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Abstract: The endogenous neuroinhibitory amino acid receptor antagonist kynurenic acid (KYNA) has been hypothetically linked 
to physiological processes and to the pathogenesis of several brain disorders. The aim of this study was to search KYNA metabolism 
i.e. KYNA levels and enzymes synthesising KYNA kynurenine aminotransferase I and II (KAT I and II) in the central nervous system 
(CNS) and in the peripheral nervous system. Within the investigated species we found a remarkably low KYNA content (3.4 nM) in 
piglet’s serum compared to rat and human serum. Furthermore, in contrast to high KAT activity present in rat and human livers, a lack 
of KAT I and KAT II activity was found in piglet liver and other piglet peripheral organs. Therefore we attempted to find a reason for 
the absence of KYNA formation in piglet peripheral tissue and we researched to find if KYNA formation in rat liver homogenate (mea-
sured under standard assay conditions for KAT activity) can be influenced by the application of piglet tissue homogenates and other 
body fluids. KYNA formation in rat liver homogenate was investigated in the presence of piglet liver, piglet brain, rat brain and human 
brain homogenates, and also in the presence of cerebrospinal fluid (CSF) of the control and of Multiple Sclerosis patients. We found a 
significant and dose dependent reduction of rat liver KAT I and KAT II activities in the presence of piglet brain, piglet liver, and human 
brain, but not in the presence of rat brain homogenate. Interestingly, CSF of the human control subjects significantly lowered rat liver 
KAT I activity. Furthermore, the inhibitory effect of CSF of Multiple Sclerosis (MS) patients was significantly weaker when compared 
to the CSF of control subjects. Our data, for the first time, indicated the presence of active component(s)—depressing factor—in the 
body, which was able to block KYNA formation. Reduced KAT inhibitory effect by CSF of MS patients would suggest a lowered 
“depressing factor” level in CSF of MS patients and is possibly responsible for an enhancement of KYNA formation and for glia acti-
vation and gliosis in the CNS. Subsequently, two fractions obtained after centrifugation of CSF from patients with Neuroborreliosis 
showed a significantly different ability to block KAT I activity. The CSF-sediment fraction exerts a stronger inhibitory activity than the 
CSF-supernatant fraction, supporting further the presence of a depressing factor. For the first time, data revealed and demonstrated the 
ability of endogenous components to block KYNA’s synthesis. We propose that a glia depressing factor (GDF), which is abundantly 
present in the body, might simultaneously control glia cell’s KAT activity, respectively KYNA synthesis and also glia proliferation. The 
mechanism(s) of action, the composition and structure of this factor needs to be further elaborated.
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Introduction
In the last thirty years particular attention was paid to 
tryptophan research and findings related to the role 
of kynurenine metabolites in neurodegenerative and 
neuroinflammatory processes revealed remarkable 
evidence and importance for its functional involve-
ment. Kynurenic acid (KYNA), an endogenous 
metabolite of the kynurenine pathway of tryptophan 
degradation, is a well known endogenous antagonist 
of three glutamate ionotropic excitatory amino acid 
receptors, i.e. N-methyl-D-aspartate (NMDA), alpha-
amino-3-hydroxy-5-methylisoxazole-4-propionic 
acid (AMPA) and kainate1,2 and of the nicotine 
cholinergic subtype alpha-7 receptors.3 Suggested 
KYNA’s anticonvulsive and neuroprotective proper-
ties have been demonstrated by various pharmacolog-
ical approaches1,4 and there is evidence that KYNA 
improves cognition and memory.5 Conversely, it has 
also been demonstrated that KYNA interferes with 
the working memory6 and an impairment of both 
cholinergic and glutamatergic neurotransmission 
due to KYNA actions has been proposed in neuro-
psychiatric and neurological diseases.3,7

Interestingly, it has also been shown that within 
investigated tryptophan metabolites KYNA enhances 
the oxygen consumption in rat heart mitochondria, in 
an in vitro study,8 and therefore an essential role of 
KYNA for the cell function of the myocardium can 
not be excluded.

An enhancement of KYNA levels in the brain 
and/or serum has been found under various experi-
mental pathological conditions, as demonstrated in 
the animal models of asphyxia,9 dystonia,10 or epi-
lepsy.11 KYNA’s involvement in human neurode-
generative and neuroinflammatory processes has 
been well documented,1,12 thus the increased KYNA 
metabolism is seen in Alzheimer’s patients,13 in 
patients with subcortical sclerotic encephalopathy,14 
in patients infected with HIV-1 virus,15,16 in patients 
with Schizophrenia17 and also in elderly human sub-
jects.18 KYNA is synthesized by irreversible transam-
ination of L-kynurenine.20,21 In organs of mammalians 
several aminotransferases convert L-kynurenine into 
KYNA.21,22 In peripheral tissues of rats there are at 
least four types of proteins which are capable of 
catalysing the kynurenine-2-oxoacids transamina-
tion reaction to produce KYNA.21,22 In human and 
rat brain tissues kynurenine aminotransferase I, II 

and III (KAT I KAT II and KAT III) were described, 
and significant differences in respect to the regional 
brain distribution were revealed.13,23–25 KAT I, KAT 
II and KAT III are capable of synthesizing KYNA, 
and show different catalytic characteristics,23–29 which 
suggests that substantially KAT II and probably KAT 
III act under physiological conditions, whereas KAT 
I may have a particular importance in pathological 
conditions, like in microglia activation. There is also 
data indicating that human KAT I is a multifunctional 
enzyme and might play a role in KYNA synthesis 
even under physiological conditions.30

Research on KAT cellular localisation indicates 
that in the rat brain KAT II has a preferential astrocytic 
and microglia localisation.31 Furthermore, Guillemin 
and co-workers demonstrated the presence of KAT(s) 
mRNA in human astrocytes.32 Studies using in situ 
hybridisation have shown that KAT I mRNA activ-
ity is expressed in mitochondria of neurons and glial 
cells and also in the cytosol of choroid plexus epithe-
lial cells.33

The aim of this study was to investigate the prob-
ability that endogenous compounds, e.g. proteins/
cells, present in the tissues or body fluids might exert 
the ability to influence KYNA synthesis. Since rat 
liver exerts a very dominant capacity to synthesize 
KYNA we used the measurement of KAT activity in 
the liver as a fundament to search the effect of these 
endogenous compounds. For this purpose KYNA 
formation in the reaction mixture, which contained 
rat liver homogenate and homogenate of piglet tis-
sue or rat tissue or human tissue or human CSF, was 
investigated.

Material and Methods
Chemicals
L-kynurenine, KYNA and pyridoxal-5’-phosphate 
were purchased from Sigma. [3H]L-kynurenine (spe-
cific activity, 41 Ci/mmole) was purchased from 
Amersham, England. All other chemicals used were of 
the highest purity that was commercially available.

Biological materials
Piglets
Piglets (Veterinary Medical University of Vienna, 
Vienna, Austria) weighing 23 kilograms to 27 kilograms 
of body weight were used. Blood samples were collected 
in the morning and frozen at -60 °C until analysis. Piglets 
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were sacrificed, and the peripheral organs the liver, heart 
and lung were dissected, the brain was removed and the 
frontal cortex was extracted and samples were frozen at 
-60 °C until analysis. The number of piglets used was 
n = 6. Fresh liver tissue of adult pigs from a commercial 
slaughter-house was obtained and stored at -60 °C until 
analysis, the number of samples was n = 3.

Rats
Male Sprague-Dawley rats (Research Institute for 
Animal Breeding, Himberg, Austria) weighing 
200 grams to 220 grams of body weight were used. 
The animals were housed in groups of four to five 
per cage, in a room with controlled light/dark cycle 
(12 h light/12 h dark), and were given free access to 
laboratory food and top water. Rats were sacrificed in 
the morning, the liver was dissected, the brain imme-
diately removed and the frontal cortex extracted and 
samples were frozen at -60 °C until analysis. Blood 
samples were collected and frozen at -60 °C until 
analysis. The number of rats used was n = 10.

Human material
Post mortem human samples of frontal cortices of 
normal subjects, aged between 40 and 45 years, were 
received frozen from the Institute of Neurology, Med-
ical University Vienna, Vienna, Austria and stored at 
-43 °C until analysis. The number of human samples 
used was n = 10. Post mortem human heart samples 
(ventricular tissue) of normal subjects (n = 5), aged 
between 30 and 38 years, were received frozen from 
the Department of Pathology, Medical University 
Vienna, Vienna, Austria and stored at -43 °C until 
analysis.

Human CSF and serum samples
CSF and serum samples of normal human subjects 
were obtained from the Medical Laboratory of the 
Neuropsychiatric Hospital Mauer, Amstetten/Mauer, 
Austria. Twenty five individuals of a larger series of 
patients with severe headache who underwent lum-
bar puncture to exclude subarachnoidal haemorrhage 
or meningitis were selected as normal subjects for 
this study after CSF investigation, neuroimaging and 
clinical follow up. The number of serum used was 
n = 8 of 25. Twenty three CSF samples were from 
patients diagnosed as relapsing remitting Multiple 
Sclerosis (MS) according to international accepted 

MS criteria and 5 CSF samples were from patients 
diagnosed as Neuroborreliosis. All samples were 
provided from the Neurological Department of the 
Neuropsychiatric Hospital Landesklinikum Mauer-
Amstetten, Austria. Ages ranged between 25 years 
and 54 years for control subjects and 23 years and 
48 years for MS patients and 45 years and 59 years 
for patients with Neuroborreliosis, respectively. 
Samples of CSF and serum were coded and the study 
was carried out according to Lower Austrian Ethical 
Regulations.

Methods
Clinical routine investigations
Measurement of protein content, albumin, IgG, IgM 
and cell count was carried out using routine laboratory 
methods. The ratio of CSF: serum IgG and ratio CSF: 
serum albumin and IgG index were calculated.34 For 
determination of oligoclonal IgG bands, aragose iso-
electric focusing was performed, followed by transfer 
to cellulose nitrate membrane and double antibody 
avidin-biotin-peroxidase labelling.35

Neuroradiological investigations
Magnetic resonance tomography (MRT) was carried 
out in all patients with suspected MS and Neurobor-
reliosis and computed tomography (CT) and/or MRT 
was performed in headache patients. No patients with 
strokes were included in this study.

Preparation of samples
Sample collection
Samples of human CSF and human serum of control 
subjects and samples of CSF of MS and Neurobor-
reliosis subjects were collected in 1 mL aliquots and 
stored at -43 °C until analysed.

CSF centrifugation
A sample of 900 µl of CSF from patients with Neu-
roborreliosis were centrifuged at 1000 rpm for 5 min, 
the supernatant of 870 µl was carefully removed, 
labeled as CSF supernatant fraction (CSF-Sup), and 
the rest of 30 µl with sediment was resuspended into 
100 µl of homogenization buffer (i.e. the fraction 
of 30 µl was 4.3 times diluted) and labeled as CSF-
sediment fraction (CSF-Sed). The obtained two frac-
tions were immediately tested for the ability to block 
rat liver KAT I activity.
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Preparation of homogenate
The organ samples were homogenised in an ice 
bath in 10 volumes (wt/vol) of 5 mM Tris-acetate 
buffer pH 8.0 containing 50 µM pyridoxal-5’-phos-
phate and 10 mM mercaptoethanol (homogenisa-
tion buffer) and the homogenates obtained were 
immediately used for KAT I and II activities 
measurement.

Measurement of KYNA
The measurement of KYNA was performed accord-
ing to Shibata et al36 and Swartz et al37 with modifica-
tion as described by Baran et al13 Briefly, the tissues 
(liver, heart, lung, and brain frontal cortex) were 
homogenised in an ice bath in 10 volumes (wt/vol) 
with H2O and immediately mixed with 0.2 M HCl 
(vol/vol), whereas serum samples were mixed with 
0.2 M HCl (vol/vol) and centrifuged for 20 min, at 
14,000 rpm. The supernatant obtained was applied to 
a Dowex 50 W cation exchange column pre-washed 
with 0.1 M HCl. Subsequently, the column was 
washed with 1 ml 0.1 M HCl and 1 ml distilled water, 
and KYNA was eluted with 2 ml distilled water38 and 
was quantitated by a high performance liquid chro-
matography (HPLC) system coupled with fluores-
cence detection.

Determination of KAT I and KAT II 
activities
KAT I and KAT II activities were measured using a 
radio-enzymatic assay described by Schmidt et al27 
with minor modification. In brief, the reaction mix-
ture contained homogenate and homogenisation buf-
fer or second homogenate, or serum or CSF, 100 µM 
1.175 µCi/µmol [3H]L-kynurenine (or 100 µM L-
kynurenine), 1 mM pyruvate, 70 µM pyridoxal-5’-
phosphate and 150 mM 2-amino-2-methyl-l-propranol 
buffer pH 9.6 for KAT I or 150 mM Tris-acetate buf-
fer pH 7.0 for KAT II, in a total volume of 200 µl. 
After incubation for 16 hours at 37 °C the reaction 
was stopped by adding 14 µl of 50% trichloroace-
tic acid and 1 ml of 0.1 M HCl. Denatured proteins 
were removed by centrifugation and the synthesised 
[3H]KYNA was purified on Dowex 50 W cation-
exchange column38 and quantified by liquid scintil-
lation spectrometry. Blanks were prepared by boiling 
samples of homogenate for 15 minutes before adding 
the reaction mixture. In separate experiments using 

100 µM L-kynurenine the KYNA formed was quanti-
fied by HPLC system.

Linearity of assay with different times 
and piglet tissue amounts
The incubation time and the tissue amount with 
respect to linearity of KAT I and KAT II activities 
measurement in homogenate of rat or piglet organs 
were evaluated. KAT I and II activities of rat brain 
and liver, or piglet brain, liver and heart showed 
linearity between 1 mg and 20 mg for brain and 
heart, and between 0.125 mg and 0.75 mg for liver 
in the incubation mixture. KAT I and II activities 
measurement was linear up to 16 hours of incuba-
tion time.

Experimental design
Measurement of KYNA
The KYNA content was measured in the serum and 
in the brain (frontal cortex) of piglet, rat and human 
samples.

Measurement of KAT I and KAT II activities  
in piglet, rat and human
KAT I and KAT II were determined: in the homoge-
nate of piglet, rat or human brain (frontal cortex, 75 µl 
of homogenate prepared in 20 volumes, wt/vol); in 
homogenate of rat or human heart (75 µl of homog-
enate prepared in 20 volumes, wt/vol); in the homog-
enate of rat, piglet or pig liver (25 µl of homogenate 
prepared in 100 volumes, wt/vol) and in the homog-
enate of piglet lung (25 µl of homogenate prepared in 
100 volumes, wt/vol).

KAT activities in the mixture of two different 
homogenates
KAT I and KAT II activities were measured in the 
reaction mixture containing rat liver and rat brain 
homogenates, or rat liver and piglet brain homoge-
nates, or rat liver and piglet liver homogenates, or rat 
liver and human brain homogenates.

Influence of human CSF on rat liver KAT I and II 
activities
Influence of human CSF of normal control subjects on 
the rat liver KAT I and KAT II activities was investi-
gated. The effect of human CSF of MS patients on rat 
liver KAT I activity was compared to effect of human 
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CSF of normal control subjects. Then, the effect of 
boiled human CSF of control subjects and boiled CSF 
of MS patients on KAT I activity was researched.

Influence of CSF-sediment (CSF-Sed) and 
CSF-supernatant (CSF-Sup) fractions on KAT I
Rat liver KAT I activity in the presence of CSF-Sed 
or CSF-Sup fractions, obtained after CSF centrifuga-
tion, using two doses of 35 µl and 75 µl, respectively, 
was researched.

Data analyses
All data are given as means ± S.E.M. For statistical 
analyses, the one-way ANOVA-test and a Student’s 
t-test were applied, respectively. Each sample was 
determined in duplicate or triplicate. Asterisks indi-
cate a significant difference: *P  0.05; **P  0.01; 
***P  0.001 compared to the used control, respec-
tively.

Results
KYNA level
In piglet serum the KYNA content was at a low nano-
molar range, i.e. 3.39 ± 0.09 nM, and the KYNA 
level was approximately eight times lower than in the 
human serum and twenty six times lower than in the 
rat serum (Table 1). The KYNA levels found in rat 
and human serum corresponded well with previously 
published data.1,11,18,39

In the piglet frontal cortex KYNA level was found 
at low nanomolar concentration (4.55 ± 0.09 nM, 
n = 6) (data not shown).

KAT I and KAT II activities
The KAT I and KAT II activities in the piglet fron-
tal cortex were higher than in human frontal cortex, 
i.e. approximately three times higher for KAT I and 
four times higher for KAT II, but lower than in the rat 
frontal cortex, i.e. five times lower for KAT I and ten 

times lower for KAT II (Table 2). No activities (very 
low or even negative values) of KAT I and KAT II 
were found in the piglet liver, heart and lung, whereas 
in the rat liver KAT I and KAT II activities were very 
high. In the adult pig liver, the KAT I and KAT II 
activities were not or only marginal detectable (data 
not shown).

KAT I and KAT II activities in mixtures  
of two different homogenates
KAT I and KAT II activities of rat liver or rat brain 
homogenate or a mixture of the two different homog-
enates are shown in Table 3. The activity of KAT I 
and KAT II in the reaction mixture containing rat liver 
and brain homogenates was comparable to the total 
activity of both homogenates if incubated separately. 
In contrast, the piglet brain, human brain or piglet 
liver homogenate significantly lowered the rat liver 
KAT I and KAT II activities. Piglet brain homoge-
nate reduced rat liver KAT I by 54.5% of the con-
trol (P  0.001) and KAT II by 76.0% of the control 
(P  0.01), and human brain homogenate reduced 
the rat liver KAT I by 70% of the control (P  0.01) 
and KAT II by 72% of the control (P  0.01). Pig-
let liver homogenate reduced the rat liver KAT I by 
50.8% of the control (P  0.001) and KAT II by 
69.1% of the control (P  0.01). Boiled piglet liver 
homogenate lost the ability to block the rat liver KAT 
activities, thus, KAT I was 98.6% and KAT II 99.1% 
of the control, respectively. The reduction of rat liver 
KAT I and II activities was more pronounced for 

Table 1. Kynurenic acid (KYNA) levels in the serum of 
different species.
Species KYNA in serum [fmol/µl]
Piglet 3.39 ± 0.09 (6)
Rat 89.72 ± 1.40 (10)
Human 27.91 ± 0.99 (8)
All data is given as means ± SEM. Number of samples is given in 
parentheses.

Table 2. Activities of kynurenine aminotransferase I and II 
(KAT I and KAT II) in piglet, rat and human tissues.
Species/ 
Organ

KAT I  
[pmol/mg wet 
weight tissue/h]

KAT II 
[pmol/mg wet 
weight tissue/h]

Piglet Brain 2.54 ± 0.36 (6) 2.34 ± 0.42 (6)
Liver nd (5) nd (5)
Heart nd (5) nd (5)
Lung nd (5) nd (5)

Rat Brain 12.72 ± 0.78 (8) 22.71 ± 1.27 (8)
Liver 369.49 ± 30.18 (10) 2,109.4 ± 141.4 (10)

Human Brain 0.919 ± 0.021 (5) 0.538 ± 0.020 (5)
Heart 0.732 ± 0.030 (5) 0.451 ± 0.021 (5)

All data is given as means ± SEM. As a region of the brain the frontal 
cortex was used. Number of animals and number of human subjects are 
given in parentheses; nd not detectable and/or even negative value.
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KAT I than for KAT II and in the presence of piglet 
brain homogenate than of human brain homogenate, 
and being dependent on the amount of homogenate 
added (data not shown).

Effect of human CSF on rat liver KAT 
activities
CSF of human control subjects reduced rat liver KAT I 
to 20.5% of control (P  0.001) and KAT II was 103% 
of control (Table 4). The reduction of rat liver KAT I 

by human CSF was dependent on the amount of CSF 
added. Measurement of KAT I and KAT II in CSF 
samples revealed only marginal activity, which is 
comparable to our previously published data.18,41

The effect of CSF of MS patients on rat liver KAT I 
activity is shown in Figure 1. The reduction of rat liver 
KAT I activity was more pronounced by CSF of the 
control subjects than by the CSF of the MS patients. 
Boiled CSF of MS patients and control subjects in part 
lost the ability to block the rat liver KAT I activity.

Table 3. Kynurenine aminotransferase I and II (KAT I and KAT II) activities in rat liver homogenate: influence of rat brain, 
piglet brain or human brain.
Homogenate KAT I  

[dpm/reaction mixture]  
[% of control]

KAT II 
[dpm/reaction mixture]  
[% of control]

Rat liver (Control, CO) 2966.6 ± 181.5 (5)  
100%

19929.2 ± 1036.2 (5)  
100%

Rat brain 2240.0 ± 89.5 (5) 3654.6 ± 123.9 (5)
Rat liver + rat brain 4931.6 ± 191.4 (5) 23212.06 ± 544.1 (5)
Rat liver + piglet brain 1617.8 ± 55.4*** (5)  

54.5% of CO
15150.8 ± 856.9** (5)  
76.0% of CO

Rat liver + piglet liver 1506.36 ± 47.6*** (5)  
50.8% of CO

13762.0 ± 814.0** (5)  
69.1% of CO

Rat liver + piglet liver boiled 2925.4 ± 214.5 (5)  
98.6% of CO

19755.5 ± 930.9 (5)  
99.1% of CO

Rat liver + human brain 2077.27 ± 52.7** (5)  
70% of CO

14346.0 ± 669.5** (5)  
72% of CO

All data is given as means ± SEM. KAT I and KAT II activities were assayed as described in Material and Methods; Number of independent measurements 
are given in parentheses. KAT I and KAT II activities expressed in [pmol/mg wet tissue weight/h] are: for rat liver KAT I is 337.3 ± 25.5 (5) and KAT II is 
2292.1 ± 119.2 (5), and for rat brain KAT I is 17.17 ± 0.69 (5) and KAT II is 28.0 ± 0.95 (5), respectively. Significance of differences: *P  0.05; **P  0.01; 
***P  0.001 vs. corresponding control.
Abbreviations: nd, not detectable; CO, control.

Table 4. Alterations of rat liver kynurenine aminotransferase I and II (KAT I and KAT II) activities in the presence of 
cerebrospinal fluid (CSF) of normal human subjects.
Homogenate KAT I  

[pmol/mg wet tissue weight/h]  
[% of control]

KAT II  
[pmol/mg wet tissue weight/h]  
[% of control]

Rat liver (Control, CO) 311.6 ± 39.6 (4)  
100%

1914.8 ± 134.8 (4)  
100%

Rat liver + CSF 75 µl 63.9 ± 21.6 (4)  
20.5% of CO**

1946.9 ± 154.1 (4)  
103% of CO

Rat liver + CSF 30 µl 112.4 ± 7.0 (3)  
36.1% of CO*

nd

Rat liver + CSF 10 µl 233.4 ± 12.8 (3)  
74.9% of CO

nd

All data is given as means ± SEM. KAT I and KAT II activities were assayed as described in Material and Methods; Number of independent measurements 
are given in parentheses. KAT I and KAT II activities of CSF were: 121.3 ± 27.5 (4) and 15.1 ± 4.3 (4) [fmol/µl/h], respectively. Significance of differences: 
*P  0.05; **P  0.01; vs. corresponding control.
Abbreviations: nd, not determined. 
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Influence of human CSF-supernatant 
(CSF-Sup) and CSF-sediment (CSF-Sed) 
fractions on rat liver KAT I activity
The effect of two different CSF fractions obtained 
due to centrifugation of CSF of patients with 
Neuroborreliosis is shown in Figure 2. Both CSF-Sup 
(75 µl) and CSF-Sed fractions (75 µl) significantly 
lowered rat liver KAT I by 46.81% and 21.64% of 
control (P  0.001), respectively. The inhibitory 
effect of CSF-Sed fraction was markedly stronger 
compared to CSF-Sup fraction since CSF-Sed frac-
tion was 4.3 times diluted, due to the fraction prepa-
ration procedure. The application of a lower dose of 
35 µl of both fractions revealed a weaker effect and it 
was 67.5% and 31.5% of the control, respectively.

Discussion
From previous studies it is known that in rats and 
humans KAT activity is predominantly present in 
the liver—other organs exerting only moderate 
activity.24,40 For the first time, our data demonstrated 
no KAT activity in porcine liver and also in other 
piglet peripheral organs. We also found very low 
KYNA levels in piglet serum (3.4 nM). Kynurenine 

metabolism in piglet frontal cortex was easily 
detectable and KAT activities and KYNA content 
measured in rat and human control subjects corre-
lated well with earlier published data.1,11,18,39 Lack 
of KAT activity in piglet liver could indicate an 
absence of the biochemical machinery to synthesise 
KYNA. An alternative explanation is the presence of 
unknown yet endogenous components which inter-
fere with KYNA formation.

The significant observation in our present study 
was that KYNA formation in rat liver, measured 
under standard assay condition for KAT activity, was 
indeed altered in the presence of porcine liver homog-
enate. In fact, not only the extract of piglet liver but 
also piglet brain lowered significantly rat liver KAT 
I and KAT II activities. Interestingly, no inhibition 
of rat liver KAT was observed in the presence of rat 
brain homogenate indicating a lack or very low level 
of inhibitory component(s). This finding does not rule 
out the possibility of interference because it may criti-
cally depend on the species and age. The inhibition of 
rat liver KAT was also seen in the presence of human 
brain and CSF, and serum (Baran personal informa-
tion), as well. The inhibitory effect was dose dependent, 
it was more pronounced for KAT I than for KAT II, 
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of differences: ***P  0.001 vs. the corresponding control rat liver KAT I activity.
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and was heat sensitive indicating an involvement of 
thermo-sensitive protein-like compound(s).

The coherence between a high inhibitory capacity 
and low KAT activity (and likely low KYNA forma-
tion) of investigated biological materials is signifi-
cant. It is possible that low KAT activity measured in 
tissue is due to the presence of this endogenous KAT 
inhibiting compound(s).

The most interesting observation in our study was 
that the inhibitory effect of CSF of MS patients was sig-
nificantly weaker compared to CSF of the human con-
trol subjects, suggesting a clinically important effect. 
This effect of suppressed inhibition may cause a higher 
KYNA synthesis and activation of glia in the CNS of 
MS patients. This hypothesis is supported by the fact 
that indeed enhanced KYNA levels in the CSF42 and the 
presence of gliosis and plaque formation in the brain in 
the acute stage of MS patients has been reported.49

The inhibitory capacity of human CSF to block 
KAT I could play a particularly important role since 
CSF is produced by choroid plexus epithelial cells and 
KAT I mRNA activity is expressed in the cytosol of 
the choroid plexus epithelial cells.33 It is questionable 
if choroid plexus epithelial cells or other cells like 
lymphocytes or even neurons are involved in the for-
mation of those inhibitors. In that respect, we found 

that the inhibitory effect was notably present by using 
CSF-Sed fraction and this data strongly indicated the 
involvement of proteins/cells of CSF.

Our recently published data has demonstrated that 
Cerebrolysin, which contains an extract of porcine 
peptides, has the ability to block not only rat liver KAT 
activities but also KAT activities of the rat and human 
brain.25 In this study we proposed that Cerebrolysin 
induced KAT inhibition might affect glia proliferation, 
too.25 In line with our suggestion a study on transgenic 
mouse model of Alzheimer’s disease showed that 
Cerebrolysin treatment significantly ameliorated cere-
brovascular amyloidosis, perivascular and interstitial 
microgliosis, and furthermore astrogliosis was mark-
edly reduced after Cerebrolysin treatment, as well.43 
Álvarez et al44 demonstrated that Cerebrolysin reduced 
amoeboid microglia activity indicating that this por-
cine peptide extract has the ability to attenuate microg-
lia activation. Although the therapeutic efficacy of 
Cerebrolysin has been proposed due to a neurotrophic 
activity,45 we suggested that KAT inhibition might con-
tribute to an attenuation of microglia proliferation.25

In this study, for the first time, our accumulated find-
ings demonstrate the differences in the capability of 
endogenous components of various species and various 
physiological and pathological conditions to block KAT 

Inhibition of kynurenine aminotransferase I (KAT I)
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Figure 2. Effect of different fractions of cerebrospinal fluid (CSF) of patients with Neuroborreliosis on rat liver kynurenine aminotransferase I (KAT I) 
activity. KAT I activity was assayed as described in Material and Methods. Fractions of CSF-sediment (CSF-Sed) and CSF-supernatant (CSF-Sup) 
obtained after CSF centrifugation were prepared as described in Material and Methods. Data is expressed in % of control and represent means ± SEM. 
Number of independent measurements are given in parentheses. Significance of differences: ***P  0.001 vs. the corresponding control rat liver KAT I 
activity (CO) and between both application of 35 and 75 µl.
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activity and we propose the presence of glia depressing 
factor (GDF). The presence of this factor is abundant, 
since an inhibitory effect on KAT was observed in sev-
eral homogenates of different organs, by CSF, and also 
in human serum. In the investigated species, signifi-
cantly different inhibitory capacities of brain homog-
enate have been found suggesting species dependent 
different distribution i.e. very high in pigs, lower in 
humans and very moderate in rat brain homogenate.

A remarkable enhancement of rat brain KYNA 
metabolism i.e. enhancement of KAT activity and 
an increased glia proliferation during the aging pro-
cess24,31 could be due to the lowering of GDF levels 
with aging and this needs to be proved through further 
investigation. On the other hand high GDF levels and 
low KAT activity (due to KAT blockade) may lead to a 
“re-direction” of the kynurenine pathway and synthesis 
of quinolinic acid, which acting as an endogenous ago-
nist of NMDA receptors, is significantly involved in 
the synaptogenesis during brain development.46 How-
ever, under certain conditions, the “re-direction” of the 
kynurenine pathway might be associated with overpro-
duction of quinolinic acid and induction of neurode-
generative processes and/or epileptic activities.1,19

Morgan et al showed that food restriction decreased 
the transcription of GFAP in ageing rats and low-
ered microglia activation during ageing,47 therefore 
selected food consumption might have a significant 
impact on many physiological and pathological pro-
cesses in humans.

In summary, a remarkably low KYNA metabolism 
was found in piglet periphery and CNS, comparing to 
rat and human organs. For the first time we demon-
strated that porcine tissues extract and human CSF, 
serum or brain extract shows the ability to block sig-
nificantly KAT I and partly KAT II activities. We pro-
pose the presence of a glia depressing factor (GDF), 
which might have a significant impact not only on 
regulation of KYNA metabolism but also on regu-
lation of glia/astroglia activity respectively and glia 
proliferation. Apart from the first contribution to 
understand the mechanism(s) involved in the regula-
tion of KYNA metabolism, our observations might 
have potential diagnostic implications.48 The com-
position and structure of GDF and the mechanism(s) 
of action in mammalians, especially the role of 
GDF during development, aging and pathological 
conditions needs to be elaborated.
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