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The response of an embedded sphere in a viscoelastic medium excited by acoustic radiation force

has been studied in both the time- and frequency-domains. This model is important because it can

be used to characterize the viscoelastic properties of the medium by fitting the response to the theo-

retical model. The Kelvin–Voigt model has been used exclusively in these models. An extension to

the previously reported models is described so that any viscoelastic rheological model can be used.

This theoretical development describes the generalized embedded sphere response both in the time

and frequency domains. Comparing the results from derivations in both domains showed very good

agreement with a median absolute error (MAE) ranging from 0.0044 to 0.0072. Good agreement is

demonstrated with finite element model simulations and the theory with a MAE of 0.006. Lastly,

results for characterization of gelatin and rubber materials with the new theory are shown where the

MAE values were used to determine which rheological model best describes the measured

responses. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3613939]

PACS number(s): 43.25.Qp, 43.35.Mr, 43.35.Yb [PEB] Pages: 1133–1141

I. INTRODUCTION

The response of a sphere embedded in a viscoelastic me-

dium excited by a force has been addressed in different

articles over the past 60 years. Oestreicher made a theoreti-

cal investigation of the field and mechanical impedance of

an oscillating sphere in a viscoelastic medium.1 This deriva-

tion was based in the frequency-domain and used the

Kelvin–Voigt rheological model.

Chen et al. utilized the theory proposed by Oestreicher

in an application that used the response of the vibrating

sphere excited by modulated ultrasound to estimate the

viscoelastic material properties of gelatin materials sur-

rounding the sphere.2 The vibration response was character-

ized at multiple frequencies, and fitting of the response was

performed in the frequency-domain. This method has been

used in later studies for quantification of the viscoelastic

material properties of gelatin materials.3,4 Norris studied the

impedance of a vibrating sphere in an elastic medium when

slip was present or absent by adding an interfacial imped-

ance to account for this condition.5

Ilinskii et al. derived relationships for the static and

transient displacement responses of a sphere and a bubble

embedded in an elastic medium.6 A closed-form, time-do-

main solution was given for the displacement in both cases.

Aglyamov et al.7 extended the work by Ilinskii et al. to find

the time response of a sphere in a viscoelastic medium. The

solution for this response is given in a closed form and is

based on the Kelvin–Voigt rheological model. They per-

formed an extensive parametric study with corresponding

experimental results. The agreement between the theoretical

and experimental results was excellent. This theory was later

used in a study to find the shear modulus of gelatin

phantoms.8

To date, solutions for the motion of a sphere have been

analyzed in the time- and frequency-domains for elastic and

viscoelastic media. However, the Kelvin–Voigt model has

been used exclusively to characterize the viscoelastic media.

For characterization of viscoelastic materials many other

rheological models exist, including the Maxwell, Kelvin–

Voigt, generalized Maxwell (GM) model, the Zener model

(also known as the standard linear solid), and the Kelvin–

Voigt fractional derivative (KVFD) model, but those previ-

ously mentioned are commonly used, particularly in charac-

terizing soft tissues.9–15

These rheological models have been used to character-

ize different soft tissues with varying degrees of sensitivity.

The Kelvin–Voigt model has been used extensively in the

viscoelastic characterization of tissue because of its simplic-

ity and intuitive separation of elastic and viscous

effects.9,10,16,17 Catheline et al. used the Kelvin–Voigt and

the Maxwell models to characterize ex vivo striated muscle.9
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The generalized Maxwell model was used by Vappou et al.
to model the response from gelatin phantoms.11 Klatt et al.
reported results from using the Kelvin–Voigt, Maxwell, and

Zener models to fit the dispersive shear wave speed and

attenuation results in brain and liver.18 Of those three mod-

els, the Zener model provided the best fits for the shear wave

speed and attenuation in brain and liver results. In another

study examining brains of young and elderly subjects, the

Zener model provided better fits of storage and loss moduli

compared to the Kelvin–Voigt and Maxwell models.14

Balocco et al. used the Zener model as a basis for the me-

chanical response of arteries.15 Last, the Kelvin–Voigt frac-

tional derivative model was used to characterize various

gelatin phantoms and ex vivo veal livers and ex vivo human

prostates.13 These results demonstrate that the viscoelastic

behavior of tissue can be fit using different rheological mod-

els for characterization.

In this paper, we will extend the theory for the time- and

frequency-domain responses for the vibration of a sphere em-

bedded in a viscoelastic medium and generalize these rela-

tionships so that any viscoelastic rheological model can be

used. We call this theoretical development the generalized

embedded sphere response (GESR). We compare the results

from both the time- and frequency-domain solutions to ensure

their consistency. We demonstrate numerical results from fi-

nite element modeling (FEM). Finally, we present results

from experiments in gelatin and urethane rubber.

II. METHODS

A. Time-domain theory

1. Aglyamov model

To establish the background of the time-domain

response in a viscoelastic medium, the theory presented by

Aglyamov et al. will be briefly presented.7 We start with the

wave equation for an isotropic, incompressible viscoelastic

medium based on a Kelvin–Voigt rheological model,

�rpþ lr2uþ gr2 @u

@t
¼ q

@2u

@t2
; (1)

where p is the internal pressure, u is the displacement vector,

l is the shear elasticity, g is the shear viscosity, q is the me-

dium density, and t is time. In soft tissues, the bulk modulus

can be 3–6 orders of magnitude larger than the shear modu-

lus, so soft tissue is often considered to be nearly incompres-

sible.19 If incompressibility is assumed, as was done by

Aglyamov and his colleagues, then it would be impossible

for ultrasound waves to propagate. For the purposes of this

theoretical development we will use this assumption of near

incompressibility to simplify the mathematics but still allow

for the propagation of ultrasound waves. If we take the Fou-

rier transform using the following definition:

U xð Þ ¼
ð1
�1

u tð Þeixtdt; (2)

Eq. (1) becomes

�rPþ l� ixgð Þr2U þ qx2U ¼ 0; (3)

where P and U are the Fourier transforms of p and u, respec-

tively, and x is the angular frequency. Note that the minus

sign used in l� ixg arises because of the definition of the

Fourier transform in Eq. (2). We now introduce a sphere into

the medium and assume that an axisymmetric field is used to

produce the radiation force. When inertial forces are

accounted for, the relationship that relates U and the external

force Fext is given as

Fext xð Þ ¼ �Mx2U xð Þ þ 6pa l� ixgð ÞU xð Þ
� 1� ika� k2a=9
� �

; (4)

where M is the mass of a solid sphere with radius a and

k2¼qx2/(l� ixg). The force is assumed to be a step func-

tion with amplitude F0 and duration t0 defined as

fext tð Þ ¼ F0; 0 � t � t0

0; t > t0:

�
(5)

The Fourier transform of Eq. (5) is

Ft;ext xð Þ ¼ �iF0

x
eixt0 � 1
� �

: (6)

Using Eqs. (4), (6), and the inverse Fourier transform given

as

u tð Þ ¼
ð1
�1

U xð Þe�ixtdx; (7)

we can write the time-domain displacement as

u tð Þ ¼� iF0

12p2a

�
ð1
�1

eixt0 � 1ð Þe�ixt

x l� ixgð Þ 1� ika� k2a 1þ 2bð Þ=9ð Þdx;

(8)

where b¼ qs/q and qs is the density of the sphere

2. Generalized time-domain model

In the generalized model, we start by modifying Eq. (1)

to

�rpþ gt tð Þ �t r2u ¼ q
@2u

@t2
; (9)

where Gt(t) is the time-domain response of the shear modu-

lus and �t represents a temporal convolution. We follow the

same steps set forth earlier by taking the Fourier transform

of Eq. (9),

�rPþ Gt xð Þr2U þ qx2U ¼ 0; (10)

defining Gt(x)¼G1(x)� iG2(x), where G1(x) is the storage

modulus and G2(x) is the loss modulus. The minus sign is

retained to conform to the definition of the Fourier transform

in Eq. (2). Equation (4) can be written as
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Fext xð Þ ¼ �Mx2U xð Þ
þ 6paGt xð ÞU xð Þ 1� ika� k2a=9

� �
; (11)

where k2¼ qx2/Gt(x). The same expression for the force

used is given by Eq. (6) and so for the general case Eq. (8)

becomes

u tð Þ¼� iF0

12p2a

�
ð1
�1

eixt0�1ð Þe�ixt

xGt xð Þ 1� ika�k2a 1þ2bð Þ=9ð Þdx: (12)

B. Frequency-domain theory

1. Oestreicher model

In the work reported by Chen et al., the authors examined

the material properties of a viscoelastic medium with an em-

bedded sphere.2 They used modulated ultrasound to produce

harmonic radiation force to vibrate the sphere and then

measured the velocity at a frequency x. This process was

repeated over a range of different frequencies to characterize

the frequency response of the sphere. This process can be

modeled in the frequency domain as2

V xð Þ ¼ F xð Þ
Z xð Þ ¼

F xð Þ
Zr xð Þ þ Zm xð Þ ; (13)

where V(x) is the velocity, F(x) is the force, and Z(x) is the

impedance of the sphere which is the sum of the radiation

impedance, Zr(x), and the mechanical impedance, Zm(x).

The radiation and mechanical impedances are written,

respectively, as

Zr xð Þ ¼� i
4pa3

3
qx

�
1� 3i

ka
� 3

k2a2

� �
� 2

i

ka
þ 1

k2a2

� �
3� h2a2

haiþ 1

� �

i

ka
þ 1

k2a2

� �
h2a2

haiþ 1
þ 2� h2a2

haiþ 1

� � ;

(14)

Zm xð Þ ¼ �i
4pa3

3
qsx; (15)

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2= 2lV þ kð Þ

p
, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2=lV

p
, k and l are

the Lamé constants defined as lV¼lþ ixg and

k¼ k1þ ixk2, k1 and k2 are the bulk elasticity and viscosity,

and l and g are the shear elasticity and viscosity. In this

model, the Fourier transform is defined as

X xð Þ ¼
ð1
�1

x tð Þe�ixtdt; (16)

which has a sign change in the exponential function com-

pared to Eq. (2). In this case, Eq. (6) changes to

Ff ;ext xð Þ ¼ iF0

x
e�ixt0 � 1
� �

: (17)

This model does not assume incompressibility as did the

time-domain model presented by Aglyamov and his col-

leagues. However, we are using this model for characterizing

materials such as soft tissue, and we can assume near incom-

pressibility which makes h� k. The relationship in Eq. (14)

can be simplified to

Zr xð Þ ¼ � i
4pa3

6
qx 1� 3i

ka
� 3

k2a2

� �

� 6
i

ka
þ 1

k2a2

� �
; (18)

and by collecting terms reduced to

Zr xð Þ ¼ �i
2pa3

3
qx 1� 9i

ka
� 9

k2a2

� �

¼ qx
6pa2

k
þ i

6pa

k2
� 2pa3

3

� �� 	
: (19)

2. Generalized frequency-domain model

In the generalized model, the Lamé constant lV can be

changed to a general frequency dependent shear modulus

Gf(x)¼G1(x)þ iG2(x), where G1(x) is the storage modu-

lus and G2(x) is the loss modulus. It follows that the above-

mentioned wavenumbers change to h2¼qx2/(2Gf(x)þ k(x))

and k2¼qx2/Gf(x). It is important to note that this formula-

tion provides a model-free approach. Any rheological model

could then be fit to the complex function Gf(x), Therefore,

the model can now be different from the Kelvin–Voigt model

where G1(x)¼l and G2(x)¼xg.

C. Rheological models

In this paper, we will use five different models, the Kel-

vin–Voigt, Maxwell, generalized Maxwell, Zener (standard

FIG. 1. Viscoelastic rheological

models. (a) Kelvin–Voigt (KV)

model, (b) Maxwell (M) model, (c)

generalized Maxwell (GM) model,

(d) Zener (Z) model, (e) Kelvin–

Voigt fractional derivative (KVFD)

model.
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linear solid), and the Kelvin–Voigt fractional derivative

models. The models are defined in Fig. 1 with springs (elas-

tic component) and dashpots (viscous component) in differ-

ent configurations. The equations for G1(x) and G2(x) are

listed in Table I. Each model has a different number of pa-

rameters and arrangements of the springs and dashpots. The

Kelvin–Voigt model consists of a spring and dashpot in par-

allel.1 The Maxwell model is a spring and dashpot placed in

series.9 The generalized Maxwell model has a single spring

in parallel with N Maxwell models.11 The Zener model con-

sists of a spring in parallel with a single Maxwell model.18 A

slightly different representation of the Zener model consists

of a single spring in series with a parallel combination of a

spring and dashpot.12 The Kelvin–Voigt fractional derivative

model includes a spring in parallel with a fractional dashpot,

that is, the strain rate is calculated with a fractional deriva-

tive with power a.13

D. Comparison of generalized responses

The time- and frequency-domain derivations of the

GESR are compared in the frequency domain. For the set of

parameters given in Table II, the responses were simulated

for the different models in the time domain [Eq. (12)] and

frequency domain for the sphere velocity [Eq. (13) with

Gf(x)]. The excitation for the time-domain simulation was a

constant force with t0¼ 50 ls. The time-domain signal was

simulated and then a fast Fourier transform is performed.

The displacement signal is multiplied by ix to perform the

derivative in the frequency domain so that the spectra of the

velocity signals can be compared. This velocity signal is

compared with the result from Eq. (13) using Gf(x). This 50

ls force is, for the purposes of this comparison, equivalent

to an impulse being applied in the frequency domain, so

F(x) in Eq. (13) is constant. The results are shown in Fig. 2

and in all cases show very good agreement between the

time- and frequency-domain derived responses. The set of

responses that shows any significant deviation is that for the

Maxwell and Zener models at high frequency.

III. EXPERIMENTS

A. Finite element modeling verification

As an added verification, a model of a sphere embedded

in a viscoelastic medium was constructed using the FEM

package ABAQUS/CAE 6.8-3 (SIMULIA, Providence, RI). A cy-

lindrical phantom with radius of 30 mm and height of 80 mm

with an interior hollow sphere with radius of 0.75 mm at the

center of the cylinder was modeled using axisymmetric ele-

ments. This part was meshed with an edge-bias toward the

center with a total of 49 440 nodes and 49 921 elements. The

hollow portion of the cylinder was filled with a solid sphere

with radius of 0.75 mm. The sphere had a total of 163 nodes

and 143 elements. A tetrahedral mesh was used for both parts.

The cylinder was assigned material properties similar to

that of a typical gelatin phantom (q¼ 1080 kg/m3, E¼ 15

kPa, v¼ 0.499). A Prony series was used to simulate the

viscoelastic response of the material using a generalized

Maxwell model with one Maxwell element with parameters

of g1¼ 0.0196, s1¼ 0.05 in ABAQUS where the normalized

relaxation function is defined by g tð Þ ¼ g1 1� e�t=s1
� �

,

where g1¼ lGM,1/(lGM,1þlGM,0) and s1¼ gGM,1/lGM,1.11

For this example, lGM,0¼ 5 kPa, lGM,1¼ 0.1 kPa, and

gGM,1¼ 5 Pa s. The sphere was assigned material properties

of steel (q¼ 7840 kg/m3, E¼ 200 GPa, v¼ 0.3). To mimic

the acoustic force of the push ultrasound beam, the sphere

was accelerated at 250 m/s2 for a duration of 50 ls. An

TABLE I. Expressions for storage and loss moduli for different viscoelastic rheological models.

Model G1(x) G2(x)

Kelvin–Voigt lKV xgKV

Maxwell
lMx2g2

M

l2
M þx2g2

M

l2
MxgM

l2
M þ x2g2

M

Generalized Maxwell lGM;0 þ
PN
n¼1

lGM;nx
2g2

GM;n

l2
GM;n þx2g2

GM;n

PN
n¼1

l2
GM;nxgGM;n

l2
GM;n þ x2g2

GM;n

Zener (standard linear solid)
lZ;1l

2
Z;2 þ x2g2

Z lZ;1 þ lZ;2

� �
l2

Z;2 þ x2g2
Z

l2
Z;2xgZ

l2
Z;2 þ x2g2

Z

Kelvin�Voigt fractional derivative lKVFD þ gKVFDxa cos pa
2

� �
gKVFDxa sin pa

2

� �

TABLE II. Model parameters and values for comparison of time- and fre-

quency-domain velocity responses.

Model parameter Value

Kelvin–Voigt

lKV 5.0 kPa

gKV 5.0 Pa s

Maxwell

lM 0.1 kPa

gM 5.0 Pa s

Generalized Maxwell

lGM,0 5.0 kPa

lGM,1 0.1 kPa

gGM,1 5.0 Pa s

lGM,2 10.0 kPa

gGM,2 10.0 Pa s

Zener

lZ,1 5.0 kPa

lZ,2 3.0 kPa

gZ 4.0 Pa s

Kelvin–Voigt fractional derivative

lKVFD 5.0 kPa

gKVFD 5.0 Pa s

a 0.75
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acceleration was used because the force is directly propor-

tional to the acceleration by Newton’s second law of motion

(F¼ma). Displacement of the sphere was then recorded in

the direction of the push for 10 ms at a sampling frequency

of 100 kHz.

The results from the FEM simulations and analytic solu-

tion for the time-domain formulation in Eq. 11 are shown in

Fig. 3(a). In Fig. 3(b), the comparison between the FEM sim-

ulation and the frequency-domain analytic solution from Eq.

(13) is shown. The agreement between the simulations and

analytic solutions is very good. These results are additional

verification of the generalized theoretical responses along

with the comparisons made in Fig. 2.

B. Embedded sphere experiments

1. Phantoms

Two types of embedding materials were used to con-

struct sphere phantoms for testing, gelatin and urethane rub-

ber. In all experiments a 440-C stainless steel sphere

(q¼ 7840 kg/m3) with radius of 0.75 mm was used, and

cylindrical molds with an inner radius of 25 mm were used.

Two gelatin phantoms were used in these experiments. The

gelatin phantoms were made from 300 Bloom gelatin powder

(Sigma-Aldrich, St. Louis, MO) with a concentration of 10%

by volume and glycerol (Sigma-Aldrich, St. Louis, MO) with

a concentration 10% by volume, respectively. A preservative

of potassium sorbate (Sigma-Aldrich, St. Louis, MO) was

also added with a concentration of 10 g/L to the phantom. A

layer of the gelatin was poured and allowed to set. A thin

layer of the liquid gelatin was then poured and the sphere

was placed on the thin layer. This thin layer serves to melt

the top portion of the gelatin that has set and the sphere. The

rest of the gelatin was then poured over the sphere to com-

plete the phantom. The gelatin phantom was placed in a re-

frigerator when not being tested. One gelatin phantom had

been made fresh the day before testing (gelatin 1) and the

other had been made 17 days prior to testing (gelatin 2).

The urethane rubber phantom was made by mixing two

components (ReoFlex 20, Smooth-On, Easton, PA) and a

softening agent (So-Flex, Smooth-On, Easton, PA). The

FIG. 2. (Color online) Comparison of velocity responses from generalized Aglyamov (time-domain) and Oestreicher (frequency-domain) models. (a) Kelvin–

Voigt model, (b) Maxwell model, (c) generalized Maxwell model, (d) Zener model, (e) Kelvin–Voigt fractional derivative model. For all panels the solid curve

is calculated from the time-domain response and the dashed line is calculated from the frequency-domain response.
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mixture was made of 25% ReoFlex Part A, 25% ReoFlex

Part B, and 50% So-Flex by weight. Graphite powder

(Sigma-Aldrich, St. Louis, MO) was added to the rubber

mixture as well at 2% concentration by weight. A sphere

was attached to a fine thread using superglue and the rubber

mixture was poured around it and allowed to cure overnight.

2. Experiments

A custom-made 3.0 MHz spherically focused transducer

with diameter of 45 mm and 70 mm focal length was used to

produce repeated tone bursts of ultrasound similar to that

used in shear wave dispersion ultrasound vibrometry.10 For

the gelatin phantom, five tone bursts of length 100 ls were

repeated at a rate of 50 Hz to produce the radiation force

push. For the rubber phantom, five tone bursts of length 125

ls were repeated at a rate of 25 Hz to produce the radiation

force push. Multiple tone bursts are used to provide an aver-

aging mechanism for increasing the signal-to-noise ratio in

frequency components that are harmonics of the tone burst

repetition frequency.10,20

A focused pulse-echo transducer was used for detecting

the radiation force induced motion. For the gelatin phantom,

a spherically focused 7.5 MHz transducer was used which had

a 12.5 mm diameter and 50 mm focal length (IS0704HR, Val-

pey Fisher, Hopkinton, MA). For the rubber phantom, a

spherically focused 5.0 MHz transducer was used which had a

12.5 mm diameter and 50 mm focal length (I3-0508-R, Olym-

pus NDT, Waltham, MA). The pulse repetition frequency

used for the gelatin and rubber phantoms was 6.0 kHz. A dia-

gram of the experimental setup is shown in Fig. 4. The pulse-

echo detection pulses were interlaced among the repeated

tone bursts used for radiation force, similar to the method out-

lined by Urban and Greenleaf20 and Chen et al.10

3. Analysis

The pulse-echo data were analyzed using a cross-spec-

tral method to obtain the displacement and velocity of the

sphere.21 The spectrum of the velocity was used for curve fit-

ting with Eq. (13). With the type of excitation used, the force

function is not constant with frequency, so the function F(x)

in Eq. (13) is estimated using theory detailed by Urban and

co-workers for repeated tone bursts.4,20 For curve fitting, a

weighted least-squares curve fitting algorithm (LSQCURVEFIT)

was used in MATLAB (The Mathworks, Natick, MA). The

weights used were the normalized values of the velocity

spectrum. This weighting was used so that the peak of the

spectrum would be preferentially fit as opposed to the lower

and upper frequency extremes. Upper and lower bounds

were placed on the parameters for each model so that nega-

tive or very large values did not result. To assess the quality

of the fit, an error metric called the median absolute error

(MAE) was used. To evaluate the MAE, the absolute differ-

ences, E(f), are computed between the data, X(f), and curve

fit, Y(f), and a median of those values is taken. A median is

used to give a more general estimate of the error that is less

biased from outliers,

E fð Þ ¼ X fð Þ � Y fð Þj j; (20)

MAE ¼ median E fð Þf g: (21)

IV. RESULTS

The velocity frequency response and curve fits for the

five rheological models are shown in Figs. 5 and 6 for the

FIG. 3. (Color online) Comparison of responses for analytic response and

response from FEM model. (a) Time-domain displacement, (b) frequency-

domain velocity.

FIG. 4. (Color online) Experimental setup for gelatin and rubber sphere

phantom experiments. Ultrasound signals were amplified and applied to the

push transducer. The detect transducer was driven by a pulser/receiver and

the output signal was digitized for offline analysis.
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two gelatin phantoms. The location of the peak and the width

of the responses are different for gelatin 1 and gelatin 2. The

MAE and model parameters for the curve fits are summar-

ized in Table III.

For gelatin 1, most of the models had one of the elastic

components with a value of about 7.5–8 kPa. For gelatin 2,

the model fits had one of the elastic components with a value

of 13.3–17.5 kPa. The reason for the differences in the elas-

tic components is probably due to dehydration that can occur

over time which will make the phantom stiffer as gelatin 2

was 16 days older than gelatin 1. This trend has been

observed in our laboratory in the past, but not reported. Hall

et al. have shown that gelatin materials can increase in stiff-

ness and reach an equilibrium, but that time is on the order

of 100 days after being manufactured.22

The velocity frequency response and curve fits for the

five rheological models are shown in Fig. 7 for the rubber

phantom. The peak of the response is located at a higher fre-

quency compared to the gelatin phantoms and the width is

much larger. The MAE and model parameters for the curve

fits are summarized in Table III. The lowest MAE values for

the different models were obtained with the generalized

Maxwell model and the Zener model, while the Kelvin–

Voigt model had the highest MAE value. Most of the models

had one of the elastic components with a value of about 37–

56 kPa. The rubber was very stiff compared to the gelatin,

and this is reflected in the quantitative results.

FIG. 5. (Color online) Experimental data and model fitting for phantom gel-

atin 1. Open circles are measured data points and the plotted lines are the

curve fits to the respective models. The responses lie on top of each other.

FIG. 6. (Color online) Experimental data and model fitting for phantom gel-

atin 2. Open circles are measured data points and the plotted lines are the

curve fits to the respective models. The responses largely lie on top of each

other.

TABLE III. Model parameters and values for fitting of experimental data

from gelatin and rubber phantoms. MAE is the median absolute error

between the acquired data and the curve fit from the model.

Model parameter Gelatin 1 Gelatin 2 Rubber

Kelvin–Voigt MAE 0.0207 0.0257 0.0472

lKV, kPa 8.06 17.52 52.95

gKV, Pa s 0.27 0.75 5.92

Maxwell MAE 0.0192 0.0210 0.0368

lM, kPa 7.58 15.74 45.52

gM, Pa s 30.79 23.59 14.71

Generalized Maxwell MAE 0.0207 0.0256 0.0208

lGM,0, kPa 8.06 17.47 18.65

lGM,1, kPa 99.97 100.00 18.77

gGM,1, Pa s 0.14 0.37 3.73

lGM,2, kPa 99.97 100.00 18.74

gGM,2, Pa s 0.14 0.37 3.72

Zener MAE 0.0207 0.0130 0.0208

lZ,1, kPa 8.05 13.27 18.64

lZ,2, kPa 49.98 4.45 37.50

gZ, Pa s 0.27 1.83 7.45

Kelvin–Voigt 0.0197 0.0217 0.0366

Fractional derivative MAE

lKVFD, kPa 7.51 14.14 30.72

gKVFD, Pa s 7.38 100.00 100.00

a 0.58 0.43 0.66

FIG. 7. (Color online) Experimental data and model fitting for urethane rub-

ber phantom. Open circles are measured data points and the plotted lines are

the curve fits to the respective models.
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V. DISCUSSION

We provided an extension of previously developed

theory for the GESR in a viscoelastic medium and excited

by ultrasound radiation force. The generalization was

applied so that different rheological models could be used.

The congruence of the time- and frequency-domain methods

for the different models used was demonstrated in the nu-

merical results in Fig. 2.

The time-domain responses for the analytic solution

[Eq. (12)] and the FEM solutions showed very good agree-

ment. This FEM simulation served as a verification of the

GESR in the time domain. It also indirectly serves as a vali-

dation for the frequency-domain GESR because we have

shown the agreement between the two methods in Fig. 2.

Three laboratory experiments were performed to show

the utility of this generalized method in different materials,

gelatin and rubber. All of the models fit the responses from

the gelatin phantoms relatively well, where the Maxwell

model provided the best MAE value for gelatin 1 and the

Zener model provided the best MAE for gelatin 2. Qualita-

tively, the fits look very similar and have trouble capturing

the response for frequencies of 2–3 kHz. For the rubber, the

Kelvin–Voigt yielded the worst MAE value, and the general-

ized Maxwell and Zener models performed the best for fit-

ting the data. Qualitatively, the fits look better for the

generalized Maxwell and Zener models.

During the fitting process it was found that some param-

eters had very low sensitivity in fitting the velocity

responses. In particular, the parameters lGM,1 and lGM,2 for

both gelatin phantoms, lZ,2 for gelatin 1, and gKVFD for gela-

tin 2 and the rubber phantom were insensitive and

approached the user defined bounds. In the case of the Kel-

vin–Voigt fractional derivative model, the uniqueness of the

results was also questionable because different values for

gKVFD could be used and the exponent a would change such

that the value of ga
KVFD stayed approximately constant. To

evaluate the influence of each model parameter, a sensitivity

analysis in which partial differentials of the displacement

[Eq. (12)] or velocity [Eq. (13)] could be computed with

respect to a parameter such as lGM,1, i.e., [@u(t)/@lGM,1 or

@V(x)/@lGM,1], and could be compared. However, this type

of analysis has to be done while the other parameters in the

model are held constant at a set of values, and sensitivity

may change for different settings of the other parameters.

For all three phantoms, the fits deviated from the data at

high frequency. The reasons for these deviations are not im-

mediately obvious. The signals were filtered with a bandpass

filter with a passband from 10 to 2900 Hz. Part of the dis-

crepancy could be due to the filtering, but these effects

should be minimal. One possible explanation could be that

there are some aliasing artifacts present as the Nyquist fre-

quency for these experiments was 3 kHz. There may have

been some vibration energy above this frequency that could

have been aliased down to the frequencies in the 2–3 kHz

range. In the FEM simulation a sampling frequency of 100

kHz was used and the simulation results match the analytic

results very well, even at the high frequencies, Thus, in the

future, we may have to use a higher pulse repetition fre-

quency for the detection transducer operating in pulse-echo

mode, such as the 20 kHz pulse repetition frequency used in

previously reported studies.7,8 A weighted algorithm was

used for the fitting and the weights were based on the nor-

malized values of the velocity spectrum. This weighting

scheme was chosen so that the information that had the most

amplitude and energy was used to determine the model pa-

rameters rather than data that had lower amplitude and

potentially poorer signal-to-noise ratio.

We observed interesting differences between using a gen-

eralized Maxwell model with two Maxwell elements and one

Maxwell element (Zener model). In the case of gelatin 1 and

the urethane rubber, the elastic Maxwell components for the

generalized Maxwell model with two Maxwell components

were twice that of the elastic Maxwell component in the

Zener model. The viscous components had an inverse rela-

tionship where the viscous component in the Zener model

was two times that of the viscous Maxwell components in the

generalized Maxwell model. The MAE values were exactly

the same for both models in these two phantoms. These obser-

vations indicate that the Zener model is adequate to describe

the material behavior for these phantoms.

The generalized method offers the flexibility of adapting

to different rheological models based on the material used for

embedding the sphere. For each application, one rheological

model may work better than another. This was demonstrated

in fitting the responses for the gelatin and rubber phantoms.

However, within the examination of a certain phantom such as

gelatin 1, the MAE values were very similar for several mod-

els, and the fits appeared similar. A model with the minimum

number of parameters needed to describe the behavior of mate-

rial adequately may be the most suitable in order to reduce the

complexity of the characterization. One could even use a

model-free approach and not parameterize the functions G1(x)

and G2(x). A uniqueness problem could arise in determining

these two functions from acquired data. This type of problem

would have to be addressed to use the model-free approach.

VI. CONCLUSION

A generalized model for the response of an embedded

sphere in a viscoelastic medium subjected to acoustic radia-

tion force was presented. The GESR theory was extended

from previous work for responses in the time and frequency

domains. The responses predicted by the theory in the time

and frequency domains were compared and found to be in

good agreement for different viscoelastic rheological mod-

els. Three phantoms made of gelatin and urethane rubber

were tested and curve fitting was performed using the new

generalized response theory. Using data acquired from the

different phantoms, it was found that different rheological

models fit data best in each case. This generalized method

could be used for embedded sphere tests for various types of

materials and the best rheological model could be adapted

for each application.
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