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Abstract In this paper, we address the important problem

of feature selection for a P300-based brain computer

interface (BCI) speller system in several aspects. Firstly,

time segment selection and electroencephalogram channel

selection are jointly performed for better discriminability

of P300 and background signals. Secondly, in view of the

situation that training data with labels are insufficient, we

propose an iterative semi-supervised support vector

machine for joint spatio-temporal feature selection as well

as classification, in which both labeled training data and

unlabeled test data are utilized. More importantly, the

semi-supervised learning enables the adaptivity of the

system. The performance of our algorithm has been eval-

uated through the analysis of a P300 dataset provided by

BCI Competition 2005 and another dataset collected from

an in-house P300 speller system. The results show that our

algorithm for joint feature selection and classification

achieves satisfactory performance, meanwhile it can sig-

nificantly reduce the training effort of the system.

Furthermore, this algorithm is implemented online and the

corresponding results demonstrate that our algorithm can

improve the adaptiveness of the P300-based BCI speller.

Keywords Electroencephalogram (EEG) � P300 �
Brain computer interface (BCI) � Feature selection �
Semi-supervised learning

Introduction

A brain computer interface (BCI) is a direct pathway

between a brain and an external device for the purpose of

communication and control, particularly for the paralyzed

people who suffer severe neuromuscular disorders, through

exploiting the brain signals such as non-invasive electro-

encephalogram (EEG) or invasive neural spikes (Wolpaw

et al. 2002; Dornhege 2007). For EEG-based BCIs, several

brain activity patterns, such as event related potentials

(ERP) (Farwell and Donchin 1988; Donchin et al. 2000;

Serby et al. 2005), spontaneous sensory motor rhythms

(Wolpaw and McFarland 2004) and slow cortical potentials

(Birbaumer et al. 1999), are often used to produce the

control signals. Typically, P300 ERP is an evoked potential

of the brain to some specific external stimulus including

auditory, visual, or somatosensory stimuli in a stream of

frequent stimuli (Röder et al. 1996). P300-based BCI has

been implemented to help disabled to communicate with

computers through virtual keyboard (Farwell and Donchin

1988; Donchin et al. 2000), and the whole system is called

a P300 speller. In P300 spellers as well as most other EEG-

based BCI systems, brain signals are collected from the

scalp both spatially and temporally via multiple electrodes.

Then, feature selection/extraction is performed before task-

driven classification.
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Prior studies have indicated that the P300 can be

recorded via EEG as a positive deflection in voltage at the

latency of roughly 300 ms after a target ‘‘oddball’’ stimulus

onset. The peak latency of P300 component in the corre-

sponding time window would vary with the subjects and

the relevance of eliciting events. Up to present, the time

window used in P300-based BCI systems has been manu-

ally selected, with large interval containing the specific

latency of 250–550 ms (Donchin et al. 2000; Rak-

otomamonjy and Guigue 2008). In other words, the

selected time window is expected to be wide enough to

capture all required discriminative information for an

effective classification. However, P300 latency is highly

subject-specific and event related. Large time window,

with only a small segment related to the appearance of

P300 potential, may reduce separability of P300 and

background signals. Moreover, with such empirical tem-

poral feature selection, dimensional redundancy in feature

space is usually unavoidable, which may ultimately impair

the performance of classification. In the case of limited

training data set, the redundancy can even induce over-

fitting behavior. Therefore, it is advantageous to design

algorithms that can automatically find out most effective

P300 time window and bear adaptiveness to subjects as

well as mental tasks.

On the other hand, although P300 can be detected at

distributed sites of scalp, it has a dominant parietal

topography. Hence, most of the existing P300 based BCI

research has focused on the EEG signals from a few

standard P300 scalp locations (e.g., Fz, Cz, Pz) (Krusienski

et al. 2008). However, as a matter of fact, there exists

significant spatial discrepancy of P300 on scalp among

individuals. Therefore the fixed sets of standard P300

channels cannot meet the needs of building BCIs with high

performance for all the subjects. From the data analysis

reports of BCI Competition 2005 (Blankertz et al. 2005),

personalized automatic channel selection plays an impor-

tant role in the overall performance of the P300 BCI

speller. As a typical example, in Rakotomamonjy and

Guigue (2008), recursive channel elimination based on

discriminative score has been used for channel selection.

By eliminating four least important channels in each iter-

ation, the classification performance of a large validation

data set is adopted as a fitness index to select the significant

subset of channels. Channel selection and classification

regarding a P300 BCI dataset from BCI Competition 2003

has also been implemented by a genetic algorithm in Citi

et al. (2004). When sufficient training data are available,

the aforementioned channel selection and classification

approaches can achieve outstanding performance.

Although in some cases the effective time window and

subset of channels of a P300 BCI can be determined sep-

arately, optimal solution is usually achievable through joint

selection because the classification accuracy is often a

complex function of both parameters. The state-of-art

method, stepwise linear discriminant analysis (SWLDA)

has been widely used in recent work to identify subject-

specific spatio-temporal features for P300 speller (Donchin

et al. 2000). SWLDA selects the most statistically relevant

spatio-temporal features from the input set, which is

essentially equivalent to simultaneous time window and

channel selection. However, this method is a supervised

method without using the information of the test dataset,

which may be not stable over time especially when the

training dataset is small. For the purpose of improving the

performance of P300 speller, we consider to use a semi-

supervised approach in this paper for joint selection of a

time window and a subset of channels. Along with the

feature selection, classification is also performed. The joint

selection is implemented in an alternating way. That is,

fixing a subset of features in one domain, we choose a

subset of features in the other domain, at the same time

realizing a classifier. Then, we search for a subset of fea-

tures in the former domain and realize a classifier. The

iteration continues until the algorithm converges.

Besides the performance, another important concern in

the design of a practical BCI system is to reduce the time

needed for initial calibration. However, reliable feature

selection and classification generally requires a large

training data set with labels. Typically, cross-validation as

a traditional method for feature selection usually works

poorly with a small training data set. Although the col-

lection of sufficient labeled instances for training is either

tedious, expensive or even impossible, fortunately in many

applications, unlabeled data points are often easy to obtain.

These data can be utilized through semi-supervised learn-

ing approaches to improve feature selection and classifi-

cation (Chapelle et al. 2006). For example, in Li and Guan

(2008), an iterative semi-supervised support vector

machine (SVM) algorithm was proposed for feature re-

extraction and classification with small training data set.

On the other hand, due to the non-stationary characteristic

of brain signals, adaptivity is also crucial to a BCI system

for practical applications. Bearing these two concerns in

mind, in this paper, we extend the algorithm in Li and Guan

(2008) for joint time window and channel selection in P300

speller where labeled data are insufficient. Our proposed

algorithms make use of both training data with labels and

test data without labels. The statistical distance of two

classes is measured by Fisher ratio, the computation of

which also involves both labeled and unlabeled data. Our

data analysis results from two different P300 spellers val-

idate the effectiveness of the proposed algorithm and the

benefit brought by using unlabeled data.

The remaining part of this paper is organized as fol-

lows. In section ‘‘Self-training algorithms for spatial/
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temporal feature selection’’, we consider the spatial and

temporal feature selection in a separate manner. Firstly, an

iterative semi-supervised SVM algorithm is proposed for

time segment selection with given subset of channels.

Then a modified version of this algorithm is presented for

channel selection. In section ‘‘Joint selection of time

segment and channels’’, based on the two algorithms in

section ‘‘Self-training algorithms for spatial/temporal

feature selection’’, a semi-supervised algorithm is pro-

posed for joint selection of time segment and channel

using both labeled and unlabeled data. In section ‘‘Data

analysis and online implementation’’, data analysis results

and online experimental results are presented. In the final

section ‘‘Conclusion’’, we review the algorithms of this

paper.

Self-training algorithms for spatial/temporal feature

selection

In P300-based BCIs, the detection of P300 in a segment of

EEG signal can be well described by a two class problem.

The signal containing P300 is labeled by 1, and the signal

without P300 is labeled by -1. In this section, we first

define a Fisher ratio based on SVM score to measure the

statistical distance of feature vector ensembles from the

two classes. Then we present the details of two self-training

semi-supervised SVM algorithms for time segment selec-

tion and channel selection respectively.

Fisher ratio based on SVM score

In this paper, we use SVM as a classifier. Given the Nc

epochs of training data set fðx1; y1Þ; . . .; ðxNc
; yNc
Þg where

xi 2 Rm is an m-dimensional feature vector and yi [ {-1,

1} is the label indicating the class that xi belongs to. A

standard SVM for two-class problem can be defined as

Vapnik (2000)

min 1
2

wk k þ C
PNc

i¼1

ni

s:t: yi wT xi þ bð Þ� 1� ni; ni� 0; i ¼ 1. . .Nc;

ð1Þ

where w denotes the weight vector of the classifier and ni

denotes the ith slack variable; k � k indicates L2-norm

operation; and the parameter C [ 0 controls the tradeoff

between the slack variable penalty and the margin. The

training of the SVM classifier finds a suitable weight vector

w and new data point x is classified according to the sign of

d(x) given by

dðxÞ ¼ wT xþ b; ð2Þ

where d(x) is designated SVM score. SVM score is pro-

portional to the distance between the decision boundary

and the data point x. In this paper, we define a Fisher ratio

based on SVM score for feature selection as well as clas-

sification of P300-based EEG signal.

Generally, Fisher ratio describes the discriminability of

data points from two classes. It is defined as the ratio of the

interclass difference to the intraclass spread (Bishop 1995)

and has been successfully used as an index for feature

selection of a motor imagery BCI (Lal et al. 2004). Herein,

Fisher ratio based on SVM score is defined as follows to

measure the statistical distance of two classes of feature

vectors. One class refers to P300, the other one refers to

background.

FR ¼ mean di; i 2 Cl1ð Þ � mean di; i 2 Cl2ð Þð Þ2

std di; i 2 Cl1ð Þð Þ2þ std di; i 2 Cl2ð Þð Þ2
; ð3Þ

where di denotes SVM score of the ith data point; Cl1 and

Cl2 denote the two classes of epoches with labels being ?1

and -1 respectively; mean(�) and std(�) represent mean and

standard deviation operations respectively.

In the case of insufficient training data with labels,

however, the SVM model is generally not reliable, and

therefore the resultant Fisher ratio calculated from SVM

score is subject to bias. We try to solve this problem

through semi-supervised learning where unlabeled data

points are also utilized together with labeled data.

Self-training algorithm for time segment selection

Assume the availability of an insufficient training data set

with labels and a large test data set without labels. Based

on these data, we present a self-training SVM algorithm for

time segment selection and signal classification for P300-

based BCI, where both the Fisher ratio and the SVM

classifier are iteratively updated until the algorithm

converges.

The two data sets under consideration include a training

data set Dc containing Nc epochs of EEG signal matrix

Xi 2 RL�T ; i ¼ 1; . . .;Nc with labels yi [ {?1, -1},

(i = 1,…,Nc), and a test data set Dt containing Nt epochs

of downsampled EEG signal Xi 2 RL�T ; i ¼ Nc þ 1;

. . .;Nc þ Ntwithout labels, where L denotes the number of

EEG channels and T denotes the number of samples in time

domain. We divide the T sample points into Np time seg-

ments fT1; T2; . . .;TNp
g that may be overlapped. In the

following, we present the procedure of a self-training SVM

algorithm for time segment selection as well as

classification.
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Self-training algorithm for channel selection

In this subsection, we propose Algorithm 3 for channel

selection as well as classification. Its major discrepancy to

Algorithm 1 lies in the following aspects. Suppose that the

total number of channels is L. Firstly, all channels are

ranked according to their individual Fisher ratio in

descending order. Secondly, the ranked channels are

grouped into a number of subsets followed by computing

Fisher ratio for each subset. Typically, L subsets can be

obtained, with the first subset containing the top ranked

channel, the second subset containing the top two ranked

channels, and so on. Finally, the subset of channels with

the highest Fisher Ratio is supposed to bear the most

significant discriminability, and is chosen for classifica-

tion. The self-trained channel selection and classification

algorithm is summarized in ‘‘Appendix’’ for P300-based

BCI.

Joint selection of time segment and channels

As mentioned in Section ‘‘Introduction’’, the selection of

time segment and channel affects the performance of P300-

based BCI in a significant manner. Although effective time

segment and channels can be separately determined,

390 Cogn Neurodyn (2011) 5:387–398

123



optimal parameters are usually achievable through joint

selection in both the time domain and the spatial domain.

One possible solution is to define a Fisher ratio for each

channel-time segment pair, and search over all the pairs. In

order to avoid the exhaustive searching, we consolidate

Algorithms 1 and 3 perform the joint selection of time

segment and channels in an alternate manner. The ultimate

goal is to improve classification performance. Firstly, with

the input data and parameters, Algorithm 1 is applied to

select a time segment denoted as T̂ðsÞ, and determine the

labels for test data set denoted as yT̂ ðsÞ;j0 j ¼ Nc þ 1; . . .;

Nc þ Nt. Then we apply Algorithm 3 to select a subset of

channels denoted as bQðsÞ regarding the selected time seg-

ment T̂ ðsÞ and the data set D = Dc [ Dt as the new training

data set with the labels yj0j ¼ 1; . . .;Nc and yT̂ðsÞ;j0j ¼ Ncþ
1; . . .;Nc þ Nt. In each of the following iterations, Algo-

rithm 1 is performed with respect to the subset of channels

and labels both determined in the previous iteration, fol-

lowed by Algorithm 3 performed regarding the time seg-

ment and labels both determined by the preceding

Algorithm 1 in the same iteration. The process goes on

until convergence is achieved. The final output includes the

selected time segment and subset of channels, as well as

the predicted labels for the test set. The outline of the

algorithm is given below.

Remarks (1) In Algorithm 2, time segment selection and

channel selection are alternately carried out. To avoid

initial setting of the iteration stopping thresholds d1 and d2

Cogn Neurodyn (2011) 5:387–398 391
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for Algorithm 1 (�) and Algorithm 3 (�) respectively, we can

fix the number of iterations of these two algorithms, e.g. 3,

in this paper. In this way, the performance of Algorithm 2

does not depend on the parameters d1 and d2. (2) According

to our data analysis, Algorithm 2 often converges within a

few iterations (e.g., 3 iterations) even if we set d0 = 0. (3)

In this paper, the adaptivity of the proposed algorithms is

realized through iterative updating with newly available

data that allows the system to adapt to the change in mental

activity of the subject, and therefore leading to better

performance.

Data analysis and online implementation

In this section, three examples are presented to demonstrate

the effectiveness of the proposed joint time segment and

channel selection algorithm. In the first example, we

applied Algorithm 2 to the data set of P300 speller from

BCI Competition III and compare it to other state-of-the-art

algorithms regarding classification performance. In the

second example, the performance of Algorithm 2 is tested

by the data of 3 subjects collected from a different P300

speller system built by us. Finally in the last example, the

adaptability of Algorithm 2 is illustrated through online

experiment results from our P300 speller system. The

performances of Algorithms 1 and 3 will not be explicitly

mentioned as they are wrapped up into Algorithm 2 for

joint feature selection. In this paper, the SVM parameter is

set as C = 1 for all the SVM-based algorithms.

Example 1: P300 speller data set from BCI Competition

III

In this example, we illustrate the application of Algorithm

2 on the data set II of a P300 speller from BCI Competition

III (Blankertz et al. 2005). The data is briefly described as

follows. Each subject was presented with a 6 9 6 matrix of

characters shown in Fig. 1, and was asked to pay attention

to one character in each run. His/her 64-channel EEG

signal was sampled at 240 Hz. The data set was recorded

from two different subjects (A and B). The sequence of 12

row-column intensifications was repeated 15 times (named

‘‘repeats’’ in this paper) for the spelling of each character.

For each subject, the data of totally 185 character spellings

were provided by the organizer. We adopt similar pre-

processing techniques as in (Rakotomamonjy and Guigue

2008) for the convenience of comparison of different

algorithms. For each channel, the signals between 0 and

600 ms posterior to the beginning of an intensification have

been extracted and processed with a bandpass filter of

0.1–10 Hz. The extracted signal has been decimated by a

rate of 10. The data point resulting from a post-stimulus

signal is of dimension 14 9 64, representing 14 temporal

samples and 64 channels respectively.

In the following data analysis with Algorithm 2, we

simply use the first 5 consecutive characters provided by the

Competition as the initial training set to simulate a small

training set scenario. The next 20 characters were used as

the test data set without labels for retraining in Algorithm 2.

Regarding the independent test set, we use the 100-char-

acter test set provided by the Competition so that the results

are comparable to the other methods. In each iteration of

Algorithm 2, we perform 3 iterations of Algorithms 1 and 3.

The threshold d0 for stopping the iterations of Algorithm 2

is set as 0. The 14 time points of each data matrix is par-

titioned into 35 time segments as Ti ¼ ½t1; t2�, where t1 2
f1; 2; . . .; 5g and t2 2 f8; 9; . . .; 14g. Regarding the number

of repeats being 15, results show that the time segment

(Farwell and Donchin 1988; Citi et al. 2004) is optimal for

subject A, with the number of channels being 35. The

selected time segment for subject B is Serby et al. (2005)

and Blankertz et al. (2005) and the number of channels is

30. At the same time, we perform prediction of labels for the

test data set. Performance has been evaluated according to

the percentage of correctly predicted characters in the test

datasets and in the independent test sets. For the number of

repeats being 3, 4, 5, 10, or 15, the accuracies of the pre-

diction averaged over the two subjects obtained by our

Algorithm 2 are shown in Table 1.

For comparison, we applied a standard SVM without

self-training to the same data sets as that used in the above

evaluation of Algorithm 2. From Table 1, the prediction

accuracy of the standard SVM is much lower than the

proposed algorithm with respect to both the 20-character

test set and the independent test set. In addition, we also

use the state-of-art method, stepwise linear discriminant

Fig. 1 User intertace of the P300 speller used in BCI Competition III

392 Cogn Neurodyn (2011) 5:387–398
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analysis (SWLDA), to identifies subject-specific spatio-

temporal features for comparison.

We further compare the results of our Algorithm 2 with

the best performance achieved by Rakotomamonjy and

Guigue (whose method Rakotomamonjy and Guigue

(2008)) will be denoted by Rakoto’s method in the fol-

lowing). Notice that these two methods were applied to

different size of the training data set, but the same

100-character independent test set. As mentioned above,

the results of our Algorithm 2 are based on the training set

with 5 characters. Since the recursive channel elimination

approach in Rakoto’s method requires sufficient labelled

data, it is not applicable to the case of small training set.

Therefore, we cite the results in Rakotomamonjy and

Guigue (2008) which were based on 85 characters as

training data. From Table 1, it is found that, at the number

of repeats from 3 to 15, our proposed algorithm achieves

comparable performance to Rakoto’s method although the

sizes of their respective training sets are of significant

disparity. The outstanding performance of Algorithm 2 can

be explained by the iterative update to the model with the

test data set and the predicted labels. Meanwhile, the

results also confirm the efficiency of the semi-supervised

joint time segment and channel selection that utilizes

augmented training set instead of the small initial training

set for reliable feature selection to improve the classifica-

tion. As a consequence, this paradigm demonstrates that

our algorithm can potentially reduce the training process of

BCI speller while not affecting the accuracy.

On the other hand, the convergency of Algorithm 2 was

also studied. Figure 2 shows the prediction accuracy versus

iteration with respect to the two subjects, where we ana-

lyzed both the 20-character test set taking part in the semi-

supervised training and the 100-character independent test

set. In each iteration, time segment selection and channel

selection were alternatively carried out through 3 iterations

within Algorithms 1 and 3 respectively. From the data

analysis results, it is found that Algorithm 2 generally

converges very fast, typically within 2 iterations. Mean-

while, compared to the first iteration, the prediction per-

formance after convergency has been significantly

improved.

Example 2: In-house P300 speller

We have also assembled a data set by collecting EEG

signal from three different subjects (aa, bb, and cc) on an

in-house P300-based BCI speller. The participants sat

upright in front of a computer screen and viewed the dis-

play of a 40-character matrix (see Fig. 3). The task was to

focus attention on a desired character in the matrix and

silently count the repeats of the desired character being

intensified. For the spelling of a character, each of the 40

different characters was intensified according to a random

sequence. Considering 10 repeats of the intensification

sequence, a character epoch comprises totally 400 = 40 9

10 intensifications. The 600 ms EEG data following each

intensification were collected from scalp using 30-channel

EEG recorder. The signals were digitized at a rate of

250 Hz. Band-pass filtering within 0.1–20 Hz was per-

formed, followed by down-sampling at the rate of 6. Hence

Table 1 Accuracy of character prediction in percentage

Test set

(20)

Ind. test set

(100)

Our Algorithm 1 with channels Fz,

Cz and Pz (5 training characters)

82.5 83.5

Our Algorithm 3 with time segment

200–500 ms (5 training characters)

90 88.5

Our Algorithm 2 (5 training characters) 92.5 93.5

Semi-supervised SVM without

feature selection (5 training characters)

87.5 85.5

Standard SVM (5 training characters) 77.5 80

Rakoto’s method

(85 training characters)

Not

applicable

96.5

SWLDA (5 training characters) 85 84.5

The results of both our Algorithm 2 and the standard SVM are based

on the training set with 5 characters, while Rakoto’s results (Rak-

otomamonjy and Guigue 2008) were based on 85 characters as

training data. ‘‘Test set’’ indicates the 20 unlabelled characters used in

retraining in Algorithm 2. ‘‘Ind. test set’’ indicates the independent

test set with 100 unlabeled characters, which is the same as the test

data set in the Competition

The bold values indicate best performance

1 2 3 4 5

0.75

0.8

0.85

0.9

0.95

Iteration k

Subject B

1 2 3 4 5

0.75

0.8

0.85

0.9

0.95

Iteration k

A
ve

ra
ge

 a
cc

ur
ac

y

Subject A

Fig. 2 Averaged prediction accuracy versus iteration of the two

subjects (The curves with ‘‘circle’’ correspond to the 20-character test

data set, while the curves with ‘‘asterisk’’ correspond to the

100-character independent test set

Cogn Neurodyn (2011) 5:387–398 393

123



the 600 ms time segment corresponds to 25 temporal

samples. Then, for each intensification, we constructed

feature vector with the length of 750 = 30 9 25 through

concatenating the data from all the channels.

Although it has been widely accepted that the fixed time

window of [200 ms 500 ms] is good enough for P300

detection, our first study shows the necessity of time seg-

ment selection in the P300 speller. With 20 training char-

acters used in a standard SVM classifier, the spelling

accuracies have been obtained at various time segment of

the 30-channel signal. The results of Subject aa and bb are

illustrated in Fig. 4. With the start time and end time of the

segment ranging within [50 ms 250 ms] and [350 ms

700 ms] respectively, we see obvious differences among

the spelling accuracies in the range of [0.7 0.95]. Hence,

time segment selection can effectively improve the per-

formance of a P300 speller. It is also found that the

accuracy becomes relatively flat with the end time of the

window larger than 600 ms, which is the reason that we

choose the 600 ms initial time window for our P300 BCI

system.

In the following, for each subject, the data set involves

70 characters for training and testing. Our initial training

set contains the data of 5 characters. The test set containing

the data of 44 characters was used for retraining and test-

ing, while the independent test set containing 21 characters

was not involved in retraining. Then we applied Algorithm

2 to the above data set. As an input to Algorithm 2, the

initial 25 temporal samples have been organized into 36

time segments, each can be expressed by Tsub = [t1, t2],

where t1 2 f1; 3; . . .; 11g and t2 2 f15; 17; . . .; 25g. Time

segment selection was performed within these 36 seg-

ments. The threshold d0 for stopping the iterations is set as

0. Table 2 shows the optimal selected time segment and

number of channels.

Figure 5 shows the prediction accuracy versus iterations

for the three subjects respectively. In each subplot, the

curve depicted with ‘‘asterisk’’ corresponds to the inde-

pendent test set, while the curve depicted with ‘‘circle’’

corresponds to the test data set involved in semi-supervised

learning. From Fig. 5, it is observed that Algorithm 2

converges within 3 iterations regarding all the subjects, and

the accuracies of classification have been significantly

improved when we compare the performance of the first

iteration to that after convergency. Therefore, the

Fig. 3 User interface of our P300 speller

Table 2 Optimal selected time segment and number of channels

Time segment (ms) No. of channels

Subject aa [192 552] 11

Subject bb [240 528] 9

Subject cc [144 480] 14

Number of characters for training dataset is 5

0.05
0.1

0.15
0.2

0.25

0.4
0.5

0.6
0.7

0.75

0.8

0.85

0.9

0.95

Start time

Subject aa

End time

A
cc

ur
ac

y

0.05
0.1

0.15
0.2

0.25

0.4
0.5

0.6
0.7

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Start time

Subject bb

End time

A
cc

ur
ac

y

Fig. 4 Illustration of spelling accuracy over different time segment, where the time segment of [Start_time End_time] is given by x-axis and y-

axis. The results of Subject aa and bb are shown here
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effectiveness of our proposed algorithms is also verified by

this in-house P300 speller in an off-line manner.

In order to quantitatively explore the benefit brought by

the semi-supervised spatio-temporal feature selection, we

have compared the prediction accuracy of our Algorithm 2

to that of the standard SVM algorithm and the iterative

semi-supervised SVM algorithm proposed in Li et al.

(2008), both of the latter two having no time segment and

channel selection. Data analysis results of these algorithms

with two different sizes of training set are given in Tables 2

and 3, where the performance is expressed by the predic-

tion accuracy in percentage. Furthermore, we also applied

SWLDA to the same data separation as in Algorithm 2 for

comparison. As can be seen, our Algorithm 2 consistently

outperforms the others. Although the training set used in

standard SVM (49 characters) is much larger than ours (5

characters), the result of the standard SVM is still inferior

to that of ours. Hence, the training data with labels col-

lection time of the P300 BCI system can be significantly

reduced (P = 0, anova1 analysis) without affecting the

performance.

Example 3: Online experiments of in-house P300

speller

We also implemented Algorithm 2 online to illustrate that

this algorithm can be used to improve the adaptivity of the

in-house P300 speller in real time. Three able-bodied male

subjects participated in this online study. On the P300

speller system, each subject participated two experiments

that differed in the size of training set and training data

collection time. In experiment 1, a 5-character training set

was collected online, while in experiment 2, an 8-character

training set was collected 1 year before. In each experi-

ment, the training set was utilized to obtain an SVM model

to classify the online data of the subsequent 5 characters.

Here, the EEG data of the 5 character input was named as a

data ‘batch’. Comparing the online output with experi-

mental input task, we obtained an online accuracy rate

regarding these 5 characters. Using the initial training set

and the data of these 5 characters with predicted labels, we

retrained a new SVM model with Algorithm 2 to classify

the next 5 characters and obtained another online accuracy
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Fig. 5 Curves of averaged

prediction accuracies for three

subjects. The curves with

‘‘circle’’ correspond to test data

sets involved in self-training of

Algorithm 2, while the curves

with ‘‘asterisk’’ correspond to

independent test sets

Table 3 Performance comparison of the proposed Algorithm 2 and other SVM-based algorithms

Test set (44) Ind. test set (21)

Our Algorithm 1 with channels Fz, Cz and Pz (5 training characters) 85.3 82.6

Our Algorithm 3 with time segment 200–500 ms (5 training characters) 91.1 89.9

Our Algorithm 2 (5 training characters) 95.1 91.9

Semi-supervised SVM without feature selection (5 training characters) 88.9 87.2

Standard SVM (5 training characters) 68.1 75.5

Standard SVM (49 training characters) Not applicable 89.2

SWLDA (5 training characters) 86.5 84.1

Expressed by accuracy of character prediction in percentage. ‘‘Test set’’ indicates the 44 unlabeled characters used in retraining in Algorithm 2.

‘‘Ind. test set’’ indicates the independent test set with 21 unlabeled characters

The bold values indicate best performance

Cogn Neurodyn (2011) 5:387–398 395

123



rate regarding these 5 characters. The retraining process

was stopped after 4 batches of data collection. Finally,

using the resultant SVM model, we classified 60 characters

online and obtained an accuracy rate also by comparing the

output with the experimental input task given to these

subjects.

For each experiment, these online accuracy rates were

also averaged across the 3 subjects. Tables 4 and 5 show

the spelling accuracy rates using Algorithm 2, where the

initial models were obtained online and 1 year before

respectively. Although the performance of Batch 1 is

similar by using online model and the model obtained

1 year before, it is not satisfactory. (The average accu-

racy rates are 0.667 and 0.6% for online model and the

model 1 year before separately.) Thus we use our semi-

supervised learning method to improve the classification

performance. It is found that, with our proposed Algo-

rithm 2, the out-of-date initial model can be updated by

the unlabelled online data to achieve similar performance

as the online model. Generally, with a fixed model,

accuracy of a BCI system goes down with time lapse.

This can be explained by the non-stationarity nature of

EEG signal and model. Here, such effect can be shown

by using an SVM model trained by the data of 25

characters collected 1 year before to classify the recent

60-character data set. The resultant accuracy rates of the

3 subjects were 0.8, 0.867, and 0.783 respectively, and

averaged as 0.817, which obviously fell behind the results

of semi-supervised learning method. These results dem-

onstrate the adaptivity of the proposed Algorithm 2 for

the P300 speller in small training set case, since the

model initially trained can be adjusted and its perfor-

mance of classification can be improved using online

data.

Conclusions

This paper focuses attention on improving the performance

of P300 speller when training data is insufficient. In this

case, traditional model selection methods, e.g., cross-vali-

dation, usually do not work. Herein, we presented two self-

trained SVM algorithms, one for time segment selection

and the other for EEG channel selection, where Fisher ratio

calculated by SVM scores was used as an index for the

feature selection. Furthermore, by wrapping up these two

algorithms in an alternating manner, a semi-supervised

learning algorithm was proposed for joint selection of time

segment and channels. In this way, the SVM classifier was

retrained with both labeled training data and unlabeled test

data to improve its performance of prediction, at the same

time to achieve better time segment and channel selection.

The data analysis results of two off-line examples dem-

onstrate the effectiveness and fast convergency of our

algorithms. Results show that the proposed Algorithm 2 is

also applicable to online scenario, where the adaptiveness

of the algorithm have been verified through the in-house

P300 speller.
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Appendix

The self-trained channel selection and classification algo-

rithm is summarized below for P300-based BCI.

Table 4 Spelling accuracy rates with the models obtained online

Subject Batch 1 Batch 2 Batch 3 Batch 4 60 Char test

S1 0.6 0.8 1.0 1.0 0.967

S2 0.6 0.8 1.0 1.0 0.95

S3 0.8 1.0 1.0 1.0 0.933

Average 0.667 0.867 1.0 1.0 0.95

The initial training set contains the EEG data of 5 character input

collected online. For semi-supervised learning, each batch contains

the unlabelled data with respect to the input of 5 characters. The final

column gives the results on a 60-character independent test set

Table 5 Spelling accuracy with the models obtained 1 year before

Subject Batch 1 Batch 2 Batch 3 Batch 4 60 Char test

S1 0.6 0.8 1.0 1.0 0.9

S2 0.6 0.8 0.8 1.0 0.95

S3 0.6 1.0 1.0 1.0 0.933

Average 0.60 0.8667 0.9333 1.0 0.928

The initial training set contains the EEG data of 8 character input

collected 1 year before. For semi-supervised learning, each batch

contains the unlabelled data with respect to the input of 5 characters.

The final column gives the results on a 60-character independent

test set
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