; ð6Þ

where, B = [b1, …, bk, …, bn], bk is the column vector of

B. For example, the kth estimated component is chosen,

and then, the projection of this independent component

back onto the electrode field is given by the outer product

of the kth column of B with the kth estimated element of

y(t) (Makeig et al. 1997, 1999). In the matrix–vector form,

the projection can be described as

eðtÞ ¼ bk � ykðtÞ; ð7Þ

where, e(t) represent the projected components at all

electrodes, ykðtÞ ¼
Pn

j¼1 ckjsjðtÞ; and ckj denotes the ele-

ment of global matrix C at the kth row and jth column.

Correspondingly, if the kth element of y(t) is projected

to the electrode i, the scalar form of the Eq. 7 can be

expressed as

eiðtÞ ¼ bikckpspðtÞ þ
Xn

j¼1;j6¼p

bikckjsjðtÞ; ð8Þ

where, bik is the element of projection matrix. Under the

satisfactory ICA decomposition, ckp is assumed to possess

the largest absolute value among elements of the kth row of

C, and sp(t) is the target source. Supposing only sp(t) exists

in the brain, the Eq. 2 can be rewritten as

xpðtÞ ¼ ap � spðtÞ; ð9Þ

where, sp(t) is the pth element of the brain sources’ vector

s(t) in the Eq. 2, and ap is the pth column of the mapping/

mixing matrix A in the Eq. 2, and xp(t) are the recordings

at all electrodes, i.e., the mapping of a single source at all

electrodes. In contrast to the recordings in the Eqs. 1 and

2, xp(t) only contain the information of one source.

Hence, the pursuit of the application of ICA on EEG is to

obtain the mapping in the Eq. 9. What follows is that the

Eq. 7 is the same to the Eq. 9 in the case that the global

matrix C in the Eq. 4 is globally optimized, i.e., in each

row and each column, there is only one non-zero element

(Cong et al. 2010c). This is an extremely strong condition

in the application of ICA on EEG. Specifically, in this

condition the second term in the right side of the Eq. 8

disappears and the product of bikckp in the Eq. 8 is the

same to the aip, i.e., the ith element of ap in the Eq. 9

(Cong et al. 2010c).

In practice, it is rare to obtain the global optimization

(Himberg et al. 2004). Thus, it is necessary to study the

projected components in the electrode field as described by

the Eq. (7) when the optimization of an ICA algorithm is

localized. Cong et al. (2010c) has discussed this issue in

details based on simulated EEG recordings. For com-

pleteness of this study, it is briefly stated here and the real

EEG recordings will be examined in the ‘‘Diagram of

wICA on averaged trace’’ and the ‘‘Results’’. In this pre-

sentation, we study the case of practically satisfactory ICA

decomposition that only one element in each column and

each row of the global matrix has relatively large absolute

value, and other elements are not entirely zero under the

local optimization. In such conditions, the second term in

the right side of the Eq. 8 still exists, but the first term

dominates the waveform of the projected component in the

electrode field. Under the local optimization, the product of

bikckp in the Eq. 8 may be different with the ith element of

ap in the Eq. 9, moreover, the sign of bikckp may be inde-

terminate (Cong et al. 2010c). Subsequently, this results in

the fact that the polarity of the projected component in the

electrode field is indeterminate. In such a case, polarities of

the MMN peak amplitudes of different subjects at a certain

electrode might be different. This definitely causes prob-

lems in performing further statistical tests on the MMN

peak amplitudes. Therefore, such indeterminacy should be

corrected. Based on the simulated experiment, Cong et al.

(2010c) has demonstrated that the correction of the

abnormal polarity assisted to achieve more precise pro-

jection through multiplying the projected component in the

electrode field by ‘-1’ where the polarity of the projection

is reversal. We repeated this procedure in the real experi-

ment here. It should be noted that the correction made in

this study is indeed the post processing after ICA, and it

can also be regarded as the further processing on certain

element of the projection matrix, and the correction does

not change the real source of the brain (Cong et al. 2010c).

In this study we assumed that MMN had the same

polarity at the same electrode to all subjects. Specifically,

the MMN peak referred to the tip of nose was expected to

be negative at electrodes F3, Fz, F4, C3, Cz, C4, and Pz,

and positive at M1 and M2 (Näätänen 1992). Thus, after

the projection, the polarity of the MMN peak was checked

in contrast to the expectation. If it was opposite, the

polarity of the projection at that electrode would be

reversed.

Gain from ICA

As interpreted by the Eq. 1, EEG recordings are mixtures

of electrical brain activities. In theory, as shown by the

Eq. 3, we can obtain the individual brain activities with

indeterminate variances in case the ICA decomposition is

globally optimized (Hyvarinen et al. 2001; Cong et al.

2010c; Cichocki and Amari 2003); as illustrated by the

Eq. (9), after one of such individual brain activities is
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projected back to the electrode field, we can gain the

determined projection of this brain activity, i.e., the mul-

tiplication of the source of this brain activity and its

mapping coefficient from its location in the brain to the

points along the scalp (Cong et al. 2010c). In practice, we

can hardly acquire the global optimization, but the local

one (Cong et al. 2010c; Himberg et al. 2004), and in this

case, what we can achieve is the approximation of the

counterpart in theory. However, it is difficult to measure

the error between the unknown theoretical expectation and

the practical approximation to judge the performance of

ICA. One realistic way is that if the ICA decomposition is

not reliable, results should not be acceptable (Himberg

et al. 2004).

Diagram of wICA on averaged trace

Figure 2 depicts the diagram to summarize all the steps

mentioned above for wICA. Particularly, Fig. 3 demon-

strates the procedure with the typical and representative

data of one subject under dev50ms. Figure 3a exhibits the

recordings of 333 single trials at Fz. Figure 3b shows the

ordinarily averaged trace and the filtered trace by WLD. In

Fig. 3a, the 333 curves represent the EEG recordings of

333 single trials at Fz, respectively, and they are highly

variant in contrast to the ordinarily averaged trace at Fz as

shown in Fig. 3b. Indeed, this should be very typical in the

children’s MMN recordings. Hence, it is not wise to per-

form ICA on the EEG recordings of concatenated single

trials or a single trial in this situation. Figure 3c describes

the nine components extracted by wICA from the averaged

traces. Figure 3d illustrates that every component esti-

mated by wICA is very reliable since the nine clusters of all

components under 100 runs’ decomposition are isolated

with each other. Furthermore, the fourth component was

chosen as the MMN-like component and was projected

back to the electrode field as shown by Fig. 3e. This figure

also interprets that the polarities at M1 and M2 were

reversal to the theoretical expectations. Thus, they were

modified through multiplied by ‘-1’, and then the final

wICA trace used to analyze MMN peak amplitude and

latency was produced. It should be noted that the abnormal

polarity happens with higher probability at the electrode

where the peak amplitude is smaller in contrast to those at

other electrodes (Cong et al. 2010c).

Indeed, Fig. 3 describes how MMN component was

extracted from the ordinarily averaged trace by wICA and

how it was projected back to the electrode field. To the

single trials, MMN activity was not visible, hence, ICA

decomposition was not performed on this type of EEG

recordings. In the averaged trace, the MMN waveform was

visible, but not well structured. After wICA was per-

formed, the MMN component was evidently extracted

from the averaged trace. In this example, the mean SAR of

the ordinarily averaged trace over nine channels in Fig. 3b

was -2.2 dB, and the SAR of the MMN-like component

estimated by wICA, i.e., component # 4 in Fig. 3c, was

16.1 dB. Hence, the improvement was very significant,

which also validated that the proposed ICA decomposition

was effective and its performance was satisfactory in this

study.

Data processing

In order to rule out artifacts, two exclusion principles based

on visual inspection were used. Firstly, trials including eye

movements with EEG recordings exceeding ± 100 lV

were removed. Secondly, trials with EEG recordings

showing only straight line with null information were

rejected. The number of included trials per subject varied

from 232 to 350 trials. The mean amount of trials for each

subject was 332.

The data processing procedure of wICA included the

following six steps:

1. Averaging EEG recordings over single trials at each

channel under each deviant for each subject. The mean

of the activity during the first 300 ms of the trace

formed the baseline and was removed from the

averaged trace.

2. Appling WLD to filter every ordinarily averaged trace

(Cong et al. 2010a) and connecting the filtered traces

of two deviants together at each channel for each

subject.

3. Implementing ICASSO (Himberg et al. 2004) on the

concatenated wavelet-filtered traces for each subject to

Fig. 2 Diagram of data processing in this study
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Fig. 3 Demonstration of the data processing for one subject:

a recordings of single trials at Fz, b recordings to ICA, c extracted

components by wICA, d the similarity graph of every component

estimated by wICA under 100 runs, e projection of extracted

component #4 in the electrode field
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estimate the unmixing matrix and to extract nine

independent components.

4. Choosing the estimated MMN-like component.

5. Computing the inverse of unmixing matrix and

projecting the selected component back to the elec-

trode field.
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6. Correcting the reversal polarity of the projected

component at any electrode to achieve the final wICA

trace.

To compare wICA with other methods, DW and ICA

(Kalyakin et al. 2008) were also performed on the averaged

trace of the same dataset. These data processing methods

were repeated entirely according to the corresponding

publications. Subtracting EEG recordings of the standard

sweep from the deviant sweep as illustrated in Fig. 1 pro-

duced DW; regarding ICA, ICASSO was used to estimate

the MMN component from the ordinarily averaged trace

directly (Kalyakin et al. 2008, 2009).

Measuring MMN peak amplitude and latency

The peak amplitude and latency are the most frequently

used parameters in the analysis of MMN (Näätänen 1992;

Duncan et al. 2009). Hence, they were analyzed in this

study too. It should be noted that the MMN peak latency

here was the duration from the offset of the deviant to the

MMN peak. This is often used to study MMN elicited by

the duration deviant (Kalyakin et al. 2007; Huttunen-Scott

et al. 2008).

For the ordinarily averaged trace, DW was used to

produce MMN and to measure the amplitude and latency.

The mean of recordings in the first 50 ms of the DW

formed the baseline. After the baseline was removed, the

peak amplitude and latency were measured.

When a paradigm eliciting practically flat responses to

the standard stimulus is available, the responses to the

deviant stimulus can be used without subtraction (Sink-

konen and Tervaniemi 2000). Indeed, the data processing

methods discussed in this study were supposed to extract

MMN component and remove the responses of the standard

stimulus simultaneously. Hence, for the ICA or wICA

trace, DW was not used, and the peak amplitude and

latency were directly measured from the MMN time win-

dow in the deviant sweep as shown in Fig. 1. The mean of

recordings in the first 50 ms of the deviant sweep formed

the baseline. After it was removed, the peak amplitude and

latency were measured from the deviant sweep directly.
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Statistical analysis

The goal of statistical tests was to investigate the difference

of the MMN peaks under two deviants for each data pro-

cessing method, exploiting the physiological properties of

MMN extracted by each method, and the difference of the

MMN peaks between wICA and other methods, examining

whether different methods extracted different MMNs.

The difference of MMN peaks among different elec-

trodes was not discussed in this study. The peak mea-

surements were averaged over nine channels for each data

processing method. It should be noted that the peak

amplitudes at M1 and M2 were multiplied by -1 for the

consistence of polarities at every electrode before averag-

ing. This was due to their positive values in contrast to the

other electrodes where the peak values were negative. After

that, the peak measurements were tested by the repeated

measure ANOVA in order to examine whether the differ-

ence between the MMNs elicited by two deviants was

significant under each method; for ANOVA, the deviant to

elicit MMN was the factor and two deviants formed two

levels. Meanwhile, the difference of MMN peaks between

wICA and other methods was also investigated; in this

case, MMN was averaged over channels and deviants; anfd

for ANOVA, the method to extract the MMN component

was the factor and two methods for comparison formed two

levels.

Criteria to qualify performance of data processing

methods

To evaluate the performance of ICA decomposition usually

requires the true sources and the mixing model (Hyvarinen

et al. 2001; Cichocki and Amari 2003); however, such

information is not available in the real EEG recordings. As

suggested by Vigario and Oja (2008), the evaluation of

ICA decomposition on EEG recordings should be based on

two aspects: (1) the robust estimation of extracted com-

ponents, (2) the knowledge of ERPs by the expert. Thus,

this study validated the proposed systematic data process-

ing methods from the two perspectives.

In this study, ICA was implemented by the software-

ICASSO (Himberg et al. 2004). ICASSO provides the

stability index to qualify the performance of ICA decom-

position. After ICASSO is run, the stability index denoted

by Iq is given to each extracted component (Himberg et al.

2004), and Iq may range from 0 to 1. When approaching to

1, it means the corresponding component is extracted out in

almost each run of ICA decomposition and the cluster that

this component falls into is isolated from other clusters,

and consequently, the estimation of this component should

be regarded to be reliable and robust. Otherwise, it means

the corresponding component does not appear in most of

runs of ICA decomposition, and then, the estimation of this

component should not be reliable (Himberg et al. 2004).

Thus, Iq was used to examine whether the proposed wICA

outperformed ICA (Kalyakin et al. 2008, 2009) from the

view of reliability of decomposition in this study. As

introduced in ‘‘wICA’’, nine components were extracted

and only one MMN-like component was projected back to

the electrode field in this study. The projection is the outer

product of the selected component and the corresponding

column of the inverse of the unmixing matrix (Makeig

et al. 1997, 1999; Cong et al. 2010c). Thus, two factors

determine the projection. The former corresponds to one

Iq, and the latter is associated to all Iqs since any column of

the inverse of the unmixing matrix is related to the whole

unmixing matrix. Hence, the average over nine Iqs was

used to validate the reliability of the ICA decomposition in

this study.

In order to reveal the separation ability of the proposed

decomposition, the SAR was used. As shown in Fig. 3b,

the ordinarily averaged trace included the responses from

the deviant stimulus and the repeated stimuli, belonging to

the support and absence in the definition of SAR of this

study, respectively. It should be noted that MMN originates

from the responses of the deviant stimulus (Näätänen et al.

1978; Näätänen 1992). The application of wICA was

basically to extract MMN component out from the aver-

aged trace in this study. Hence, as demonstrated by Fig. 3c,

the fourth component contained the responses of the

deviant stimulus, and for this component, the responses of

repeated stimuli became almost flat. In other words, wICA

separated the support and absence into different compo-

nents. As a result, under the definition of SAR according to

MMN’s temporal and frequency information, the larger

SAR of a MMN component is, the better separation of the

responses of the deviant stimulus and the repeated stimuli

is. Therefore, SAR of the estimated MMN component also

represented the quality of the estimated MMN in our study.

Moreover, we cannot localize the true MMN sources but

we still know how MMN functions in practice. Thus, the

criteria used to estimate the success of a data processing

method should be based on the analysis of neurophysio-

logic properties of MMN. In this study, the criteria are that

the larger magnitude of the deviance to the repeated stimuli

elicits a MMN with larger peak amplitude and shorter peak

latency. In our experiment, the dev50ms and dev30ms had

50 ms and 70 ms difference from the standard 100 ms

tone, respectively. Thus, the dev30ms corresponded to the

larger magnitude of deviance to repeated stimuli in this

study. Therefore, it was theoretically expected that the

MMN peak amplitude was larger and its latency was

shorter under dev30ms.
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Results

This section focused on analyzing the properties of MMN

peak amplitude and latency elicited by two deviants and

the extraction of MMN by different data processing pro-

cedures. After three methods were independently applied, a

four-dimension matrix was obtained for the MMN peak

amplitude, as well as latency. The matrix consisted of 3

methods by 2 deviants by 9 channels by 110 subjects. As

mentioned above, the topography of the parameters was not

analyzed in this study, thus, these parameters were aver-

aged over channels.

Figure 4 demonstrates the grand averaged waveforms of

MMNs elicited by dev50ms and dev30ms with the methods

of the ordinarily averaging, ICA and wICA. MMN peaked

between 100 and 200 ms. It was apparent that both ICA

and wICA extracted cleaner MMN component, i.e.,

responses in the deviant sweep. In contrast to ICA, wICA

removed more interference from the averaged trace.

Figure 5 shows the stability index (denoted by Iq) for

wICA and ICA for each subject, respectively. The grand

averaged Iqs for wICA and ICA were 0.92 and 0.7, and

the difference of Iqs between wICA and ICA was sig-

nificant. Moreover, these results also revealed that the

decomposition on the averaged trace under wICA was

much reliable than that under ICA for almost every

individual subject.

Figure 6 exhibits the mean SAR of the averaged traces

over nine channels and the corresponding SAR of the

MMN-like component estimated by wICA for each subject.

This figure illustrates that the SAR of MMN in wICA trace

of each subject was larger than the SAR of the ordinarily

averaged trace. Such results indicated that the MMN

component estimated by wICA had better temporal and

frequency properties than the raw averaged trace had. The

results also revealed the high reliability of the selection of

MMN component from all extracted components by wICA.

Table 1 depicts statistical tests of the difference of the

MMN peak amplitudes between two deviants under each

data processing method, as well as the latencies. Only

through wICA (with polarity correction in this study), the

MMN peak amplitude elicited by the larger magnitude of

deviance (dev30 ms) was significantly larger and its peak

latency was evidently shorter. With DW or ICA, neither the

MMN peak amplitude nor its latency matched the expected

properties of MMN in theory. It should be noted that results

of wICA without the polarity correction in the electrode

field, i.e., without the sixth step as introduced in the ‘‘Data

processing’’, were also analyzed, and as shown in Table 1,

the statistical tests of peak amplitudes were not good. This

does really reveal the importance to correct the abnormal

polarities of the projection in the electrode field when using

ICA to study ERP peak amplitudes.

Table 2 describes the statistical tests of the difference

between wICA and other methods. Before the statistical

tests, the peak amplitude and latency were averaged over

deviants and channels, respectively. The result was that

wICA performed differently with DW or ICA in extracting

MMN from the averaged trace.

Discussion

Data processing plays a critical role in the MMN research,

and its goal is to extract the pure and well-defined potential

under study. The proposed method named as wICA

exploits the temporal, frequency and spatial information of

MMN source, and can extract MMN with much better

properties than those estimated by DW only using the

temporal characteristic or by ICA only using spatial

information (Kalyakin et al. 2008). The better properties in

this study are referred to the characteristics of MMN that

larger magnitude of the deviance to the repeated stimuli

may elicit MMN peak with larger amplitude and shorter

latency (Näätänen 1992).

The main difference of the decomposition procedures

between ICA and the proposed wICA (Kalyakin et al.

2008, 2009) is that the ordinarily averaged trace is fed to

ICASSO under ICA, and the wavelet-filtered trace is fed to

ICASSO under the proposed wICA. Indeed, WLD acts as

an important preprocessing step in wICA. From the view of

the stability analysis of ICA decomposition by ICASSO

(Himberg et al. 2004), the decomposition on the ordinarily

averaged traces was not satisfactory in this study, but the

decomposition on the wavelet-filtered traces became much

better. This particularly contributes the difference in esti-

mating the peak latency of MMN between the two meth-

ods. As the decomposition under ICA was not sufficient,

the MMN peak latency was still dominated by the ordi-

narily averaged trace, i.e., the mixture. However, the

decomposition under wICA was satisfactory, and the MMN

component was almost entirely extracted out. As a result,

the MMN property was successfully revealed by wICA,

i.e., the MMN peak latency was shorter under the larger

magnitude of deviance to the repeated stimuli (Näätänen

1992).

Moreover, using ICA implicitly assumes the sources are

independent with each other. However, in one ERP

experiment, the electrical brain activities elicited by the

same stimulus may be related. For example, MMN is

basically produced by the deviant stimulus in the oddball

paradigm, and during the experiment, the subject is usually

instructed not to pay attention to the stimulus (Näätänen

1992; Duncan et al. 2009). Sometimes, the deviant stimulus

may inevitably draw some attention of the subject pas-

sively, thus, P3a often follows MMN (Näätänen 1992;
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Fig. 4 Grand averaged waveform of MMN under the ordinarily averaging, ICA and wICA—a dev50ms; b dev30ms
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Huttunen et al. 2007; Huttunen-Scott et al. 2008). From this

point of view, P3a and MMN are related. However, this

does not prevent the application of ICA to extract MMN

component. This is because the pure ERP component looks

like the bump (Vigario and Oja 2008), in other words, it is

sparse, and Daubechies et al. (2009) have validated that

ICA for brain signals does not necessarily select for inde-

pendence, but the sparsity. Actually, Fig. 3c demonstrates

that most of the extracted components by wICA are sparse.

It should be noted that this does not mean the sources of the

electrical brain activities are all sparse. In this study, the

EEG recordings were first averaged over single trials. This

produces the evoked brain activities (Görsev and Basar

2010). Furthermore, the wavelet filter in this study was

specially designed according to the properties of MMN

(Cong et al. 2010a). Hence, a lot of electrical brain activ-

ities are removed by the averaging and the wavelet-filter

(Cong et al. 2011).

In summary, results associated with the proposed wICA

lead to five suggestions: (1) instead of the concatenated-

trial based EEG trace as is often used in EEGLAB (De-

lorme and Makeig 2004), the averaged trace is better fed to

ICA in the study of MMN of children; (2) wavelet

decomposition can act as the preprocessing method to

improve the quality of the recordings and reduce the

number of sources in the averaged trace (Cong et al. 2010a,

2011); (3) the FastICA based ICASSO is a very efficient

ICA procedure to extract the desired ERP component from

the wavelet-filtered averaged traces (Himberg et al. 2004;

Hyvarinen 1999); (4) the SAR of the TFR of the extracted

component can assist to seek the desired MMN component

automatically (Cong et al. 2010b, d); (5) the back-projec-

tion of one component extracted by ICA might not entirely

overcome its polarity indeterminacy at any electrode, and
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correcting the wrong polarity of the projected component at

any electrode may improve the accuracy of the projection

(Cong et al. 2010c). In case one extracted component by

ICA is projected back to the electrode field, the ultimate

EEG recording at one electrode in theory is the multipli-

cation of the corresponding source and the transfer/map-

ping coefficient from the source in the brain to the

electrode along the scalp, and in practice, it is the

approximation to the theoretical expectation.

Furthermore, Fig. 5 interprets the degree of the reli-

ability of ICA decomposition on the ordinarily averaged

trace and the wavelet-filtered trace under the determined

ICA model, i.e., nine channels of observation and nine

sources in the model. The decomposition algorithm was

identical, but the results were different. This indicates that

the ICA models in the ordinarily averaged traces and the

wavelet-filtered traces were different. As the decomposi-

tion by wICA is very reliable, it is reasonable to conclude

that the real ICA model in the wavelet-filtered traces is at

least almost determined, but it is definitely underdeter-

mined in the ordinarily averaged traces in our study (Cong

et al. 2011). Seriously speaking, we cannot validate whe-

ther the filtered traces can be completely modeled by the

determined model. Hence, it is worth investigating the

robust underdetermined ICA algorithm to extract MMN

components from the filtered traces (Tichavský and Kol-

dovský 2011). Furthermore, this study only used FastICA

for the decomposition. Recently, more effective algorithms

outperforming FastICA have been reported, including,

efficient FastICA (EFICA), weights-adjusted second-order

blind identification (WASOBI), combination of them

(COBI), and approximate joint diagonalization (AJD), and

so on (Koldovský et al. 2006, 2009; Koldovský and Tich-

avský 2011; Tichavsky et al. 2008; Tichavsky and Yeredor

2009). It is reasonable to predict that if the performance of

ICA decomposition is better in single runs under ICASSO,

the finally extracted components by ICASSO should be

more reliable. Thus, in the future, we plan to examine the

ICASSO with those algorithms mentioned above, as well

as other robust ICA algorithms.

In this study, the temporal, spectral and spatial infor-

mation of MMN has been exploited to design the data

processing method. The temporal information is derived

from the experiment paradigm to elicit ERPs, and the

spectral information can be achieved through observing the

changes of peak amplitudes of ERPs with a group of low-

pass and high-pass digital filters (Kalyakin et al. 2007), and

the spatial information naturally exists in the multi-channel

EEG recordings. Since almost every ERP possesses the

similar properties exploited here, the proposed method in

this study can also be used in the research of other ERPs.

Moreover, the toolboxes of wavelet decomposition are

supplied by MATLAB (The Mathworks, Inc., Natick, MA),

and FastICA (Hyvarinen 1999) and ICASSO (Himberg

et al. 2004) can be downloaded through internet. It is very

convenient for researchers to repeat the same data pro-

cessing approach proposed in this study. Furthermore,

although wICA is a complicated and advanced data pro-

cessing method, as long as the six steps in ‘‘wICA’’ were

implemented carefully, the well-defined ERPs could be

extracted reliably.
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