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Abstract
In an event-related functional MRI data analysis, an accurate and robust extraction of the
hemodynamic response function (HRF) and its associated statistics (e.g., magnitude, width, and
time to peak) is critical to infer quantitative information about the relative timing of the neuronal
events in different brain regions. The aim of this paper is to develop a multiscale adaptive
smoothing model (MASM) to accurately estimate HRFs pertaining to each stimulus sequence
across all voxels. MASM explicitly accounts for both spatial and temporal smoothness
information, while incorporating such information to adaptively estimate HRFs in the frequency
domain. One simulation study and a real data set are used to demonstrate the methodology and
examine its finite sample performance in HRF estimation, which confirms that MASM
significantly outperforms the existing methods including the smooth finite impulse response
model, the inverse logit model and the canonical HRF.

1 Introduction
The functional MRI (fMRI) study commonly uses blood oxygenation level-dependent
(BOLD) contrast to measure the hemodynamic response (HR) related to neural activity in
the brain or spinal cord of humans or animals. Most fMRI research correlates the BOLD
signal elicited by a specific cognitive process with the underlying unobserved neuronal
activation. Therefore, it is critical to accurately model the evoked HR to a neural event in the
analysis of fMRI data. See [6] for an overview of different methods to estimate HRF in
fMRI. A linear time invariant (LTI) system is commonly implemented to model the
relationship between the stimulus sequence and BOLD signal where the signal at time t and
voxel d, Y (t, d), is the convolution of a stimulus function X(t, d) and the HR function (HRF)
h(t, d) plus an error process ε(t, d). While nonlinearities in the BOLD signal are
predominant for stimuli with short separations, it has been shown that LTI is a reasonable
assumption in a wide range of situations [6].

Almost all HRF models estimate HRF on a voxel-wise basis which ignores the fact that
fMRIs are spatially dependent in nature. Particularly, as the case in many fMRI studies, we
observe spatially contiguous effect regions with rather sharp edges. There are several
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attempts to address the issue of spatial dependence in fMRI. A possible approach is to apply
a smoothing step before individually estimating HRF in each voxel of fMRI data. Most
smoothing methods, however, are independent of the imaging data and apply the same
amount of smoothness throughout the whole image [7]. These smoothing methods can blur
the information near the edges of the effect regions and thus dramatically increase the
number of false positives and false negatives. An alternative approach is to model spatial
dependence among spatially connected voxels by using conditional autoregressive (CAR),
Markov random field (MRF) or other spatial correlation priors [9,11]. However, calculating
the normalizing factor of MRF and estimating spatial correlation for a large number of
voxels in the 3D volume are computationally intensive [2]. Moreover, it can be restrictive to
assume a specific type of correlation structure for the whole 3D volume (or 2D surface).

The goal of this paper is to develop a multiscale adaptive smoothing model (MASM) to
construct an accurate nonparametric estimate of HRF across all voxels pertaining to a
specific cognitive process in the frequency domain. Compared with all existing methods, we
make several major contributions. (i) To temporally smooth HRF, MASM incorporates an
effective method for carrying out locally adaptive bandwidth selection across different
frequencies; (ii) To spatially smooth HRFs, MASM builds hierarchically nested spheres by
increasing the radius of a spherical neighborhood around each voxel and utilizes information
in each of the nested spheres across all voxels to adaptively and simultaneously smooth
HRFs; (iii) MASM integrates both spatial and frequency smoothing methods together; (iv)
MASM uses a backfitting method [3] to adaptively estimate HRFs for multiple stimulus
sequences across all voxels. The group-level inference like testing the significant regions
based on estimated HRFs will be further studied in the future.

2 Model Formulation
2.1 Multiscale Adaptive Smoothing Model

Suppose that we acquire a fMRI data set in a three dimensional (3D) volume, denoted by 
⊂ R3, from a single subject. In real fMRI studies, it is common that multiple stimuli are
present [11]. Under the assumption of the LTI system, the BOLD signal is the individual
response to the sum of all stimuli convoluted with their associated HRFs. Let X(t) = (X1(t),
…, Xm(t))T be the sequence vector of m different stimuli and its associated HRF vector H(t,
d) = (H1(t, d),…, Hm(t, d))T. Specifically, in the time domain, most statistical models to
estimate HRF under the presence of m different stimuli assume that

(1)

where ε(t, d) is a spatial and frequent error process.

Instead of directly using model (1), our MASM focuses on the discrete Fourier coefficients
of Y (t, d), H(t, d), X(t), and ε(t, d), which are, respectively, denoted by ϕY(fk, d), ϕH(fk, d),
ϕX(fk), and ϕε(fk, d) at the fundamental frequencies fk = k/T for k = 0,⋯, T − 1. Specifically,
in the frequency domain, MASM assumes that

(2)

where ϕH(f, d) = (ϕH1 (f, d),…, ϕHm(f, d))T, ϕX(f) = (ϕX1 (f),…, ϕXm (f))T. An advantage of
MASM in (2) is that the temporal correlation structure can be reduced since the Fourier
coefficients are approximately asymptotically uncorrelated across frequencies under some
regularity conditions [8,1]. Moreover, ϕε(f, d) is assumed to be a complex process with the
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zero mean function and a finite spatial covariance structure. MASM assumes that for each
stimuli j and each voxel d, ϕHj (f, d) is close to ϕHj (f′, d′) for some neighboring voxels d′
and frequencies f′. This is essentially a spatial and frequent smoothness condition, which
allows us to borrow information from neighboring voxels and frequencies. Equation (2) and
different shape neighborhoods at different voxels are the two key novelties compared to the
existing literatures [6].

2.2 Weighted Least Square Estimate
Our goal is to estimate the unknown functions {ϕH(f, d) : d ∈  f ∈ [0, 1]} based on MASM
and the Fourier transformed fMRI data ℱ(Y) = {ϕY (fk, d) : k = 0,⋯, T −1, d ∈ . To
estimate ϕH(f, d), we may combine all information at fundamental frequencies fk ∈ ηf (r) = (f
−r, f+r)∩{k/T : k = 0, 1,…, T−1} with r > 0 and voxels d′ ∈ B(d, s), where B(d, s) is a
spherical neighborhood of voxel d with radius s ≥ 0 to construct an approximation equation
as follows:

(3)

Then to estimate ϕHj (f, d) for j = 1,⋯,m, respectively, we construct m local weighted
functions L[−j](ϕHj (f, d); r, s) as

(4)

for j = 1,⋯,m, where ϕY [−j] (fk, d′) = ϕY (fk, d′) −Σl≠j ϕHl (fk, d′)ϕXj (fk). Moreover, weight
ω̃j(d, d′, f, fk; r, s) characterizes the physical distance between (f, d) and (fk, d′) and the
similarity between ϕHj (f, d) and ϕHj (fk, d′). The procedure for determining all weights ω̃j(d,
d′, f, fk; r, s) will be given later. We derive a recursive formula to update the estimates ϕ̂Hj (f,
d) and Var(ϕ̂Hj (f, d)) for j = 1,…, m based on any fixed weights {ω̃j(d, d′, f, fk; r, s) : d′ ∈
B(d, s), fk ∈ ηf (r)}. We obtain ϕ̂Hj (f, d) by differentiating L[−j](ϕHj (f, d); r, s) as follows:

(5)

where  is the conjugate of ϕXj (fk). We approximate Var(ϕ̂Hj (f, d)) as

(6)

where ϕ̂jε(fk, d′) = ϕY (fk, d′) − Σl≠j ϕ̂Hl (fk, d′)ϕXj (fk). Based on ϕ̂Hj (f, d) for j = 1,⋯,m, we
can get

(7)
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2.3 Mutliscale Adaptive Estimation Procedure
We use a multiscale adaptive estimation (MAE) procedure to determine {ω̃j(·) : j = 1,⋯,m}
and then estimate {ϕH(f, d) : d ∈  f ∈ [0, 1]}. MAE borrows the multiscale adaptive
strategy from the well-known Propagation-Separation (PS) approach [10,5]. MAE starts
with building two sequences of nested spheres with spatial radii s0 = 0 < s1 < ⋯ < sS and
frequent radii 0 < r0 < r1 <…< rS. The key idea of MAE for multiple stimuli is to
sequentially and recursively compute ϕ̂Hj (f, d) from j = 1 increasing to m. Generally, MAE
consists of four key steps: initialization, weight adaption, recursive estimation and stopping
check. In the initialization step, we set s0 = 0, r0 > 0, say r0 = 5/T, and the weighting scheme
ω̃j(d, d, f, fk; r0, s0) = Kloc(|f − fk|/r0). We also set up another series {rs = rs−1+br : s = 1,⋯,
S} as the frequent radii with a constant value br, say, br = 2/T. Then we apply the backfitting

algorithm to iteratively update  and obtain an estimate of  for j =
1,⋯,m until convergence.

In the weight adaptation step, for s > 0, we set  as

(8)

where ‖·‖ is the norm operator and ‖·‖2 is the L2 norm. The functions Kloc(x) and Kst(x) are
two kernel functions such as the Epanechnikov kernel [10,5].

In the recursive estimation step, at the ith iteration, we compute

 . Then based on weights  ,

we sequentially calculate  and approximate  according to (5) and (6).

In the stop checking step, after the i0-th iteration, we calculate the adaptive Neyman test

statistic, denoted by  , for the j-th stimulus to test difference between

 . If

 is significant, then we set  for all s ≥ i at voxel d.

Finally, when s = S, we report the final  at all fundamental frequencies and

substitute them into (7) to calculate  across voxels d ∈ for all j = 1,⋯,m. After
obtaining HRFs for all stimuli, we may calculate their summary statistics including
amplitude/height (H), time-to-peak (T), and full-width at half-max (W) and then carry out
group-level statistical inference, say to test whether H significantly differs from 0, on the
images of these estimated summary statistics [6].

3 Results
Simulation

We conducted a set of Monte Carlo simulations to examine the finite sample performance of
MASM and MAE and compared them with several existing HRF models. We simulated the
data at 200 time points (i.e., t = 1, 2,⋯, 200) with a 40×40 phanton image containing 9
regions of activation-circles with varying radius at each time point. These 9 regions were
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also grouped into three different BOLD patterns with each group consisting of three circles,
which have the same true signal series. The three true HRFs were set as zeros for t > 15 and
otherwise for t > 0 according to

with (A1,A2,A3) = (1, 5, 3), c = 0.35, (a11, a12) = (6, 12), (a21, a22) = (4, 8), (a31, a32) = (5,
10), (bj1, bj2) = (0.9, 0.9) and (dj1, dj2) = (aj1 * bj1, aj2 * bj2) for j = 1, 2, 3. The boxcars
consisting of either zeros or ones were independently generated from a Bernoulli random
generator with the successful rate=0.15, denoted by Xj(t), j = 1, 2, 3. So the true BOLD

signals were simulated as  . The signals in each group of the activation-
circles were scaled to be Y1(t) = Y (t)/6, Y2(t) = Y (t)/4 and Y3(t) = Y (t)/2, respectively. The
noise ε(t) were generated from a Gaussian distribution with mean zero and standard
deviation σ = 0.2. Note that it is straightforward to embed AR noise to simulate the serial
autocorrelation. Finally, the simulated BOLD signal was set as Yj(t) + ε(t) for j = 1, 2, 3. In
this simulation, the smallest signal-to-noise rate (SNR) is around 0.6.

In order to determine the signal patterns, we implemented some EM-based clustering
method with ignoring the details for the sake of space and then computed the average of the
estimates in each cluster. The estimates of the clustered HRFs are displayed in Fig. 1 (b.1–3
and c.1–3). It seems that our algorithm can simultaneously recover the correct HRFs in all
active regions.

To evaluate our method, we compared MASM with some state-of-art methods in [6], which
include (i) SPMs canonical HRF (denoted as GAM); (ii) the semi-parametric smooth finite
impulse response (FIR) model (sFIR); and (iii) the inverse logit model (IL). Subsequently,
we evaluated the HRF estimates by computing H, T, and W as the potential measure of
response magnitude, latency and duration of neuronal activity. It has been reported in [6]
that IL is one of the best methods in accurately estimating H, T, and W.

Let  , where x̂ij and ŷij, respectively, denote the
statistics H, T, or W, calculated from MASM and from the other three methods, and x0
represents the true value of H (or T, W) in the different active regions corresponding to the
different event sequences. Moreover, N and M, respectively, represent the numbers of
replications and voxels in active regions with N = 100. We computed the average absolute
error differences between our method and the other three methods. Generally, the negative
value of D indicates that our method outperforms other methods. Table 1 reveals that
MASM can provide more accurate estimates of the HRF summary statistics than the other
three methods.

From Table 1, amongst the tested HRF estimation alternatives, the sFIR seems to provide
the closest results. Thus we pick sFIR to make another comparison. We applied the
Gaussian smoothing with FWHM equal 4mm to the original simulated data before running
sFIR and compared them to MASM without using the Gaussian smoothing. An evaluation

statistics for the jth voxel is given by  . The comparison
results for the parameter H given in Fig. 1 (d.1–3) as a representative reveals that MASM
outperforms sFIR, especially on the boundary voxels as Gaussian smoothing blurred them.
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Real Data
We used a subject from a study designed for the investigation of the memory relationship
with four different stimulus sequences. We used Statistical Parametric Mapping (SPM) [4]
to preprocess the fMRI and MRI images and apply a global signal regression method to
detrend the fMRI time series. The F-statistics maps were generated by SPM to test the
activation regions triggered by four sequences of stimulus events. For each stimulus, we set
a threshold with p value less than 0.01 and the extension K = 20 to find significant regions of
interest (ROIs). We plotted the estimated HRFs by using MASM, sFIR and GAM in these
ROIs and chose one of them in each brain mapping as a demonstration to compare MASM
with sFIR and GAM (Fig. 1 (e.1–4)). Based on the SPM findings with GAM, we found the
deactive ROIs in Figures (e.1), (e.2) and (e.4) and the active ROIs in Figure (e.3). They are
consistent with those ROIs obtained from the other two methods. HRFs calculated from
MASM and sFIR have similar H, W, and T, which are different with those statistics
obtained from HRFs based on GAM(Fig. 1 (f.1–4)). This result is consistent with our
simulation result (see Table 1). Furthermore, we found that HRFs calculated from sFIR had
big variation at their tails compared to those calculated from MASM. It may indicate that
MASM is an accurate estimation method for reconstructing HRFs in fMRI.
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Fig. 1.
Set-up of Simulation: (a.1) a temporal cut of the true images; (a.2) the true curves of HRF:
h1(t), h2(t) and h3(t); (a.3) a temporal cut of the simulated images; (a.4) the Gaussian smooth
result. The estimated results: estimates of HRF for the (b.1 and c.1) 1st; (b.2 and c.2) 2nd;
(b.3 and c.3) 3rd sequence of events. The row (b.1–3) is the average estimated HRF in each
cluster. The row (c.1–3) is the recovered pattern relative to each sequence of events. The
comparison statistics Dj with sFIR: (d.1–3) the difference of estimated Height(H) at each
voxel for the three stimulus sequences. The color bar denotes the value of Dj for the jth
voxel. Data analysis results: (e.1)–(e.4) the slices containing ROIs (colored ones) of the F
maps for the 1st–4th stimulus sequences, respectively; (f.1)–(f.4) estimated HRFs at the
significant ROIs corresponding each condition from MASM (red), sFIR (green) and
GAM(yellow).
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