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Zolmitriptan is a serotonin 5-HT1B/1D receptor agonist that is an effective and well-tolerated drug for migraine treatment. In a
human positron emission tomography study, [11C]zolmitriptan crossed the blood-brain barrier but no clear pattern of regional
uptake was discernable. The objective of this study was to map the binding of [11C]zolmitriptan in Rhesus monkey brain using
whole hemisphere in vitro autoradiography with [11C]zolmitriptan as a radioligand. In saturation studies, [11C]zolmitriptan
showed specific (90%) binding to a population of high-affinity binding sites (Kd 0.95–5.06 nM). There was regional distribution
of binding sites with the highest density in the ventral pallidum, followed by the external globus pallidus, substantia nigra, visual
cortex, and nucleus accumbens. In competitive binding studies with 5-HT1 receptor antagonists, [11C]zolmitriptan binding was
blocked by selective 5-HT1B and 5-HT1D ligands in all target areas. There was no appreciable change in binding with the addition
of a 5-HT1A receptor antagonist.

1. Introduction

Triptans act as 5-hydroxytryptamine, 5-HT1B and 5-HT1D,
receptors agonists, and in some cases also activate 5-HT1F

receptors [1]. Zolmitriptan is a 5-HT1B/1D receptor agonist,
which has actions at the peripheral [2] and central ends of the
trigeminovascular system [3–5]. Zolmitriptan is an effective
and well-tolerated acute treatment of migraine [6], with oral
and intranasal formulations [7]. Triptans are believed to
exert an antimigraine action by activating 5-HT1 receptors in
vascular structures of the brain and meninges [8, 9]. Besides
these vascular actions, zolmitriptan has been suggested to act
at the trigeminal nucleus and higher pain centers of the brain
[4, 5, 10, 11].

In a previous study using [carbonyl-11C]zolmitriptan
([11C]zolmitriptan), positron emission tomography (PET)
imaging was used to describe a rapid uptake of [11C]zol-
mitriptan into the brain through the blood-brain barrier
(BBB) [12]. Zolmitriptan was found in all brain areas studied

at concentrations compatible with pharmacological activity.
However, no clear difference in the regional uptake of
[11C]zolmitriptan, correlating with the known distribution
of 5-HT1B/1D receptors, was seen.

Autoradiography on whole-hemisphere brain cryosec-
tions provides images with high resolution and is therefore
a suitable technique for the detailed description of receptor
binding sites [13]. Such autoradiographic images can also
serve as high resolution anatomical correlates for lower res-
olution PET and single photon emission computed tomog-
raphy receptor studies. In the cat brain, [3H]sumatriptan
[14] and [3H]zolmitriptan [5] bound to the nucleus tractus
solitarius, to the trigeminal nucleus caudalis in the brain-
stem, and in the dorsal horns of the C1 and C2 cervical
spinal cord. Competition studies excluded binding to 5-HT1A

and 5-HT1F and confirmed binding to 5-HT1B and 5-HT1D

receptors, although the relative contribution of these two
receptor subtypes to the total binding of [3H]zolmitriptan
was not elucidated. In the postmortem human brain stem
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Figure 1: Preparation of [carbonyl-11C]zolmitriptan.

and spinal cord, [3H]sumatriptan showed a distribution of
high-density binding similar to that in the cat. The substantia
nigra and layer V of the frontal cortex showed high specific
binding, followed by the globus pallidus interna and externa
[15].

The aim of the present study was to map the binding
sites of [11C]zolmitriptan in the Rhesus monkey brain, and
to characterize the regional distribution of zolmitriptan-
binding 5-HT1 receptor subtypes. It has been suggested that
5-HT1B receptors predominate over 5-HT1D receptors in
the human brain [16]. Selective ligands are now available
to distinguish between 5-HT1 receptor subtypes. Here we
have used WAY-100635, SB224289, and BRL15572 to explore
differential binding of [11C]zolmitriptan to 5-HT1A, 5-HT1B

and 5-HT1D receptors, respectively.

2. Methods

2.1. Chemicals

2.1.1. Zolmitriptan. Zolmitriptan [(S)-4-[[3-[2-(dimeth-
ylamino)ethyl]-1Hindol-5-yl]methyl]-2-oxazolidinone] was
provided by AstraZeneca (Alderly Park, UK). [Carbonyl-
11C]zolmitriptan ([11C]zolmitriptan) was synthesized ac-
cording to a standard manufacturing procedure developed
at Uppsala University. [11C]carbon dioxide was produced by
irradiation of nitrogen gas by 17 MeV protons from a Scan-
ditronix MC-17 cyclotron. The [11C]carbon dioxide was
converted to [11C]carbon monoxide and used in a selenium
mediated carbonylation reaction in an autoclave [17] accord-
ing to Figure 1. After chromatographic purification the pro-
duct was dissolved in saline (NaCl 9 mg/mL)/99.5% EtOH,
90/10 v/v.

2.1.2. WAY 100635. WAY 100635 [N-(2-(4-(2-methoxy-
phenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohex-ane-
carboxamide trichloride] (Sigma-Aldrich, St Louis, USA).
[carbonyl- 11C]WAY 100635 ([11C]WAY) was synthesized as
previously described [18].

2.1.3. SB224289. SB224289 [1′-Methyl-5-[[2′-methyl-4′-(5-
methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,
7-tetrahydrospiro[furo[2,3-f]indole-3,4′-piperidine hydro-
chloride], Tocris Cookson Ltd (Bio Nuclear AB, Brom-
ma, Sweden). SB224289 is a selective 5-HT1B receptor antag-
onist (pKi = 8.2) that displays greater than 60-fold selectivity
over 5-HT1D, 5-HT1A, 5-HT1E, 5-HT1F, 5-HT2A and 5-HT2C

receptors in radioligand binding and functional assays (ac-
cording to the supplier). SB224289 is centrally active follow-
ing oral administration in vivo.

2.1.4. BRL15572. BRL15572 [(3-[4-(4-Chlorophenyl)pip-
erazin-1-yl]-1,1-diphenyl-2-propanol hydrochloride], Tocris
Cookson Ltd (Bio Nuclear AB, Bromma, Sweden). BRL15572
is a selective h5-HT1D antagonist that displays 60-fold se-
lectivity over 5-HT1B and exhibits little or no affinity for a
range of other receptor types (according to the supplier).

2.2. Tissue. Brain tissue specimens from Rhesus monkeys
(Macaca mulatta) were stored frozen at −70◦C. The tissue
specimen comprised whole brain hemispheres (right and
left), including the cerebrum, cerebellum, and mesencepha-
lon. Coronal cryostat sections (30 μm) from the brain hemi-
spheres were mounted on glass slides and air-dried at room
temperature. A total of 120 tissue sections (each section sep-
arated by 0.5 mm) were used for the detection of zolmitrip-
tan binding. The slides were stored at −20◦C until use.

2.3. Autoradiography. Tissue sections were first pre-incu-
bated in a Tris-buffer (50 mM Tris-HCl buffer pH 7.4,
120 mM NaCl, 5 mM KCl) for 10 minutes at room tempera-
ture. The incubations were performed at room temperature
in the Tris-buffer with 2 mM CaCl2, 1 mM MgCl2, 0.01%
ascorbate, 10 μM pargyline, and with [11C]zolmitriptan.
Concentrations of [11C]zolmitriptan and [11C]WAY were
2.5–3 nM for studies of regional distribution and 0.1–30 nM
of [11C]zolmitriptan for estimations of Bmax and Kd.

For competition of radioligand binding the following
compounds were used: zolmitriptan, serotonin, WAY100635,
SB224289, and BRL15572. Incubations with the blocking
agents were done at concentrations of 0.01, 0.1, 1, and 10 μM.
After radiotracer incubation, tissue slides were rinsed in
Tris-buffer (3 × 3 minutes), carefully dried at 37◦C, and
placed on phosphor image plates (Molecular Dynamics,
USA) together with reference samples (20 μL aliquots taken
from the incubation buffer) for a minimum of 40 minutes
exposure, and scanned in a Phosphor Imager Model 400S
(Molecular Dynamics, USA).

2.4. Anatomical Localization of Binding Sites and Quantifi-
cation of [11C]zolmitriptan Binding. The autoradiographic
images were digitized and superimposed on pictures of the
corresponding tissue section by using image analysis (Adobe
PhotoShop) in order to correlate the areas of tracer binding
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Table 1: The estimated Bmax (receptor density) and Kd (affinity of
[11C]zolmitriptan) in different brain regions of the Rhesus monkey.

Brain region
Bmax (pmol/g wet tissue) Kd (nM)

Mean SE Mean SE

Ventral pallidum 17.9 2.6 2.2 1.1

External globus pallidus 12.2 1.4 1.3 0.6

Substantia nigra 11.4 1.6 1.0 0.6

Nucleus accumbens 9.5 0.6 1.8 0.4

Visual cortex 9.8 1.5 1.1 0.7

Frontal cortex 5.2 0.8 5.1 2.1

Cerebellum 1.6 0.4 4.9 3.4

SE: standard error.

to anatomical structures. Evaluation of the Rhesus monkey
brain anatomy was done according to Paxinos et al. [19].
The specific [11C]zolmitriptan binding was calculated as
the difference between total and nonspecific binding and
expressed in pmol/g wet tissue.

3. Results

3.1. Pharmacology. In all brain areas, [11C]zolmitriptan
binding was completely inhibited by the addition of high
concentration (10 μM) serotonin at 1 nM tracer concen-
tration and was ≥90% inhibited at 3 nM tracer. At this
tracer concentration, 0.1 μM zolmitriptan blocked ≥90%
tracer binding (data not shown). The correlation between
incubation time and specific tracer binding was analyzed
and found to reach a plateau value at 30 minutes using
30 nM of [11C]zolmitriptan. Extending the incubation time
further did not result in increased specific [11C]zolmitriptan
binding. By using serotonin and unlabeled zolmitriptan to
inhibit binding of [11C]zolmitriptan to brain slices, its targets
were proven to be serotonin receptors with specificity for
zolmitriptan. Less than 10% of the binding was nonspecific
(data not shown).

A semi-quantitative saturation analysis indicated the
lowest Kd in the substantia nigra (1.0 nM), followed by the
visual cortex (1.1 nM), the external globus pallidus (1.3 nM),
the nucleus accumbens (1.8 nM), the ventral pallidum
(2.2 nM), the cerebellum (4.9 nM), and the frontal cortex
(5.1 nM) (Table 1).

3.2. Distribution of [11C]Zolmitriptan Binding. A regional
distribution of [11C]zolmitriptan binding was detected in
the Rhesus monkey brain tissue sections, with several high-
density binding sites within well-defined anatomical areas
(Figure 2). The highest densities of tracer binding were
found in (i) the ventral pallidum (17.9 ± 2.6 pmol/g wet
tissue), i.e. those parts of the globus pallidus located inferior
to the anterior commissure, (ii) in the globus pallidus
externa (12.2 ± 1.4 pmol/g wet tissue) and interna, and (iii)
in the substantia nigra pars compacta and pars reticulata
(11.4 ± 1.6 pmol/g wet tissue) (Figure 2). In addition, high-
density binding was located in the visual cortex (9.8 ±
1.5 pmol/g wet tissue), including the calcarine fissure and
the lateral cortex of the occipital pole (Figure 2) and in the

(a)

(b)

(c)

(d)

Figure 2: Color-coded autoradiograms showing Rhesus monkey
whole-hemisphere autoradiography using [11C]zolmitriptan. (a)
Schematic drawings of the Rhesus monkey brain according to
Paxinos et al. [19] to show the anterior-posterior position of
the selected coronal tissue sections; (b) corresponding tissue sec-
tions; (c) autoradiograms; (d) superimposed autoradiograms and
corresponding tissue sections for better anatomical localization of
[11C]zolmitriptan binding.

nucleus accumbens (9.5 ± 0.6 pmol/g wet tissue), that is,
where the head of the caudate and the anterior portion of
the putamen meet just lateral to the septum pellucidum
(Figure 3). [11C]Zolmitriptan binding was low in the frontal
cortex (5.2 ± 0.8 pmol/g wet tissue) and virtually absent in
the cerebellum (1.6±0.4 pmol/g wet tissue). The distribution
and the density of tracer binding were highly consistent in
the 8 whole-hemisphere tissue samples used for this study.
Neither the pons nor the medulla oblongata was included in
the brain tissue specimen used for this study and potential
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Figure 3: Color-coded autoradiograms of [11C]zolmitriptan (top)
and [11C]WAY 100635 (bottom) on consecutive brain sections,
comparing the distribution of binding sites for the respective tracer.
Numbers identify sections where strong [11C]zolmitriptan binding
is observed. (1) Nucleus accumbens, (2) Ventral pallidum and
external globus pallidus (3) Substantia nigra, and (4) Visual cortex.
Note the minimal overlap of tracer binding sites.

tracer binding to these parts of the brain stem was not ex-
plored.

3.3. Comparing Distribution of [11C]Zolmitriptan and
[11C]WAY-100635 Binding Sites. High-density binding of
[11C]WAY-100635 was present in most neocortical areas of
the Rhesus monkey brain, with lower levels in the occip-
ital cortex. The basal ganglia (nucleus caudatus, putamen,
pallidum) and thalamus were virtually devoid of 5-HT1A

receptor binding (Figure 2). When comparing the distribu-
tion of binding sites for [11C]zolmitriptan and [11C]WAY-
100635 on consecutive tissue sections, there was very limited
overlap of binding sites. Anatomical areas with high-density
binding of [11C]WAY-100635 had no or very low levels of
[11C]zolmitriptan binding and vice versa. While there was
some overlap of tracer binding in the neocortex, the visual
cortex of the occipital lobe showed exclusive [11C]zolmit-
riptan binding. Very low binding was obtained in the
cerebellum with either tracer, indicating that the cerebellar
cortex was virtually devoid of these binding sites (Figure 2).
Competitive binding with WAY 100635 reduced [11C]zolmit-
riptan binding in the substantia nigra and the visual cortex
by approximately 20% at 1.0 μM concentration, while tracer
binding to other brain areas tested was unaffected (Table 1).

3.4. Distribution of 5-HT1B and 5-HT1D Receptors in the
Rhesus Monkey Brain. Differential receptor binding of
[11C]zolmitriptan was explored (Table 2). The selective 5-
HT1B receptor antagonist SB224289 blocked 50–80% of
[11C]zolmitriptan binding at a 1 μM concentration. [11C]zol-
mitriptan binding was reduced by 70–80% in the substantia
nigra, the external globus pallidus and the visual cortex,
and by approximately 50% in the nucleus accumbens and
the frontal cortex. In contrast, selective 5-HT1D antagonist
BRL15572 had much less of an effect in all areas tested, block-
ing≤25% of [11C]zolmitriptan binding at a 1 μM concentra-
tion (Table 2).

Table 2: Displacement of [11C]zolmitriptan binding in the nucleus
accumbens (NcA), globus pallidus externa (GPE), substantia nigra
(SN), visual cortex (VC), and frontal cortex (FC) by selective 5-hy-
droxytriptamine (HT)1 receptor antagonists at 1 μM concentration.
The numbers represent the percentage of receptor displacement
compared to control sections.

Brain region
5-HT1A 5-HT1B 5-HT1D

Mean SE Mean SE Mean SE

NcA 0 16.0 44 3.0 3 1.0

GPE 0 11.5 67 1.0 12 7.5

SN 22 13.0 79 0.5 9 1.5

VC 18 11.3 73 2.0 25 12.1

FC 0 3.0 50 9.5 3 9.0

SE: standard error.

4. Discussion

The distribution of [11C]zolmitriptan binding sites in the
Rhesus monkey brain was consistent with previously report-
ed distribution of 5-HT1B and 5-HT1D receptors in the post-
mortem human brain, using whole-hemisphere autoradiog-
raphy and the radioligand [3H]GR 125743 [16]. Similar to
[3H]GR 125743, [11C]zolmitriptan binding was highest in
the substantia nigra and the globus pallidus. Lower levels
were detected in the striatum, with the highest densities
in the ventromedial parts. The medial occipital cortex was
markedly more labeled compared to the rest of the cerebral
cortex, whereas binding densities were very low in the cere-
bellar cortex and in the thalamus. The lower brain stem and
spinal cord were not included in the study, while no infor-
mation was gained on [11C]zolmitriptan binding to the
raphe nuclei and trigeminal spinal nuclei.

Previous studies have localised 5-HT1B receptors on sero-
tonergic and nonserotonergic neurons, acting as presynaptic
auto-and heteroreceptors, respectively, putatively regulating
neurotransmitter release [20–22]. 5-HT1B receptor mRNA
has been detected in raphe nuclei, striatum, cerebellum,
hippocampus, entorhinal and cingulated cortex, subthalamic
nucleus, and nucleus accumbens, but not in the substantia
nigra or globus pallidus [23–28]. Autoradiographic visual-
ization of 5-HT1B receptors was found in partly different
areas, including dense packing in ventral pallidum, globus
pallidus, substantia nigra, dorsal subiculum and moderate
dense packing in cerebral cortex, molecular layer of the
hippocampus, entopeduncular nucleus, superficial gray layer
of the superior colliculus, caudate putamen, and deep
nuclei of the cerebellum [29–33]. This mismatch between
synthesis and localization is explained by hypothesizing that
this receptor is synthesized at a different place (cell body)
and transported from there to axon terminals, both in
serotonergic and nonserotonergic neurons [34].

Similar to 5-HT1B receptors, binding sites attributed to
the 5-HT1D receptor are present in globus pallidus, substan-
tia nigra, caudate and putamen, hippocampus, and cerebral
cortex., whereas 5-HT1D receptor mRNA is expressed at low
levels in the basal ganglia, dorsal raphe nucleus, and locus
ceruleus, indicative of the 5-HT1D receptor being located
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predominantly on axon terminals of both serotonergic and
nonserotonergic neurons [35].

New data point to a role of the basal ganglia in migraine.
Functional neuroimaging studies have revealed that the sub-
stantia nigra (SN) together with the red nucleus (RN) and
the occipital cortex (OC) is activated during the attack [36].

Autoradiographic studies of [3H]sumatriptan (5-HT1B,
5-HT1D, 5-HT1F receptors) and of [3H]GR 125743 (5-HT1B

and 5-HT1D receptors) in the human brain [16, 37–39] all
showed the highest density of binding sites in the visual
cortex, substantia nigra, and medial globus pallidus, with the
5-HT1B receptor being the most abundant receptor subtype
in the SN and GP [39]. All five regions tested for differential
binding of [11C]zolmitriptan to 5-HT1B or 5-HT1D receptors
(Table 2), showed 5-HT1B binding to be most abundant,
while 5-HT1D receptor binding was increased 2-8-fold in the
occipital cortex versus the SN and basal ganglia.

The specific [11C]zolmitriptan binding could only to a
small degree (<25%) be displaced by the 5-HT1D antagonist
BRL15572, indicating that this receptor is not a major
contributor to the efficacy of zolmitriptan. This is consistent
with the outcome from a clinical trial of the 5-HT1D receptor
agonist [40] and the data of Varnäs et al. [16].

WAY-100635 is a highly selective, silent 5-HT1A receptor
antagonist which binds with high affinity to the 5-HT1A

receptor, at both presynaptic and postsynaptic sites [41]. The
anatomical distribution of [3H]WAY-100635 binding has
been described in detail using large-scale autoradiography on
human hemispheric brain cryosections [42]. High densities
were found in the hippocampus, superficial layers of the neo-
cortex, and the raphe nuclei. The distribution of [11C]WAY-
100635 in the present paper was similar to that of [3H]WAY-
100635, with high-density binding in the neocortex and
the raphe nuclei of the cynomolgus monkey brain by PET
imaging [43]. Consistently, we report high density binding of
[11C]WAY-100635 throughout the neocortex, except for the
visual cortex of the occipital lobe.

5. Conclusions

In summary, in saturation studies, [11C]zolmitriptan showed
specific (90%) binding to a population of high-affinity
binding sites in the Rhesus monkey brain. [11C]Zolmitriptan
binding showed a regional distribution to defined brain
regions with the highest densities in the ventral pallidum, ex-
ternal globus pallidus, substantia nigra, nucleus accumbens,
and the visual cortex. In competitive binding studies, a
5-HT1B selective ligand blocked the majority of [11C]zol-
mitriptan binding across all regions, while 25% of total
specific binding was attributable to 5-HT1D receptor binding
in the visual cortex. [11C]Zolmitriptan and [11C]WAY-
100635 binding sites were differentially distributed with little
or no overlap between anatomical areas.
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