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Abstract
A new computational method to study within-host viral evolution is explored to better understand
the evolution and pathogenesis of viruses. Traditional phylogenetic tree methods are better suited
to study relationships between contemporaneous species, which appear as leaves of a phylogenetic
tree. However, viral sequences are often sampled serially from a single host. Consequently, data
may be available at the leaves as well as the internal nodes of a phylogenetic tree. Recombination
may further complicate the analysis. Such relationships are not easily expressed by traditional
phylogenetic methods. We propose a new algorithm, called MinPD, based on minimum pairwise
distances. Our algorithm uses multiple distance matrices and correlation rules to output a MinPD
tree or network. We test our algorithm using extensive simulations and apply it to a set of HIV
sequence data isolated from one patient over a period of ten years. The proposed visualization of
the phylogenetic tree\network further enhances the benefits of our methods.

1. Introduction
The processes involved in intra-host (within a single host or patient) and inter-host evolution
are strikingly different for retroviruses such as HIV [12]. In contrast to inter-host evolution,
intra-host evolution in HIV is characterized by high rates of evolution, and by strong
evidence of positive selection that favors mutations to help the pathogen evade the host
immune response. Therefore, intra-host evolution exhibits a strong temporal structure and
the positive selection often leads to the extinction of unfavorable lineages. Investigating
viral evolution within a single host or patient over a period of time provides a direct and
verifiable way to comprehend mutational changes that occur during the replication of a
genome over many generations. From the viewpoint of clinical and biomedical research,
investigating the intra-host viral evolution through serial sampling of the viral strains over a
period of time may lead to a better understanding of the progression of a disease in that
patient, or assist in the evaluation of drug therapies or vaccines for a disease. A recent study
performed a comprehensive analysis of serially-sampled HIV sequence data from nine
patients with data collected over a span of over ten years [19]. Adaptive evolution and the
strength of immune selection were investigated in another study with samples from 50
patients [22].

Traditional phylogenetic methods were conceived for the purpose of inferring the history of
a set of contemporaneous taxa. In such trees the taxa being analyzed appear at the leaves of
the tree. The ancestral sequences are usually unknown. A conflicting situation arises when
some of the sequences at the internal nodes are available, such as with serially-sampled viral
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sequences, but the tree-constructing program interprets all of them as contemporaneous taxa
[15]. Ren et al. pointed out that traditional phylogenetic methods do not account for the fact
that viral strains can branch, become extinct or revive (after a period of dormancy) between
the sampling time periods [13]. Furthermore, the trees resulting from applying the traditional
methods are hard to interpret and analyze (see discussion in Section 7). Prior work on
phylogeny of non-contemporaneous, serially-sampled sequences includes an algorithm
called sUPGMA, a modification of the UPGMA [1] and the work of Ren et al., who
modified the neighbor-joining method [13].

An unusually high rate of genetic recombination is yet another factor that sets intra-host
evolution of HIV (and other retroviruses) apart from the evolution of other organisms. In
this paper we present a distance-based algorithm (called MinPD) to infer evolutionary
relationships (including recombination) in serially-sampled sequence data. An important
feature of the algorithm is that it does not need the assumption of a molecular clock or an
explicit statistical model of evolution. Unlike methods based on maximum likelihood (ML)
or maximum parsimony (MP), our method is computationally efficient and can deal with a
large number of input sequences. Our method assigns ancestor relationships using minimum
pairwise distance without the use of multiple alignments. Ties are broken by resorting to
divergence information. Recombinant strains are detected using sequence fragment matrices,
correlations and distance rules. The algorithm MinPD was implemented in C. The accuracy
of the methods was assessed using extensive experimentation on both simulated data and on
real HIV sequence data from the HIV database. The simulated data included sequences at
the leaves as well as sequences at internal nodes of a phylogenetic tree. A critical feature of
the simulations is that it attempts to mimic the fact that, in reality, only a small random
sample of all the viral strains that may be present in a patient is actually sampled. This is
achieved by simulating a large number of sequences and discarding a large fraction of them.
Another contribution of this work is to show how to incorporate recombination into
longitudinal phylogenetic trees without losing any of its essential features and advantages.
The resulting phylogenetic networks (see Figure 4 for an example) make it convenient for a
biologist to draw useful conclusions. Our work is similar to the work of Ren et al., with the
significant added feature that it accounts for recombination.

2. Recombination
An unusually high rate of recombination is one of the evolutionary traits of RNA viruses.
During recombination, nucleotide sequences are exchanged among different RNA
molecules. Recombination in HIV occurs between two coencapsidated RNA genomes
during reverse transcription. During DNA synthesis the reverse transcriptase, which is prone
to errors, may switch from one strand to the other, either during the first (−) strand DNA
synthesis, or during the second (+) strand DNA synthesis, as part of the mechanism of strand
displacement assimilation [3]. If the two ancestral RNA genomes are different, we will call
them the donor strains or donor sequences, since the newly synthesized genome will contain
fragments of each of them, resulting in the creation of the so-called mosaic genes.
Recombination is an important mechanism for producing new genomes with selective
growth advantages, by moving functional parts of RNA molecules among different viral
strains. It plays a major role in contributing and maintaining genetic diversity in viral
populations. Phylogenetic methods that do not account for recombination can make
incorrect inferences in the presence of recombination [8, 17, 18]. It is therefore critical to
detect recombination. In recent years the development of new tools to model and test for
recombination have led to several studies that compare the different methods and assess
their accuracy [9, 23]. Methods such as bootscanning detect changes in phylogenetic
relationships to detect breakpoints and donors. In bootscanning, the alignment is broken into
sequential, overlapping segments (or windows) of 200–500 bases, which are then input to a
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program for phylogenetic analysis. Bootstrapped phylogenetic trees are built for each
segment, and finally the bootstrap value for placing the queried sequence with each of the
reference sequences/sequence groups is tabulated and plotted along the genome. High
bootstrap values indicate that the reference sequence in that window is a possible donor
sequence. Other approaches simply report a recombination rate without identifying
breakpoints or the donor strains.

A widely used visual tool for detecting recombination is Stuart Ray’s SimPlot, which uses
the bootscanning method [16] and the Maynard Chi-Square method [5] to reveal potential
breakpoint positions. This method requires as input in addition to the donor sequences, a
reference sequence that is assumed beforehand to have been generated by recombination. An
improvement on this method is VisRD, another visual detection method that does not
require the reference strain to be identified in advance [20]. The MinPD method, unlike the
bootscanning and VisRD methods, identifies recombinant strains, donors, and approximate
breakpoint positions, and does not require the intervention of the user. MinPD was explicitly
created to study viral quasispecies sampled at different time instances.

3. Evolution of Quasispecies
Viral species have an enormous capacity to adapt to a changing environment, which may
change depending on the host’s changing physical condition, immune response, and drug-
induced responses. The term quasispecies is applied to closely related genetic variants that
differ by small amounts and are affected as a group by natural selection. Virologists use the
term to describe the mutant viral strains living within a host. The concepts of quasipecies
theory were first introduced by Manfred Eigen with the purpose of describing the molecular
evolution of fast-replicating RNA genomes [2]. The evolutionary relationship of these
quasispecies over a period of time cannot be revealed using traditional phylogenetic
methods as these assume that all species are contemporaneous. Thus new methods are
needed to group the genetic variants and to describe their relationships over time.

Drummond and Rodrigo modified the conventional UPGMA method for analyzing serially-
sampled sequences [1]. The drawback of their method is that because it is based on the
UPGMA method it presupposes that the data has evolved at a constant rate. This work and
later improvements of Rambaut et al. (TipDate program) were further constrained by the
traditional tree style of handling contemporaneous data where the leaves correspond to the
input taxa [11], and thus do not pay tribute to the time-sequential nature of the data, making
ancestor-decendant relationships somewhat unclear. Ren et al. proposed a sequential linking
algorithm [13, 14], which is computationally inefficient since it is based on the maximum
likelihood method. A more efficient method based on the NJ method was proposed by
Ogishima et al. in which they were also able to estimate both neutral and selective adaptive
evolution patterns [7].

In one of the most comprehensive studies on the evolution of HIV sequences by
Shankarappa et al., samples from nine patients were isolated over several time points and
studied in relation to the disease progression [19]. The study showed a strong correlation
between the emergence of the syncytium-inducing (SI) X4 mutant phenotype and the rapid
decline of CD4+ T-cells and a more rapid disease progression. The work of Shankarappa et
al. helped to raise a host of questions that are of practical significance with regard to
understanding HIV evolution and its relationship to AIDS symptoms.

We devised MinPD as a tree/network-constructing tool to study the evolution of viral
quasispecies and to respond to a myriad of questions that may shed light on the progression
of the AIDS disease, answering questions such as: (1) Which initial viral strains did the X4
phenotype mutants originate from? (2) Which of the initial strains became extinct and when
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did this happen? (3) Which strains showed positive selection, proliferating with descendants
surviving over extended periods of time? (4) When did most recombinant strains appear?
Traditional phylogenetic techniques have severe limitations in addressing such questions.

Data from patient number 2 used in the paper by Shankarappa et al. [19] is also available in
the Los Alamos database and has been used as a typical example throughout this paper.
Henceforth in this paper, this patient will be referred to as patient S.

4. The MinPD Tree/Network
The MinPD algorithm is based on the concept of minimum pairwise distance. It assumes that
an ancestor of any given taxa must have been sampled at one of the previous time points and
that the distance to the closest ancestor must be the minimum among all distances to taxa
sampled during all prior time points. It utilizes the same criteria to find minimum distance
fragments to all other sequences to identify possible recombinant strains. It also assumes
that pairwise alignments give less distorted evolutionary distances than do multiple
alignments

4.1. The Multiple Alignment Problem
Phylogenetic analysis methods ranging from tree-building methods to recombination
detection techniques such as bootscanning, employ (as an initial step) a multiple sequence
alignment of all input sequences. Multiple alignments of sequences of different lengths must
necessarily add gaps, which often lead to loss of information and gap scoring artifacts,
which in turn distort the distance computations. In existing distance-based phylogenetic
methods, all distances are computed using this multiple alignment, including the methods
that are said to use “pairwise distances.”

Figure 1 shows a multiple alignment of four sequences and also two pairwise alignments.
The gap columns are ignored and do not count as mismatches. However, the pairwise
distances in the two alignments are different. What is striking in the example is that the
distances between two pairs of sequences exhibited a different order in the multiple
alignment as compared to the corresponding distances in the pairwise alignments. It is for
the above reasons, that we use pairwise alignments that offer a more accurate distance
measure.

4.2. The Algorithm
The inputs to the algorithm are: s, a set of sequences with associated time periods, k, the
number of fragments, and t, the threshold for the Pearson Correlation Coefficient. We use
the Needleman-Wunsch algorithm to compute an alignment between each pair of sequences.
For computing pairwise distances we use the Tamura-Nei Model (TN93) of nucleotide
substitution with Gamma-distances [6]. Henceforth, whenever we refer to distance in this
text, we mean the TN93 distance, and calculate this distance from a pair of aligned
sequences that did not undergo a multiple alignment operation. Finally, we also assume that
if the distances indicate two possible candidates for the closest ancestor, then ties are broken
using divergence values.

For recombination detection we will assume that there is at most one recombination or
crossover point for any recombination between 2 sequences, limiting the number of donor
strains to two. The MinPD algorithm is given below.

Algorithm MinPD
1. For each pair of sequences si and sj do
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a. Pairwise align them and compute the distance Dist(si,sj) between them.

b. Partition si and sj into k fragments and compute the distance vector
DistVec(si,sj) of the k distances between the k pairs of aligned fragments.
Let its ℓth component be denoted by Dist(si,sj,ℓ), the distance between the
ℓth fragments of si and sj.

2. For each sequence si do

a. if (si passes the test described below for being a recombinant strain) then
identify two donor strains and choose them as ancestors of si.

b. else choose as ancestor of si the sequence at minimum distance from it
among sequences sampled at all previous time periods. Break ties using
divergence values.

3. For each set of sequences with the same chosen ancestor, construct a NJ tree and
connect the root of the NJ tree to the chosen ancestor.

Note that in Step 2a above, any method can be used to test for recombination or to identify
the donor strains. However, below we propose a uniform distance-based method to achieve
the same goal. Also, the divergence between two sequences used in step 2b denoted by
Div(x,y) is the same as that used in many neighbor joining methods and is given by:

where r(x) = Σj distance(x,sj) is the net total divergence of x to all other sequences, and n is
the number of sequences being considered.

MinPD Recombination Test for sequence s
1. For each of the k fragments of s, select the sequence si whose ith fragment has

minimum distance to the ith fragment of s. Put all selected sequences in a list called
Candidates. These sequences are candidates for being donors if s is a recombinant
strain.

2. From the list Candidates, let minSeq be the sequence with minimum overall
distance to s.

3. For each pair of sequences si and sj from Candidates do

a. if the Pearson Correlation Coefficient (PCC) between their distance
vectors is above a distance threshold, then discard the sequence si or sj
with the higher overall distance.

4. For all sequences in Candidates, discard those that have a fragment with minimum
distance in the middle of the sequence, and not at either end.

5. For each sequence si ≠ minSeq, calculate si_dom = Σ (Dist(minSeq,s,i) −
Dist(si,s,i)) in all fragments i where si has the minimum distance to the
corresponding fragment in s. If si_dom is below a distance threshold, then discard
si.

6. If exactly two sequences are left undiscarded, then report s as being recombinant
with the two sequences as potential donors.
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4.3. Fragment and Fragment Distances
The objective of using minimum fragment distances in the MinPD algorithm was to reduce
the number of possible candidates for being recombinant donors for a given sequence. For
most existing tools that detect recombinant sequences, a good selection of possible donors is
critical and improves the chances of getting clear recombination signals. Consider, for
example, sequence number 028.415, which was a sequence of length 1000 nucleotides,
generated using Treevolve as part of the data sets for our experiments. From the data, we
knew beforehand that 028.415 was a result of the recombination of the donor strains
008.384 and 002.97 at breakpoint 469. SimPlot, which uses the bootscanning technique,
requires a minimum of 4 and a maximum of 26 sequences to detect recombination.
However, as illustrated in the top two bootscanning graphs in Figure 2, SimPlot was able to
correctly identify the recombinants when sequence 004.440 was the fourth sequence used,
but not when 001.1 was used.

We tried two sets of experiments, one where each sequence was divided into 4 fragments
and the other where each was divided into 8 fragments. It was necessary to fine tune the
threshold values used in the algorithm before we were able to get comparable performance
in the two sets of experiments. The bottom of Figure 2 shows two graphs, one for the 4
fragment case, and one for the 8 fragment case. Each graph represents the components of the
distance vector (with respect to reference sequence 028.415) of the candidate sequences
selected in Step 2 of the recombination test for sequence 028.415. Thus only the sequences
that have at least one fragment at a minimum distance from the corresponding fragment of
028.415 are represented.

The recombination test described in the MinPD algorithm above was able to successfully
identify the recombination donors and the fragment within which the breakpoint may be
located. Note that our algorithm works under the assumption that there is at most one
recombination breakpoint. This is perhaps justified given that HIV averages about three
recombination events for an entire genome and that new strains are produced only if the
recombining strains are genotypically distinct on both sides of the breakpoint.

5. Experiments with Simulated Data
To test the MinPD algorithm, two synthetic data collections were generated, the first with
recombination, and the second without. The first collection was generated using
SeqGen1.2.5., and was enhanced by the twister randomization function of SeqGen 1.2.7.

Each of the 100 data sets in this collection contained 1023 sequences from the leaves and
internal nodes of a template tree, out of which an average of 32 were randomly chosen (to
simulate sampling from a population) and was input to the MinPD algorithm. The results
seen in Table 1 show that more than 90% of the time, MinPD chose the correct closest
ancestor (referred to in the table as a Match). A subtree relative (a direct descendant of the
correct closest ancestor) was chosen about 9% of the time. All other outcomes were counted
as errors. The errors included cases where a grand ancestor (ancestor of actual closest
ancestor) was picked, although multiple mutations on the same location during evolution can
lead to “backward” substitutions and to a grand ancestor being genetically closer to the
queried sequence. The overall error rate was less than 0.5%. Note that picking a subtree
relative is not classified as an outright “error” because we consider it as a minor deviation
from the correct relationship.

The second data collection consisted of 100 data sets each containing about 500 sequences
(or slightly more, depending on how many recombination events occur) generated using the
software package Treevolve version 1.3. Treevolve was modified to include the Twister
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randomization function of SeqGen 1.2.7., and to output sequences at the internal nodes.
Treevolve evolves a sequence using Hudson’s coalescent method with recombination [4].
As before, to mimic the actual sampling from large populations, an average of 45 of the 500
or more sequences were randomly chosen for input to the MinPD algorithm. The sets of data
were simulated under the HKY model of evolution with the alpha parameter of the gamma
distribution set to 0.5. A transition/transversion ratio of 4 was chosen and the base
frequencies were set to A=0.22, C=0.18, G=0.40, and T=0.2. The results of our experiments
on the simulated data are shown in the table below. In order to get realistic data, a mutation
rate of 0.5×10−4 and a population growth rate of 0.75×10−4 were selected. The
recombination rate of 0.1×10−7 was selected since for the given mutation rate, higher
recombination rates gave enormously long lineages. This is because although coalescent
events result in a reduction of the number of lineages by one, recombination events cause an
increase.

Table 2 shows the results of these experiments. The labels on the columns are explained
below. In the presence of recombination events, the ability of the MinPD algorithm to
correctly establish phylogenetic relationship among the input sequences is adversely
affected. Even on non-recombinant sequences, the percentage of correct predictions dropped
from over 90% (Table 1) to under 75% (Non Rec Matches) in Table 2. In each data set,
about 3–5% (Rec Count/Total Count) of the strains sampled were recombinant strains. Of
these, about 65% (Rec Detected) were correctly detected as being recombinant. The donors
were correctly identified in over 50% (Rec Matches) of those cases. In about 15% (Rec
Errors) of the cases, the program identified the donors incorrectly. In the remaining 31%
(Rec Subtree Relative) of the cases, a subtree relative was determined to be the donor. Of
the over 4500 sequences (Total Count) in the 4-fragment (#Frag) run, only 39 non-
recombinant sequences were reported as being recombinant sequences by the MinPD
program, accounting for a 1% false positive rate (False Pos).

The results were somewhat weaker when the sequences were divided into 8 fragments
instead of 4, which required additional fine-tuning of the thresholds chosen for the program.
Note that when the sequences were divided into 8 fragments, there were more potential
candidates for the choice of donors, which complicates the selection of correct donors. The
threshold for PCC was set to values between 0.67 to 0.9 and the threshold for si_dom, was
set to the average of the distances from si scaled by the quantity n/k, where k is the number
of fragments, and n the number of fragments where si has a minimum distance. We
conjecture that more fine-tuning can further improve the program’s sensitivity, and that
sliding-window methods could improve the specificity.

It would be reasonable to conjecture that detecting recombination signals is harder with
shorter sequences, although this was not observed in our experiments with sequences of
length 600. It is possible that this is balanced out by the fact that there is a corresponding
lower probability of recombination events in smaller sequences.

6. Experiments with Serially-sampled HIV Sequence Data
The final evaluation of the MinPD algorithm was performed by constructing the
phylogenetic network for HIV sequence data from patients available from the Los Alamos
HIV database. The viral strains were sampled and sequenced for a single patient (patient S)
at month numbers 5, 12, 20, 30, 40, 51, 61, 68, 73, 80, 85, 91, 103, and 126. The resulting
“longitudinal” phylogenetic network is shown in Figure 4. Each sequence is labeled with the
month number and an identification number. There is no reasonable way to evaluate the
correctness of the resulting network. Therefore, we focus our discussions on how well it
correlates with the emergence of X4 strains (see below), and on how the resulting network
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makes it convenient to draw a variety of conclusions. It is worthwhile to compare the
difficulty of drawing similar conclusions from the ML tree generated for the same data, as
shown in Figure 3 below. The longitudinal network shown in Figure 4 is drawn from left to
right and requires that sequences sampled at the same time be vertically aligned. This does
not mean that all sequences undergo the same amount of evolution from the root sequence.
On the contrary every link between a parent and child node consists of straight-line
segments. Horizontal thick lines are a measure of the amount of evolutionary changes that
take place between the sequences. Horizontal dashed lines are added merely to achieve the
vertical alignment of the nodes corresponding to contemporaneous sequences. The only
purpose of vertical lines is to ensure the correct connectivity.

All sequences marked with a red “x” have a lysine (K) or arginine (R) at position 320, a
mutation that is predictive of the X4 phenotype. With the help of immunological data, it was
shown by Shankarappa et al. that patient S’s CD4+ and CD3+ T-cell numbers fell rapidly
during the emergence of X4 genotypic strains [19]. The longitudinal network makes it
convenient to understand how widespread the X4 genotype is in each sampling period.

Furthermore, it is interesting to note that patient S was prescribed antiretroviral drugs called
zidovudine (ZDV) and stavudine (d4T) before the 103 months sampling period, and a few
months later was prescribed lamivudine (3TC). The administering of this drug therapy
coincides with a decrease in the X4 genotypic strains [19], as is easily observed in the
MinPD network in Figure 4.

Before the large-scale emergence of the X4 genotype (up to 51 months), the MinPD network
suggests that three groups of genetically similar quasispecies sequences were present in the
population. One group became extinct at 51 months, while the other two groups each
contributed a sequence, 051.19 and 051.16, that recombined to create strain 061.30, the
possible closest ancestor of the large X4 quasispecies that proliferated in the ensuing years.

In the second half of the network corresponding to time periods 61 to 126 months, only two
groups of quasispecies, linked by recombinant sequence 073.12, were identified by MinPD,
one of the groups becoming extinct probably at the onset of antiretroviral therapy with
091.19 as its last sampled sequence, and the other group formed by descendants from
recombinant sequence 061.30, giving rise to a mixed population of X4 and non-X4
genotypic strains. It is also interesting to note that the first X4 mutations that appear at 30
months have a relatively large genetic distance to its ancestor in comparison to the
contemporaneous strains, suggesting a higher rate of mutations for those particular strains. It
should be noted that the above conclusions are made more convenient by the way the
MinPD network is presented.

To make the comparisons more clear, we show the ML tree generated for the same data. We
aligned 65 sequences from the first 61 months using ClustalX. Subsequently we did a
heuristic search for the ML tree using PAUP (version 4b10) [21]. If the horizontal axis is to
be thought of as time, then the ML tree shown in Figure 3 exhibits several anomalies with
strain 051.19 (sampled at 51 months) appearing after strain 061.31 (sampled at 61 months),
and strain 030.01 appearing after strain 051.51.

Furthermore recombinant data cannot be identified in a traditional phylogenetic tree, but for
the fact that it often has very long branches. In the MinPD network, recombinant sequences
are linked to their donor ancestors by blue lines and the breakpoint position is added left and
next to the recombinant sequence. The recombination results output by MinPD were studied
in detail using graph analysis, and only recombination relationships with the strongest
signals were added to the network. Sequences with weaker recombinant signals were
underlined in blue. A 2002 study of in vitro HIV-1 sequences and recombination site
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analysis suggested that the C2 env domain was a particularly “hot” region for recombination
[10]. The data of patient S does not contain the entire C2 region but includes the regions V3,
C3, V4, C4, and V5, all of which were also found to have several recombination sites. Upon
inspection of the MinPD network it can be observed that most recombinant sequences and
signals were detected at the 61(2) and 68(2) months - these seems to correlate with the X4
emergence. At 85(3) months there is another surge in recombination signals. The
recombination signals are markedly stronger for the sequences with the X4 genotype than
for those without which corresponds with the higher genetic diversity of those time periods
[19].

7. Conclusions
In this paper we have described a new method to study the phylogenetic relationship of
serially-sampled quasispecies and to visualize the relationships. We explained our decision
to avoid multiple alignments in order to get better distance measures. We presented results
of extensive computer simulations in which we mimic random sampling of sequences. We
also discussed how to interpret the results of our algorithm in the context of viral disease
progression and showed how to incorporate the information in the visualization of the tree.
We studied a method to detect recombination in serially-sampled data and presented the
results of simulation experiments. Our method is especially helpful in selecting putative
recombinant sequences among a large set of sequences. At this point the selected sequences
may be analyzed using another tool to find exact breakpoints and detect more than one
crossover, but in the cases were the sequence length is short the presence of more than one
crossovers is more seldom and our method will return good results. Applying our method on
simulated recombinant data returned a 65% success rate and few false positives.

Several issues about the MinPD tree remain to be investigated. Is it possible to improve the
recombination detection by a better choice of threshold values and/or distance rules, or by
plugging in other recombination methods? The divergence tiebreaker was developed for
selecting one common ancestor between two or more possible ancestors with identical
distances to the reference sequence. Can a tiebreaker be developed to choose from two or
more potential donor sequences?

What similar trends will emerge when we apply the MinPD algorithm to all the nine patient
data sets used in the analysis by Shankarappa et al.? The MinPD tree and underlying data
invites a more thorough evaluation of the information contained in serially-sampled
quasispecies data.
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Figure 1.
The problem with multiple alignment
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Figure 2.
TOP: SimPlot bootscanning graphs for reference sequence 028.415, but with different
“donor” sequences. Upon visual inspection, recombination is clear in the left graph with
breakpoint somewhere in the middle of the sequence; in the right graph the recombination
signal is lost due to a bad selection of putative donor sequences. BOTTOM: line charts of
MinPD distances vectors for reference sequence 028.415 with 4 and 8 fragments
respectively.
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Figure 3.
Maximum Likelihood (ML) tree of serially-sampled HIV sequence data from patient S.
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Figure 4.
MinPD Tree of Patient S. Solid lines indicate distances, while dotted lines serve to extend
the linking relationships. Each sequence is labeled with the month number and an
identification number. Sequences with a mutation predictive of the X4 phenotype are written
in red font and also marked with a red “x”. Blue dashed lines are used to link recombinant
sequences with their predicted donor sequences. The small numbers in blue next to branch
points in the tree are the predicted (approximate) recombination breakpoint positions.
Sequences with weaker recombinant signals are underlined in blue, but are not linked to
their putative donor sequences. Note that the sequences were divided into 8 and 4 fragments
for the recombination analysis.
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