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Abstract
An accurate and reproducible segmentation of the mitral valve annulus from 3D ultrasound is
useful to clinicians and researchers in applications such as pathology diagnosis and mitral valve
modeling. Current segmentation methods, however, are based on 2D information, resulting in
inaccuracies and a lack of spatial coherence. We present a segmentation algorithm which, given a
single user-specified point near the center of the valve, uses max-flow and active contour methods
to delineate the annulus geometry in 3D. Preliminary comparisons to manual segmentations and a
sensitivity study show the algorithm is both accurate and robust.

Index Terms
mitral; annulus; segmentation; ultrasound

1. Introduction
The shape of the mitral valve annulus (MVA) is clinically useful in assessment of mitral
valve function [1], pathology diagnosis [2], and surgical planning [3]. Researchers use the
shape in prostheses design and as boundary conditions for mitral valve models [4]. Prior to
three-dimensional ultrasound (3DUS), extracting the shape of the MVA was difficult,
leading to the perception of the MVA as roughly planar instead of saddle shape as is now
apparent [2]. Even with improved visualization of the mitral valve now available in 3DUS,
the shape of the MVA is difficult to perceive due to volume visualization limitations and
imaging noise, requiring segmentation to extract an accurate and discernible representation.

Current methods to segment the annulus are limited, requiring many researchers and
clinicians to resort to manual segmentation of 2D slices [5]. While these segmentations can
be accurate, they are time consuming and only allow access to a portion of the available
information at each step. This requires the user to mentally interpolate the annulus
surroundings, and often results in a lack of spatial coherence. Some methods attempt to
correct for the sparse and discontinuous slice-based manual segmentations, but rely solely
on the segmented points and do not refer back to the original data (e.g. [5,6]). A semi-
automatic segmentation algorithm is presented in [7], however, the method again relies
strongly on 2D information and does not appear to take advantage of three-dimensional data
– neither from the surroundings nor its own segmentation – while delineating the annulus.

We present a robust semi-automatic algorithm that segments the mitral annulus three-
dimensionally (Fig. 1). Due to the inherent difficulty in segmenting the annulus directly
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from 3DUS, we begin by first segmenting the better defined leaflets. This is done by
computing a thin-tissue detector, which localizes the mitral valve leaflets. Using only a
single user-provided point, we find a best-fit plane through the leaflets and position and
orient a graph. A max-flow algorithm then finds a surface that includes the leaflets and
passes through the annulus. Information about the leaflets and the surrounding tissue are
then projected onto the best-fit plane. A unique active contour and convergence system then
uses the planar projected data to delineate the annulus in 2D. Projecting the 2D annulus onto
the 3D surface, a 3D contour representing the mitral annulus is found.

2. Materials and Methods
Clinical transesophageal echocardiography data was acquired on an echocardiography
system (iE33, Philips Medical Systems, Andover, MA, USA). The 4D (3D+time) data sets
were ECG-gated full volume reconstructions, allowing for the visualization of the entire
mitral valve. The state of the valve ranged from normal to varying types and degrees of
pathology, and its position and orientation within the data volume varied. We stripped the
data of patient information and manually selected the frame at which peak systole occurred.
This frame, Ω, is an array (224×208×208) with each voxel, vi, containing an intensity value
in the range of 0-255.

2.1 Thin Tissue Detector
A thin tissue detector (TTD) highlights tissue at a designated scale and is used to locate the
mitral valve leaflets. We construct our TTD using three terms: θ, β, and ψ. θ is the mean
angle between gradient vectors in a neighborhood, where the gradient vectors are computed
on the Gaussian convolution of Ω, S=G(σ)*Ω. A neighborhood, Ni, is the set of all
neighbors, nj, which are voxels contained within the cube of side length p centered at voxel
vi, making j∊[1,J] where J=p3 for a cubical neighborhood. The standard deviation, σ, of the
Gaussian kernel, G(σ), determines the scale of tissue thicknesses to be detected, and is set to
half the thickness (voxels) of the mitral valve leaflets as they appear in the image, with a
kernel dimension of 4σ+1.

(1)

β measures the net flow across the neighborhood boundaries, where the gradient vectors are
interpreted as flow directions. The inward directed unit normal of each boundary face is
denoted fq,norm, where q∊[1,6] for a cubical neighborhood. Neighbors with a face adjacent to
fq,norm are denoted fk, where k∊[1,K] and K=p2 for a cubical neighborhood.

(2)

The last term, ψ, is a Gaussian convolution of the gradient magnitude of Ω and quantifies the
proximity of a voxel to a strong edge on the scale of σ. In this work, p=3 and σ=2 is used.

(3)
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The TTD value (Fig. 2) is (θ β[0,1] ψ)[0,1], where (·)[0,1] signifies that values for that term are
normalized to the range 0 to 1. High TTD values indicate that the voxel is potentially part of
the thin leaflet surface.

2.2 Mitral Valve Leaflet Surface
Because the annulus surrounds the mitral leaflets, we construct a surface at the location of
the leaflets that extends outward through the annulus. We begin by collecting a user-
specified point, xc, which should be located near the center of the valve. Within a spherical
region of interest of radius rPCA and centered at xc, we cluster the values of the TTD into
two clusters using a k-means algorithm. Using the voxel locations of the cluster
corresponding to the mitral valve leaflets, we perform a principal component analysis (PCA)
to find MVplane, a best-fit plane to the leaflet surface. The normal vector to this plane, nc, is
the direction of least variance as determined from the PCA.

The point, xc, and planar normal, nc, locate and orient a graph, Γ={V,E}. We define the
boundary as a cylinder centered at xc with an axis directed along nc, which has radius rgraph
and height 2rgraph. Γ consists of a set of nodes, V, spaced one voxel apart, and undirected
orthogonal edges, E, which connect the nodes. In addition there are two special nodes called
the source and sink. The source connects to all nodes on one face of the cylinder while the
sink connects to all nodes on the opposite face. The nodes and edges form a 3D grid which
is directed along the axis of the cylinder. A simplified representation of the graph
boundaries, position, and orientation relative to xc and nc is shown in Fig. 3. In this work we
set rPCA=25 voxels and rgraph=50 voxels.

The graph provides a framework in which we implement a max-flow algorithm to find a
surface at the location of the leaflets. The algorithm, presented in [8], finds the maximum
flow which can leave the source, travel through the graph along edges with predefined
capacities, and enter the sink. In doing so, according to the max-flow/min-cut theorem [9],
the set of saturated edges define a minimum cut through the graph. As it is desired to find a
surface which passes through the leaflets, we define the edge capacities, Eij, such that
between node Vi and Vj,

(4)

where ω and α are scalar weights. This gives the edges around the leaflets a lower capacity
than most other edges, encouraging the min-cut to be located at the leaflets. For edges
parallel to the axis of the cylinder, ω=1.5 and α =25, while for all other edges, ω=1 and α
=25. This anisotropic edge capacity assignment is similar to [10] and limits surface
curvature. We set edge capacity to infinity for those edges in which one of the nodes is
either the source or the sink. With the graph constructed, we find the max-flow using the
implementation of Kolmogorov [11]. The min-cut then defines a surface, MVsurf, which
should pass through the mitral leaflets.

2.3 Annulus Delineation via Active Contours
Controlling the curvature of MVsurf using ω, we can say that MVsurf is a regular surface in
R3 and can be described as the graph of a function, Zsurf, described on the x′y′-plane (Eq.5).
The x′y′z′-coordinate system (Fig. 4) is centered at xc with z′ parallel to nc. The annulus, a
closed surface curve on MVsurf, therefore projects to a simple closed plane curve in the x′y′-
plane. To help locate this plane curve, we construct two images, PRJINT and PRJTTD (Fig.
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4). PRJINT (Eq.6) is the value of Ω in regions above and below MVsurf, excluding a band of
thickness 2σ where the leaflets reside, and PRJTTD (Eq. 7) is the value of the TTD at MVsurf.

(5)

(6)

(7)

We delineate the annulus contour in the x′y′-plane using a snake [12], modified to
incorporate prior knowledge about the edge to be captured. By their construction, the mitral
valve is located at the centrally located dark region in PRJINT and the bright region in
PRJTTD, making the annulus the edges of these regions. As these edges take the shape of a
closed contour containing the projected center point, xc′: (xc′,yc′), all snake nodes are
initialized on, and restricted to, equally-spaced and stationary radial lines with origin xc′ and
which extend to infinity (Fig. 5). This keeps snake nodes approximately evenly spaced,
eliminates the need for an elastic energy term, and provides for smooth convergence.

The image forces used to drive a snake, PRJINT and PRJTTD, are noisy and unpredictable
due to ultrasound image quality and anatomical variability. To avoid the inherent difficulties
with automatically initializing and converging a single snake to the desired location in such
an image, we developed a novel multisnake (MS) mechanism in which multiple snakes
operate simultaneously on the image. These snakes are initialized at different locations but
are designed to converge to the same location in the image. To accomplish this, they are not
only driven by image and curvature forces, but they are also attracted to each other. This
induces snakes in weak or noisy locations in an image to converge on the desired location.

The energy equation driving a single snake in this construct is

(8)

where E(•) are energy terms and ω(•) are scalar weights. To capture the edge of the centrally
located dark region in PRJINT and the bright region in PRJTTD, we derive EINT and ETTD
from the gradients of PRJINT and PRJTTD, respectively. Curvature of the contour is taken
into account in EXY and EZ. EXY accounts for the curvature of the contour in the 2D image
plane, while EZ accounts for the curvature of MVsurf at the current location of the snake. For
EXY, we use the curvature energy presented by Wagner and Perrin [13], as this form is
shown to produce more stable contours in the absence of image forces as compared to other
forms of curvature, a few of which are reviewed in [14]. EATT is an attractive energy
between the snakes that drives the multiple snakes to a common location, overcoming weak
edges and noise in PRJINT and PRJTTD and forcing the multiple snakes to converge to a
single snake.

For automatically initializing and converging to the desired location, we developed a novel
initialization and convergence system (ICS). The ICS is a scale space approach to provide
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robustness in the presence of resolution-specific noise. In the context of the ICS, “image σg”
will refer to the energies derived from the convolutions of PRJINT and PRJTTD with a
Gaussian kernel, defined by a standard deviation of σg and a kernel dimension of 4σg +1. At
the top level of the ICS (L1 in Fig. 5) is a generic multisnake initialization, which we define
as a set of m evenly distributed circles (m>1) with radii in the range of one to rgraph, based
on prior knowledge that the annulus is roughly circular (m=4 in Fig. 5). The generic
initialization is then placed into images σm-1 through σ1 (L2). The convergence of the
multisnake in each of the images produces a single snake unique to the resolution of the
image. The snakes from images σm-1 through σ1 are then combined to form another
multisnake, which is then placed into images σm-2 through σ1 (L3). The process is repeated
until two snakes are placed into a final image, which after converging produces the final
contour (L4).

In this work, m=4 is used with σ3=4.5, σ2=3, and σ1=1.5. The energy minimization
parameters used are ωINT=4, ωTTD=1, ωXY=0.07, ωZ=0.2, and ωATT=0.04-0.003σg. ωATT is
larger for smaller σg because edges become more defined at finer resolutions, making the
derivative at the edges larger with respect to the rest of the image. A larger attractive force is
therefore needed to overcome these larger image forces. Forces derived from the
minimizations of EINT and ETTD are normalized over the entire image so that their
magnitude is less than or equal to one, while Zsurf is normalized to the range [0,1].

A smooth contour in 3D space representing the location of the MVA (Fig 6.) is constructed
using the final snake, MVsurf, and a filtering process. Traversing the (x′,y′) coordinates of the
final snake and determining Zsurf(x′,y′) at each coordinate pair, a voxelized representation of
the MVA (x′mva, y′mva, z′mva) is obtained. A center point of the MVA is found as the mean of
(x′mva, y′mva, z′mva), denoted (x′ca, y′ca, z′ca). The radial and height components of the MVA
points as seen in a cylindrical coordinate system, where the radial component is r′mva=((x
′mva-x′ca)2+(y′mva-y′ca)2)1/2 and the height component is z′mva, are filtered separately using a
low-pass Butterworth filter.

3. Results
As a preliminary validation, we compared the semi-automatic algorithm results to manual
segmentations for four data sets (Table 1). A clinician performed the manual segmentations
by selecting points in 2D slices through the image rotated every 10° about an axis (xc,base,
nc,base) for each data set. We then computed the shortest Euclidean distances of the
manually segmented points to the filtered annulus. To reduce the effects of inter-subject size
variations, we also report a normalized distance in Table 1, which is a measure of the
distances in millimeters compared to the largest diameter, dmax, of the manually segmented
annulus. As an estimate of manual segmentation repeatability, Table 1 also reports a
comparison between two separate segmentations made by the same clinician on the same
data sets.

We tested the sensitivity of the algorithm to the user-provided center point by running the
algorithm 100 times on each data set where the center point, xc, was chosen randomly in a
region surrounding xc,base. Tests showed that the algorithm produced accurate results (i.e.
mean distance from the baseline segmentation of less than 2 mm) when |xc-xc,base|/ dmax ≤
15%.

4. Discussion
We have demonstrated the ability to segment the mitral annulus given only a single user-
specified point using a combination of graph-cut and active contour techniques. Recognizing
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the inherent difficulty in segmenting the annulus directly from 3DUS, we first constructed a
surface through the leaflets using a max-flow algorithm and novel thin tissue detector. A
unique snakes implementation, driven by projected information derived from the surface,
delineated a 2D annulus which was then projected onto the 3D surface to find the 3D
annulus shape. Previous methods use only a portion of the available information, often in the
form of 2D slices from the 3D volume. This often results in inaccuracies and a lack of
spatial coherence. The proposed algorithm integrates information from the 3D surroundings
of the annulus during segmentation. Results suggest that the method is accurate, with mean
difference from manual segmentation of 1.15±0.70 mm, which is comparable to the
repeatability of the manual segmentation; further work is planned to fully validate this
performance.

The only other 3D annulus segmentation algorithm known to the authors is the work by
Wolf et al. [7]. Their algorithm first segments the left atrium from 2D slices, given a user-
provided point. Assuming a position and orientation of the valve within the 3DUS volume,
they delineate the annulus in 2D slices by finding the location where the tissue thickness at
the segmented atrial border changes abruptly. A visual comparison to a manual
segmentation was made for a single case, however, quantitative results were not provided.
Their results showed a discontinuous segmentation with divergence from the manual
segmentation.

Conversely, we have shown that with only a single user-provided point (xc), our algorithm
can delineate the shape of the annulus as accurately as a clinician, using the same parameter
values for all subjects. A sensitivity study showed that accurate results are obtained when
the user chooses xc within a sphere with a diameter as large as 30% the size of the annulus.
This suggests that the algorithm could be made fully automatic by using a method such as
presented in [15], which automatically detects the left ventricular long axis and mitral valve
plane. The intersection of the axis and plane could be used to define xc.

There are several sources of robustness and efficiency in this algorithm. The max-flow
algorithm is an efficient and near-exact energy minimization method for graph-cuts [8],
well-suited for finding a surface through the mitral leaflets. Results can suffer if large
regions of the graph reside outside of the boundaries of the conical US data volume,
however, this problem only happens when the mitral valve is near the narrow top of the data
volume, and is easily remedied by reducing Rgraph. Also, if specifications for the location or
curvature of MVsurf are desired, the algorithm is fast enough that the graph construction
parameters (Rgraph, ω, and α) can easily be iterated until the desired results are obtained.

The multisnake (MS) construct and the design of the initialization and convergence system
(ICS) make the algorithm robust, and are necessary to overcome noise and unpredictable
anatomy. This differs from the usual scale-space approach used with snakes, which
initializes a single snake in a low-resolution environment, stabilizes the snake using the
image forces, and then proceeds to the next higher resolution image (e.g. [16]). While the
MS and ICS are more computationally intensive, the added benefit of redundancy, both
within each image scale and in proceeding through the different resolution images, makes
the algorithm robust and accurate for challenging ultrasound image segmentation.
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Figure 1. MVA segmentation algorithm flow chart
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Figure 2.
Corresponding views of a slice through a 3DUS volume showing the original intensity (left)
and the TTD (right). (LA: Left Atrium; LV: Left Ventricle; MVL: Mitral Valve Leaflets;
MVA: Mitral Valve Annulus)
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Figure 3. Example of cylindrical boundary for the graph (left) and a 2D representation of graph
position and orientation along with the source and sink nodes (right)
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Figure 4. (Left to Right) 2D view of MVsurf (black) and regions used to form PRJINT (white),
PRJINT, and PRJTTD
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Figure 5. Snake construction (left), and initialization and convergence system with multisnakes
(right)
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Figure 6. Comparison of a semi-automatically segmented MVA (solid line) to a manually
segmented MVA (points)
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