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Metabolic Dysfunction Associated with Adiponectin
Deficiency Enhances Kainic Acid-Induced Seizure Severity
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Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
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Metabolic syndrome has deleterious effects on the CNS, and recent evidence suggests that obesity rates are higher at presentation in
children who develop epilepsy. Adiponectin is secreted by adipose tissue and acts in the brain and peripheral organs to regulate glucose
and lipid metabolism. Adiponectin deficiency predisposes toward metabolic syndrome, characterized by obesity, insulin resistance,
impaired glucose tolerance, hyperlipidemia, and cardiovascular morbidity. To investigate the relationship between metabolic syndrome
and seizures, wild-type C57BL/6] and adiponectin knock-out mice were fed a high-fat diet, followed by treatment with low doses of kainic
acid to induce seizures. Adiponectin deficiency in mice fed a high-fat diet resulted in greater fat accumulation, impaired glucose toler-
ance, hyperlipidemia, increased seizure severity, and increased hippocampal pathology. In contrast, there were no adverse effects of
adiponectin deficiency on metabolic phenotype or seizure activity in mice fed a normal (low-fat) chow diet. These findings demonstrate
that metabolic syndrome modulates the outcome of seizures and brain injury.

Introduction
Metabolic syndrome is a constellation of metabolic and cardio-
vascular abnormalities including obesity, impaired glucose toler-
ance, dyslipidemia, and cardiovascular morbidity (Grundy et al.,
2005). The adverse consequences of metabolic syndrome are typ-
ically linked to vascular disease, but associations with nonvascu-
lar diseases have been noted. Interestingly, children with epilepsy
have a high rate of obesity at initial presentation (Daniels et al.,
2009). It is unknown whether this association indicates a causal
relationship between metabolic disease and seizure susceptibility.
Adiponectin is secreted by adipocytes and improves insulin
sensitivity and fat oxidation (Ahima, 2006). Adiponectin is in-
versely correlated with adiposity, hence metabolic syndrome is
associated with low plasma adiponectin (Ahima, 2006). While
adiponectin deficiency has no apparent metabolic effects in lean
mice, adiponectin deficiency in mice fed a high-fat diet (HFD)
results in insulin resistance, hyperlipidemia, inflammation, and
vascular injury (Kubota et al., 2002; Ma et al., 2002; Maeda et al.,
2002; Nawrocki et al., 2006). Low adiponectin levels are found in
CSF, and both adiponectin receptors, AdipoR1 and AdipoR2,
are widely expressed in the brain (Yamauchi et al., 2003, 2007;
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Kusminski et al., 2007). Adiponectin modulates hypothalamic
and brainstem neuronal activity, and acts centrally to control
peripheral metabolism (Qi et al., 2004; Fry et al., 2006; Hoyda et
al., 2007; Kubota et al., 2007).

Adiponectin is protective against ischemic brain injury by
modulating inflammatory pathways and endothelial function
(Nishimura et al., 2008; Chen et al., 2009). Interestingly, PPARy
agonists, which are known to increase adiponectin expression,
protect against seizure-related pathology (Maurois et al., 2008;
Sunetal., 2008; Yu et al., 2008; Abdallah, 2010). Furthermore, the
anti-epileptic drug valproic acid modulates PPARvy signaling,
and alters adipoR1 and adiponectin expression (Qiao et al., 2006;
Lan et al., 2008; Rauchenzauner et al., 2008). Adiponectin in-
jected intracerebrally has also been shown to reduce kainic acid
(KA)-induced excitotoxicity (Jeon et al., 2009). Thus, we hypoth-
esized that adiponectin deficiency would enhance seizure sensi-
tivity in the setting of metabolic syndrome. We fed C57BL/6]
(wild type) and ADP-KO mice HFD or normal chow and com-
pared body composition, glucose tolerance, lipids, KA-induced
seizure, and hippocampal pathology. As predicted, adiponectin
deficiency resulted in an increase in body fat, impaired glucose
tolerance and increased lipids, and these changes were associated
with increased seizure severity and hippocampal pathology.

Materials and Methods

Animals, diet and metabolic studies. C57BL/6] mice and ADP-KO mice
bred on the same genetic background (n = 17 per genotype), were fed
HEFD (Research Diets, #D12451; 45% fat, 35% carbohydrate, 20% pro-
tein; 4.7 kcal/g) for 8—12 weeks (Takahashi et al., 2002). Control WT and
adiponectin-deficient mice (1 = 10 per genotype), were fed normal chow
(5% fat, 49% carbohydrate, 24% protein; 4 kcal/g; LabDiet). Body com-
position was analyzed by nuclear magnetic resonance (Echo Medical
Systems) (Varela et al., 2008). To determine glucose tolerance, mice were
fasted overnight (16 h), tail glucose was measured (OneTouch Ultra
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Figure1. Effects of HFD on body composition and glucose tolerance. A, ADP-KO and WT mice
fed HFD were assessed for body weight, fat content and lean mass, shown as mean = SE (n =
10 per group). **p << 0.01; ***p << 0.001. B, Blood glucose measurements before and after a
glucose challenge are shown as mean == SE (n = 9—10 per group; genotype p = 0.0164, time
p <<0.0001, interaction p = 0.281). Post hoc analysis revealed significantly differences at times
0 (p = 0.049), 60 min (p = 0.0213) and 120 min (p = 0.0135).

glucometer, Johnson & Johnson), 2 g/kg glucose was injected intraperi-
toneally, and tail glucose was measured at 15, 30, 60, and 120 min. Serum
collected when the animals were killed was used to measure triglycerides,
cholesterol, and nonesterified fatty acids (NEFAs) by enzymatic assay
(Imai et al., 2007; Varela et al., 2008).

KA-induced seizure. KA in saline was administered subcutaneously (20
mg/kg) or stereotaxically into the hippocampus (—1.8 mm, —1.8 mm,
—1.8 mm relative to bregma, 100 ng). Subcutaneous saline was used as a
control. Seizure activity was scored every 15 min for 4 h using a modified
Racine scale (0, normal; 1, hypoactivity; 2, rigidity; 3, rearing with repet-
itive head/forepaw movements; 4, rearing and falling; 5, continuous rear-
ing/falling; 6, generalized convulsions) (McKhann et al., 2003).

Brain histology and immunohistochemistry. Two days after peripheral
KA, food was removed for 4 h in the morning before the mice were killed.
Serum was obtained via cardiac puncture. Mice were perfused with PBS
followed by neutral buffered formalin. Brains were postfixed overnight,
embedded in paraffin, and sectioned coronally (6 um) for cresyl violet
stain. Adjacent sections were subject to immunohistochemistry using
the following antibodies: rat anti-GFAP (clone 2.2B10), rabbit anti-
Ibal (Wako Chemicals USA), rat anti-phospho-neurofilament (clone
TA51), mouse anti-neurofilament (clone RMD020), and mouse anti-
synaptophysin (clone SY38, Abcam). The slides were scored by a
neuropathologist on a scale of 1-4 (1, normal; 2, mild; 3, moderate;
and 4, severe).

Statistical analysis. The effects of genotype and diet were assessed by
unpaired ¢ test or ANOVA, and pair wise comparisons were analyzed
with Fisher’s least significant difference test. For correlation analysis,
seizure scores over time were used to calculate an area under the curve
(AUCQ) followed by linear regressions between seizure AUC and meta-
bolic parameters.

Results

Adiponectin deficiency increases body fat, glucose, and lipids

ADP-KO and WT mice were fed HFD to induce features of the
metabolic syndrome, and assess its impact on KA-induced sei-
zures. After 2 months on HFD, ADP-KO and WT mice had sim-
ilar body weight (30.8 * 0.8 gvs 30.6 = 0.5 g; p = 0.842, Fig. 1 A).
However, ADP-KO mice had significantly greater fat mass
(7.67 £ 0.58 g vs 4.63 = 0.27 g; p = 0.0002) and less lean tissue
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Table 1. Effects of adiponectin deficiency and kainic acid treatment on serum lipids

Triglyceride (mg/dI) NEFA (mEg/L) Cholesterol (mg/dI)

WT saline 270+ 14 0.787 = 0.022 1340 = 8.3
WT kA 355*+27 0.762 = 0.043 1213 £ 47
K0 saline 49 *34 0.926 = 0.016 1735 *+ 8.6
KO KA 49.7 £ 85 0.866 =+ 0.076 146.9 = 8.4
Two-way ANOVA

Genotype 0.019 0.047 0.0006

Treatment 0.202 0.462 0.020

Interaction 0.892 0.764 0.375

Data are shown as mean == SE (n = 4 -6 per group). Two-way ANOVA results are shown with significant p values
inbold.

mass (21.67 * 0.69 g vs 24.66 = 0.35 g; p = 0.0011) compared
with WT mice (Fig. 1A). We performed intraperitoneal glucose
tolerance tests as a measure of glucose homeostasis. After over-
night fasting, ADP-KO mice were hyperglycemic compared with
WT mice (148.5 = 10.3 mg/dL vs 115.6 = 11.7 mg/dL, p =
0.049). After intraperitoneal injection of glucose, blood glucose
was higher in ADP-KO mice than WT (genotype p = 0.0164, time
p < 0.0001, interaction p = 0.2814; Fig. 1B). At the time they
were killed, ADP-KO mice had higher serum levels of triglycer-
ides, NEFAs, and cholesterol than WT mice (Table 1). KA treat-
ment decreased serum cholesterol levels, but this change was less
compared with the effect of genotype (Table 1).

Adiponectin deficiency increases seizure severity

To determine whether features of metabolic syndrome resulting
from adiponectin deficiency increased seizure severity, ADP-KO
and WT mice were treated with a low dose of KA (20 mg/kg) and
seizures were scored from 0 (no seizure) to 6 (tonic-clonic).
ADP-KO mice were more sensitive to KA-induced seizure activ-
ity than WT, with peak seizure scores of 2.7 and 1.2, respectively
(p = 0.0079). Indeed, half of the ADP-KO mice had peak seizure
scores of 3—4 while no WT mice scored higher than 2. Analysis of
seizures over 4 h showed that the mean score was higher for
ADP-KO mice at all times (genotype p = 0.0127, time p < 0.0001,
interaction p < 0.0001; Fig. 2A). The duration of seizures was
longer in ADP-KO mice up to 120 min, compared with 30 min in
WT mice. Thus, metabolic syndrome due to adiponectin defi-
ciency resulted in more intense and prolonged seizure activity.

Adiponectin deficiency increases post-seizure hippocampal
pathology

The downstream sequelae of seizures include gliosis, neurode-
generation, and neuronal reorganization (McKhann et al., 2003).
The KA dose of 20 mg/kg is low for C57BL/6] mice (Ferraro etal.,
1995; McKhann et al., 2003), thus we predicted minimal gliosis
and neurodegeneration in WT mice versus ADP-KO mice. Cresyl
violet stained sections of brain and hippocampus showed no neu-
rodegeneration in either WT or ADP-KO (Fig. 3A), with the
exception of one KA-treated ADP-KO mouse which showed se-
vere loss of CA1 neurons (Fig. 2 D). Immunohistochemistry for
glial fibrillary acidic protein (GFAP) showed mild astrocytosis in
KA-treated WT mice relative to saline-treated mice, and consid-
erably more astrocytosis in KA-treated ADP-KO mice (Fig. 2B).
Immunohistochemistry for Ibal showed no microglial activation
in WT mice and saline-treated ADP-KO mice. However, mild to
moderate microglial activation was noted in ADP-KO mice, in-
cluding microglial hypertrophy and clustering (Fig. 2 B). The sin-
gle ADP-KO mouse with neurodegeneration showed profound
glial activation (Fig. 2D; data not shown). Semiquantitative
image analysis demonstrated that KA-treated ADP-KO mice
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Figure 2.

Kainic acid seizure in mice fed HFD. A, Data are mean = SE; n = 6. ADP-KO mice exhibited higher seizure scores (genotype p = 0.0127, time p << 0.0001, interaction p <

0.0001). Post hoc analysis with Bonferroni’s correction revealed higher seizure scores from 60 min to 105 min (p << 0.01to p << 0.001). B, Brain sections were stained with cresyl violet
(top), or for GFAP (middle), and IbaT (bottom). Representative images of hippocampus are shown, with higher-power images of the dentate gyrus endplate shown in the insets.
Hippocampal regions are labeled for reference. Scale bars: Top and middle, 500 r.m; bottom, 100 wm; inset, 50 wm. , Semiquantitative pathology scores, shown as mean = SE; n = 6. Dashed
line denotes baseline normal score of 1 (**p << 0.01, ***p << 0.001). D, Neurodegeneration and gliosis in a kainic acid-treated ADP-KO mouse. Cresyl violet (left and middle)- and Iba1 (right)-stained
sections are shown. Boxed region is CA1. Arrowhead points to a pyknotic neuron in contrast with viable neuron (asterisk). Scale bars: left, 500 m; middle, 50 wm; right, 100 wm.

showed significantly more astrocytic and microglial activation
relative to WT mice (Fig. 2C). Neurodegeneration was not statis-
tically different between the two groups. Even when removing the
one potential outlier with severe neurodegeneration, repeat anal-
ysis still indicated that ADP-KO mice showed significantly more
glial pathology compared with WT mice (data not shown). Im-
munohistochemistry for synaptophysin or phosphorylated neu-
rofilament did not show any evidence of synaptic sprouting or
other structural changes (data not shown). These findings indi-
cate that the worsening of seizure severity was accompanied by
increased brain injury.

Adiponectin deficiency increases chronic seizure related
pathology

It is possible that altered body composition may change periph-
eral KA metabolism. To circumvent this issue, HFD-fed WT and
ADP-KO mice were injected with alow KA dose (100 ng) directly
into the hippocampus and examined after 2 weeks for chronic
seizure related pathology. Severe neurodegeneration was evident
in the hilum, CA3 and CA1 of ADP-KO, whereas neurodegenera-
tion was mild or absent in WT (Fig. 3A). Intrahippocampal KA
also resulted in neuronal dispersion of the dentate gyrus, and
enhanced synaptophysin immunostaining in ADP-KO mice,
suggesting extensive synaptic sprouting (Fig. 3A). GFAP and Ibal
staining were increased indicative of reactive astrocytosis and
microgliosis in ADP-KO mice (Fig. 3A). Image analysis showed
that ADP-KO displayed significantly increased granule cell dis-
persion (genotype p = 0.0138, laterality p = 0.0642, interaction
p = 0.0827), neurodegeneration (genotype p = 0.0123, laterality
p = 0.0020, interaction p = 0.0297), astrocytosis (genotype p =
0.0185, laterality p = 0.0030, interaction p = 0.6679) and micro-
gliosis (genotype p = 0.0344, laterality p = 0.0052, interaction
p = 0.5265) compared with WT (Fig. 3B-E). Thus, adiponectin

deficiency enhances seizure related pathology in response to pe-
ripheral or central KA treatment.

Adiponectin deficiency in the absence of metabolic syndrome
does not alter seizure activity

We hypothesized that an interaction between metabolic syn-
drome and adiponectin deficiency resulted in enhanced seizure
activity. However, it was possible that adiponectin deficiency
alone in the absence of metabolic changes may be sufficient to
enhance seizure sensitivity. Thus, we examined the effects of KA
in WT and ADP-KO mice fed normal chow diet. ADP-KO and
WT mice had similar body weight, fat and lean mass, glucose
tolerance and serum lipids (data not shown). Seizure activity was
similar between WT and ADP-KO mice, peak seizure scores
ranging from 0 to 1 (ADP-KO average peak score 0.6, WT average
peak score 0.5, p = 0.77). Temporal analysis of seizure scores
showed no significant effect of genotype (genotype p = 0.312,
time p = 0.121, interaction p = 0.608).

Adiponectin deficiency is associated with increased adiposity
in HFD mice, thus it is possible that seizure activity is associated
with changes in metabolic parameters. We found a strong posi-
tive correlation between seizure severity and glucose intolerance
(R* = 0.5509, p = 0.0057), cholesterol (R* = 0.5341, p =
0.0069), fat mass (R* = 0.4391, p = 0.0189) and NEFAs (R* =
0.4310, p = 0.0282), and a negative correlation with lean mass
(R* = 0.4706, p = 0.0138). In contrast, seizure severity was not
associated with serum triglyceride (R> = 0.1782, p = 0.1717) or
body weight (R* = 0.0756, p = 0.3869).

Discussion

It is estimated that 5-10% of individuals develop nonfebrile sei-
zures or epilepsy in their lifetime (Hauser et al., 1993; Cockerell et
al., 1995). Current efforts are underway to understand the co-
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al., 2009), and central adiponectin has potent electrophysio-
logical effects (Fry et al., 2006; Hoyda et al., 2007), raising the
possibility that adiponectin directly modifies seizure activity
and brain pathology. Anti-epileptic drugs modulate various
metabolic pathways (Isojdrvi et al., 1996). For example, val-
proic acid regulates adiponectin and adipoR1 expression
(Qiao et al., 2006; Rauchenzauner et al., 2008). PPARvy ago-

Figure3.

Intrahippocampal kainic acid and seizure-related pathology. 4, Hippocampal sections were stained with cresyl violet
(top, at low and high magpnification), or for GFAP (middle, at low and high magnification), Iba1 (middle, at low magnification), and
synaptophysin (SYN; bottom, at high magpnification). Scale bars: lower-magnification panels, 500 pm; higher-magpnification
panels, 50 m. DG, Dentate gyrus; CA3, cornu ammonis 3; H, hilum. B, Dentate gyrus thickness measurements shown as mean
SE with dashed line denoting normal thickness. (~E, Semiquantitative pathology scores, shown as mean = SE; n = 4 —6. Dashed
line denotes normal baseline score of 1. *p << 0.05 for genotype by two-way ANOVA).

nists including insulin sensitizing thiazolidinediones are pro-
tective in animal seizure models (Chen et al., 2009; Jeon et al.,
2009), and also increase adiponectin levels (Nawrocki et al.,
20006).

Other hormones associated with energy homeostasis influ-
ence seizures. Leptin and ghrelin inhibit seizures and protect
against seizure-related neuropathology (Shanley et al., 2002;
Obayetal., 2007; Erbayat-Altay et al., 2008; Guo et al., 2008; Obay
et al., 2008; Xu et al., 2008; Lee et al., 2010; Obeid et al., 2010).
These studies demonstrate that peripheral endocrine and meta-
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bolic factors are capable of modulating seizure threshold and
seizure-related pathology by acting on CNS neurons to trigger
intracellular signaling pathways or modulating neuronal activity.
The results of the current study indicate that changes in meta-
bolic parameters associated with adiponectin deficiency influ-
ence seizure activity and brain pathology. Understanding of the
underlying mechanisms would provide a framework for pre-
vention and treatment of epilepsy associated with metabolic
syndrome.
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