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Thrombogenic and inflammatory activity are two distinct aspects of platelet biology, which are sustained by the ability of activated
platelets to interact with each other (homotypic aggregation) and to adhere to circulating leucocytes (heterotypic aggregation). These
two events are regulated by distinct biomolecular mechanisms that are selectively activated in different pathophysiological settings.
They can occur simultaneously, for example, as part of a pro-thrombotic/pro-inflammatory response induced by vascular damage, or
independently, as in certain clinical conditions in which abnormal heterotypic aggregation has been observed in the absence of
intravascular thrombosis. Current antiplatelet drugs have been developed to target specific molecular signalling pathways mainly
implicated in thrombus formation, and their ever increasing clinical use has resulted in clear benefits in the treatment and prevention
of arterial thrombotic events. However, the efficacy of currently available antiplatelet drugs remains suboptimal, most likely because
their therapeutic action is limited to only few of the signalling pathways involved in platelet homotypic aggregation. In this context,
modulation of heterotypic aggregation, which is believed to contribute importantly to acute thrombotic events, as well to the
pathophysiology of atherosclerosis itself, may offer benefits over and above the classical antiplatelet approach. This review will focus on
the distinct biomolecular pathways that, following platelet activation, underlie homotypic and heterotypic aggregation, aiming
potentially to identify novel therapeutic targets.

Introduction

The classical model of platelet activation describes a series
of phenotypic and morphological changes of resting
platelets such that they acquire adhesiveness to the vas-
cular wall in response to their exposure to pro-thrombotic
molecules [e.g. collagen, von Willebrand factor (vWF)]
[1–3], forming platelet-to-platelet aggregates (homotypic
aggregation) through interlinking by soluble adhesive
proteins (fibrinogen) [4] and releasing a number of media-
tors that stabilize the initial aggregate and amplify throm-
bus formation [5].The widespread view that vessel injury is
the sole determinant of platelet activation has been largely
abandoned in light of the evidence that a variety of patho-
physiological stimuli, including pro-inflammatory cytok-
ines and infective agents (recently reviewed by Semple &
Freedman [6]) as well as shear stress [7], can activate plate-
lets with no detectable vessel damage. Evidence has also
accumulated that, in these and other diverse pathophysi-
ological settings, platelets exhibit differential biological

responses because of activation of distinct biomolecular
pathways. Importantly, pro-inflammatory activity medi-
ated by interaction with circulating leucocytes (hetero-
typic aggregation) and release of inflammatory mediators
constitutes an important aspect of platelet biology and
provides strong pathophysiological links between inflam-
mation and thrombosis [6, 8]. As a consequence, platelet
activation is not limited to the occurrence of a local throm-
botic event triggered by vascular damage and mainly sus-
tained by homotypic aggregation. On the contrary, it is
often part of a systemic inflammatory response that can
develop independently of, or in addition to, local injury-
related factors. Indeed, formation of heterotypic aggre-
gates in the peripheral circulation has been observed not
only during acute thrombotic events [9–12], but also in
those clinical conditions associated with high blood
thrombogenicity in the absence of intravascular thrombo-
sis, such as auto-immune disorders [13], haematological
disease [14, 15] and in subjects with cardiovascular risk
factors [16–18]. Given this, as well as the ongoing discovery

British Journal of Clinical
Pharmacology

DOI:10.1111/j.1365-2125.2011.03906.x

604 / Br J Clin Pharmacol / 72:4 / 604–618 © 2011 The Authors
British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society



of ever more biomolecular mechanisms underlying the
platelet response to different agonists, it is likely that the
signalling pathways that regulate thrombus formation
and platelet–leucocyte interaction may operate either
together or independently. In keeping with this, some
antiplatelet drugs that effectively reduce platelet–platelet
aggregation, such as aspirin, may have very little or no
effect on heterotypic aggregation [19].

The increasing interest in pharmacological inhibition of
heterotypic complex formation stems from the concept
that platelet–leucocyte adhesion is not a simple epiphe-
nomenon associated with thrombus development but
represents a pro-thrombotic as well as a pro-atherogenic
mechanism in itself. Indeed, interaction of activated plate-
lets with white cells amplifies platelet activation and
favours homotypic aggregation at sites of vascular injury
[20], as well as exerting a damaging action on the vascular
wall thereby predisposing to atherosclerotic disease [21,
22]. These observations raise the important question of
whether inhibition of heterotypic aggregation might offer
additional therapeutic benefit over and above the classical
antithrombotic strategy, where the principal target and
effect is platelet–platelet aggregation and thrombus for-
mation.

We will here review the biomolecular mechanisms that
are differentially implicated in homotypic and heterotypic
aggregation, with a view to identifying, on the basis of
recent data, potential therapeutic targets to prevent both
the pro-thrombotic and pro-inflammatory effects of plate-
let activation. Table 1 compares some important features
of homotypic and heterotypic aggregation.

Homotypic aggregation

Homotypic aggregation occurs at the site of a vascular
lesion such as a ruptured atherosclerotic plaque or a trau-
matic injury, where exposed pro-thrombotic molecules
provide an adhesive surface for recruitment of circulating
platelets, followed by their activation and thrombotic plug

formation [1–5]. In vivo and in vitro observations suggest
that this phenomenon is a complex and dynamic multi-
step process [20, 23, 24]. The initial phase of adhesion of
platelets to the vascular wall as well as to each other
(primary reversible aggregation) is followed by a second
phase of stabilization and growth of the initial platelet
plug (secondary irreversible aggregation). Platelet activa-
tion has long been assumed to have a dual role in this
process, as an initiating factor in platelet arrest and as an
essential mediator of the transition from reversible to irre-
versible aggregation [1, 25, 26].Technical advances in intra-
vital microscopy and real-time perfusion studies have
demonstrated that primary aggregation can also occur
without the need for platelet activation under conditions
of elevated shear stress [24, 27]. However, when non-
activated platelets adhere to the vessel wall they only form
transient micro-aggregates that, in the absence of
activation-dependent release and generation of soluble
agonists [principally adenosine diphosphate (ADP), throm-
bin and thromboxane A2 (TxA2)], disaggregate with trans-
location of platelets in the direction of flow [24]. Central to
homotypic aggregation is therefore the concept that
platelets become activated in response to interaction with
thrombogenic surfaces, and multiple ligand-receptor
interactions are required to stabilize and amplify their
adhesion and aggregation.

Biomolecular mechanisms of platelet activation
leading to homotypic aggregation
Fibrinogen, vWF and collagen are able to initiate primary
aggregation through the engagement of specific platelet
integrins, namely glycoprotein (GP) IIb/IIIa (also desig-
nated a2bß3 integrin), GPIb and GPVI, respectively [25, 28,
29]. At low shear rate (<1000 s-1), the interaction between
GPIIb/IIIa and fibrinogen has been demonstrated to con-
stitute the predominant biomolecular event [1, 25, 30].
However, as GPIIb/IIIa is expressed in a low affinity state on
the plasmalemma of quiescent platelets, initial stimulation
of platelets by one or more soluble agonists in the vicinity
of the lesion (e.g. ADP released from endothelial cells or

Table 1
Comparison between homotypic and heterotypic aggregation

Homotypic aggregation Heterotypic aggregation

Localization Confined to the vascular wall Detectable in peripheral blood
Platelet activation required Not under high shear rate Yes

Mechanism of stabilization Multiple ligand-receptor interactions with thrombogenic surface
(demonstrated)

Multiple ligand-receptor interactions with leucocyte membrane
(hypothesized)

Main effector molecule(s) Varies depending on haemodynamic condition and lesion
components

P-selectin, P-selectin glycoprotein ligand-1

Platelet release reaction Required for irreversible stabilization, mainly mediated by dense
granule contents

Required for initiation, mediated by alpha granule contents

Platelet homotypic and heterotypic aggregation
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thrombin locally produced) is required in order to activate
downstream signalling pathways (inside-out signalling)
that ultimately result in platelet shape change and acti-
vation of GPIIb/IIIa [4]. When the shear rate rises within
the range 1000–10 000 s-1

, platelet activation is not
required to induce primary aggregation, as the synergistic
action of GPIIb/IIIa and GPIb suffice in promoting tether-
ing and transient aggregation of discoid-shaped quies-
cent platelets to the vascular wall. Nevertheless, the
ensuing activation of platelets induced by integrin
engagement leads to release of soluble agonists, mainly
ADP, which is essential in stabilizing the initial aggregate
[24]. At high shear rates (>10 000 s-1), Ruggeri et al. have
shown both in vitro and in vivo that a thrombus can form
efficiently through a mechanism independent of platelet
activation, that is solely mediated by interaction between
vWF and GPIb giving rise to stable local adhesion of plate-
lets to a thrombogenic surface and homotypic aggrega-
tion [27].

The in vivo role of these ligand/receptor interactions
has been evaluated in animal models selectively lacking
one or more of the molecules involved in these pathways.
In studies using vWF–/– mice, platelet accumulation and
thrombus growth were markedly delayed but not absent
in a model of ferric chloride-induced thrombosis [31], and
the thrombogenic activity of platelets in laser-induced
vessel wall injury was in fact comparable with that
observed in wild-type mice [32], suggesting that platelet
thrombus formation can occur in the absence of vWF.
Fibrinogen/vWF knockout mice exhibit preserved
platelet-to-platelet interaction [31], via a mechanism pri-
marily triggered by thrombin and sustained by soluble
agonist release (ADP) and different integrin signalling cas-
cades [32, 33]. Activation of the coagulation cascade at the
site of vessel injury, with consequent generation of throm-
bin through the tissue factor (TF) pathway, has been pro-
posed as a major contributor to the thrombogenic
component of atherothrombotic disease [34, 35].
However, recent evaluation of the dynamics of thrombus
formation on atherosclerotic plaques has shown that TF
has a predominant role only in the amplification phase of
platelet aggregation, while the first key event of platelet
arrest and aggregation is crucially regulated by engage-
ment of the collagen receptor GPVI [36]. Indeed GPVI
blockade, but not plaque TF suppression, significantly
inhibits thrombus development. In similar experiments
performed by Penz et al. [37], GPIb was found to be a
crucial effector in plaque-induced thrombus, a finding in
agreement with the work of Ruggeri et al. showing the
importance of the vWF/GPIb axis in thrombus formation
under conditions of high shear, and further confirmed in
studies of interleukin 4-receptor/GPIb transgenic mice
[38], in which lack of activity of GPIb gives rise to a severe
bleeding phenotype. However, compared with the rela-
tively mild effect on thrombogenic response to vascular
injury observed in vWF-knockout mice, these results are

strongly suggestive of an additional thrombogenic
mechanism sustained by GPIb that may interact with
ligands other than vWF.

Taken together, these findings imply that, independent
of the initial thrombogenic stimulus and blood flow con-
ditions, platelet-to-platelet interaction only results in irre-
versible aggregation once stable adhesion to the vascular
wall, mediated by multiple receptor-ligand binding events,
is established.

Heterotypic aggregation

The ability of platelets to interact with leucocytes was
established in the late 19th century [39], from intravital
microscopic studies of Bizzozero who first discovered
platelets and reported the description of both homotypic
and heterotypic aggregation at the site of vascular injury:
‘Blood platelets, swept along by the blood stream, are held
up at the damaged spot as soon as they arrive at it. At first,
one sees only two to four to six (platelets); very soon the
number climbs to hundreds. Usually some white blood
cells are held up amongst them.’ (Taken from a review by
Brewer [40]).

More than a century of research in the field has pro-
vided multiple lines of evidence supporting the concept
that, by contrast with homotypic aggregation, which is
confined to the vascular wall, heterotypic complex forma-
tion occurs in circulating blood. The first detection of
leucocyte–platelet aggregation in the human circulation
was reported in subjects with coronary atherosclerosis
[41], in whom heterotypic aggregates were identified
within the coronary circulation, in close proximity to ath-
erosclerotic lesions.The same study reported a higher level
of heterotypic complexes in the vicinity of plaques with
thrombotic complications as compared with uncompli-
cated ones. In further clinical studies, heterotypic com-
plexes were observed in the systemic circulation of
patients with coronary atherosclerosis [9–11], their levels
being increased during acute thrombotic events. These
findings suggest that circulating heterotypic aggregates
form in parallel with thrombi, as a consequence of local
platelet activation sustained by vascular damage.However,
the presence of atherosclerotic lesions may not be manda-
tory for heterotypic aggregation, as raised levels of such
aggregates have been described also in healthy subjects
with cardiovascular risk factors [16–18],although such sub-
jects may well have subclinical atherosclerosis, as well as in
patients with other inflammatory conditions (reviewed by
von Hundelshausen & Weber [42]). Adhesion between
platelets and leucocytes is stable, does not require adhe-
sion to pro-thrombotic surfaces,and is a systemic phenom-
enon whose extent depends on the degree of platelet
activation. Early in vitro experiments performed on whole
blood showed that platelet activation by a variety of ago-
nists results initially in homotypic interaction mediated by
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fibrinogen-GPIIb/IIIa interaction, which is followed, in the
absence of an adhesive vascular surface, by platelet disag-
gregation and subsequent platelet adhesion to leucocytes,
with monocytes having a competitive advantage over
other white cells in binding activated platelets [43]. Inhibi-
tion of fibrinogen binding to GPIIb/IIIa is even able to
enhance the interaction of activated platelets with leuco-
cytes, and the heterotypic complexes so formed, that are
mainly composed of monocyte–platelet aggregates,
display a strong pro-inflammatory phenotype mediated
by surface-expressed molecules such as CD40L and
P-selectin, along with pro-thrombotic activity sustained by
their production of TF [44].

Biomolecular mechanisms of platelet activation
leading to heterotypic aggregation
The pioneering work of Jungi et al. in 1986 [45] demon-
strated that platelets acquire adhesiveness to leucocytes
when stimulated with thrombin in a concentration-
dependent manner, while non-activated platelets show
little tendency to associate with white cells, any such asso-
ciation being explained by low-grade spontaneous activa-
tion of platelets undergoing handling in vitro. A number of
other researchers confirmed these results [43, 46, 47], and it
is now well established that platelet activation, indepen-
dent of the initial stimulus, is required to trigger platelet-
leucocyte interaction. As part of the underlying molecular
mechanism, expression of the adhesion molecule
P-selectin on the plasmalemma of activated platelets
appears to be crucially involved [47, 48]. P-selectin, also
designated CD62P and previously referred to as GMP-14O
or PADGEM protein, is a transmembrane molecule stored
in the alpha-granules of platelets. Upon stimulation, the
granules fuse with the plasma membrane and P-selectin
thus translocates from the cytosolic compartment to the
extracellular surface, where it acts as a receptor for circu-
lating white cells [48]. Its specific ligand is known as
P-selectin glycoprotein ligand (PSGL)-1, and this is consti-
tutively expressed on the plasmalemma of leucocytes [49].
Within the leucocyte population, the expression of PSGL-1
on the cellular surface of monocytes seems to be highest
[50], and this could in part explain their elevated binding
affinity to platelets over other white cells. Indeed, an in vivo
study performed in apoE–/– mice [21] demonstrated that
intravenous injection of activated platelets leads to
sequestration of leucocytes within a few (approximately 5)
minutes, persisting up to 80 min for polymorphonuclear
cells (PMN) and 180 min for monocytes. No such effect was
reported for lymphocytes, confirming once more the dif-
ferential binding activity of activated platelets to different
leucocyte sub-populations, as observed in early in vitro
studies [43, 44]. A similar study in baboons showed similar
results [9]: after injection of activated platelets, formation
of circulating aggregates with monocytes and PMN
occurred within 1 min, and the in vivo half-lives of circulat-

ing monocyte–platelet and PMN–platelet complexes were,
respectively, 30 and 5 min; no heterotypic aggregates were
detectable after 2 h.

The preferential binding of platelets to monocytes may
also be ascribed to an additional role played by other
ligands specifically present on the plasmalemma of mono-
cytes, which may follow on from P-selectin/PSGL-1 interac-
tion. Indeed, PSGL-1 is not only an adhesion but also a
signalling molecule. PSGL-1 binding induces production of
superoxide anion radicals from monocytes [51], and
tyrosine phosphorylation of various cytoplasmic proteins,
including pp125 focal adhesion kinase, ERK, Syk, Src kinase
and paxillin [52–55]. Binding of PSGL-1 to P-selectin leads
to integrin activation on monocytes, resulting in further
stabilization of cellular adhesion in part mediated by addi-
tional bridging molecules.Further interactions are through
CD40L/CD40, TREM-1 ligand/TREM-1 (which may also
promote integrin expression) and CD36/CD36 via throm-
bospondin [56]. However, P-selectin/PSGL-1 linking clearly
has a crucial role in heterotypic aggregation, as blocking
monoclonal antibody to P-selectin [45] or PSGL-1 [16]
completely abolishes the formation of leucocyte–platelet
aggregates.

Platelet release reaction

Release of platelet granule contents represents a
common biomolecular event in both homotypic and het-
erotypic aggregation (Table 1). In the former, it contrib-
utes to the amplification and stabilization of initial
reversible aggregates, mainly through the release of
platelet agonists. In the latter, it sustains the receptor-
ligand interactions between platelets and white cells by
promoting the expression of P-selectin. Platelet agonists
and adhesion molecules are segregated into specific
intracellular compartments [57, 58] and, for many
decades, their release was considered to be directed by a
structural re-organization of the cytoskeleton [59–61].
This conventional view of the platelet release reaction has
been recently extended to include a more composite
mechanism of fusion between the granule membrane
and the plasma membrane, subtly regulated by
N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) family proteins, chaperon and the com-
position of the lipid membrane (reviewed by Reed et al.
[62] and Flaumenhaft [63]). The activity of this regulatory
apparatus seems to be modulated by agonist-specific
effector molecules, to ensure selectivity in dense and
alpha granule content release as appropriate.

Platelet granules and selective regulation of
release reaction
Immunocytochemical and electron microscopy studies
over the years have given rise to the distinction between
three main types of storage organelles in platelets, known
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as dense, alpha and lysosomal granules. Their content can
be classified into three main groups on the basis of their
principal function: platelet agonists [ADP, serotonin, epi-
nephrine, 5-hydroxytryptamine (5-HT) and calcium], con-
tained in the dense granules, adhesion molecules
[P-selectin, fibrinogen, vWF, platelet factor 4 (PF4)], stored
in alpha-granules and lysosomal enzymes (cathepsin, hex-
osaminidase) within the lysosomes [64]. Ultrastructural
and morphological studies have revealed the intracellular
organization of the different organelles, which distribute
along an intricate network of membrane invaginations
forming an open canalicular system (OCS) [64].The process
of actin polymerization in activated platelets has been
generally considered to be the major determinant in
organelle trafficking, because of the generation of contrac-
tile force with consequent expulsion of granules [59–65].
More recent studies have revealed that platelet shape
changes, as sustained by actin re-organization following
platelet stimulation, are not essential for the platelet
release reaction [66–68]. Indeed, actin disruption has
shown either inhibitory or stimulatory effects on platelet
degranulation in different studies [66–70].The discrepancy
in results between these studies may be in part ascribed to
the evidence, recently provided by Flaumenhaft et al. [71],
that the cytoskeleton differentially regulates dense and
alpha granule exocytosis; specifically, low grade actin dis-
ruption stimulates agonist-induced alpha granule release
with only minimal effect on dense granule secretion, while
high levels of actin disruption inhibit alpha granule release

but promote dense granule secretion. The molecular
mechanisms underlying the platelet release reaction are
still poorly understood, but increasing evidence suggests
the existence of distinct regulatory pathways for alpha and
dense granule secretion (Figure 1). It has recently been
reported that Munc13 proteins, which act in concert with
the SNARE complex in mediating fusion between the
granule/vesicle membrane and the plasma/target mem-
brane [72], provide a single and common mechanism for
the release reaction of all the different types of platelet
granule. However, the residual secretion of alpha granule
contents observed in response to thrombin in Munc13-4
knockout mice, in which dense granule release is totally
abolished, suggests that secretion of alpha granules is less
dependent on Munc13-4 activity than that of dense gran-
ules [72]. The scenario is complicated by recent observa-
tions that alpha organelles are composed of different
subtypes of vesicle containing different adhesion mol-
ecules, which are released independently of each other
[73–75].

Given the fact that soluble molecules stored in dense
organelles are predominantly involved in homotypic
aggregation and thrombus formation, while P-selectin in
alpha granules is mainly implicated in heterotypic
complex formation, it is conceivable that, under different
pathophysiological circumstances, different types of plate-
let release reaction occur. The distinct biomolecular path-
ways involved may differentially favour thrombus
formation and/or platelet interaction with white cells.

Figure 1
Model of agonist-selective modulation of alpha and dense granule release in human platelets
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Pharmacological modulation of
homotypic and heterotypic
aggregation

Aspirin and thienopyridine derivatives, including clopi-
dogrel and prasugrel, are the most widely used anti-
platelet drugs in clinical practice, especially in the chronic
management of atherosclerotic disease. Clinical studies
report a differential ability of these two classes of agent to
modulate homotypic and heterotypic aggregation. In the
following, we will examine the molecular mechanisms
underlying their therapeutic action, in parallel with the
molecular pathways activated in response to different
platelet agonists, with a view to clarifying how the selec-
tive modulation of these different signalling pathways
exerts differential effects on these two events which may
allow identification of potential new therapeutic targets.

Aspirin
The antiplatelet effect of aspirin is mediated by the irre-
versible inhibition of thromboxane (Tx)A2 synthesis in
platelets, because of acetylation of a serine hydroxyl group
at position 529 in cyclo-oxygenase (COX)-1. This steric
modification of the enzyme inhibits the access of arachi-
donic acid, the precursor of TxA2, to the active site of the
enzyme. Blockade of COX-1 in platelets, as obtained either
following in vivo treatment or in vitro incubation of plate-
lets with aspirin, usually gives rise to effective inhibition of
aggregation in response to a number of platelet agonists,
although there is evidence of reduced aspirin response in
some subjects, giving rise to the concept of aspirin resis-
tance [76]. The antiplatelet effect of aspirin is mainly
ascribed to negative modulation of dense granule release.
Indeed, an early study reported that alpha granule exocy-
tosis, as detected by P-selectin expression, vWF and beta-
thromboglobulin secretion, was not at all influenced by
COX-1 blockade in platelets stimulated with either ADP or
thrombin [77]. These data imply that TxA2 signalling is pri-
marily involved in dense granule but not alpha granule
secretion.

In accordance with this, Li et al. reported no effect in
healthy subjects of aspirin either on platelet P-selectin
expression or on platelet–leucocyte aggregation, after
stimulation with ADP,thrombin or platelet activating factor
[78]. Similarly, Klinkhardt et al. found that aspirin did not
affect the formation of leucocyte–platelet complexes in
the circulation [19], and Moshfegh et al. demonstrated a
reduced effect of aspirin when compared with other anti-
platelet drugs in reducing platelet P-selectin expression
[79]. As heterotypic aggregates are believed to promote
atherosclerosis progression through sustaining a pro-
inflammatory state, this relative lack of effect of aspirin on
heterotypic aggregation may explain, at least in part, the
lack of any clear effect on atherosclerosis progression as
well as the poorer results on clinical outcome as compared

with newer antiplatelet agents such as the thienopy-
ridines, as discussed further below [80].

Thienopyridines
Ticlopidine, clopidogrel and prasugrel are selective, irre-
versible noncompetitive inhibitors of the P2Y12 receptor.
All are prodrugs that require oxidation by hepatic cyto-
chrome P450 to be converted into active metabolites [81].
Their effect on platelet aggregation has been investigated
in many clinical trials, whose main end point was the
reduction of fatal or non-fatal cardiovascular (CV) events
[82–86]. Clear benefit from P2Y12 receptor blockade has
been consistently found in the secondary prevention of CV
disease. Compared with ticlopidine and clopidogrel, pra-
sugrel provides faster and more uniform inhibition of
P2Y12-dependent platelet activation [87], resulting in
reportedly more effective reduction of major thrombotic
events. However, the higher platelet inhibition achieved
with prasugrel also gives rise to increased incidence of
bleeding events compared with clopidogrel [88]. Revers-
ible P2Y12 antagonists, such as cangrelor and ticagrelor,
which belong to the cyclopentyl-triazolo-pyrimidine
chemical class, have been recently developed [89] and
offer a clinically useful alternative to thienopyridines.
Unlike cangrelor, ticagrelor has shown superiority to clopi-
dogrel in reducing CV events, as well as the advantage of
shorter time of offset if surgery is contemplated (24–72 h)
compared with thienopyridines which take at least 5 days
to wear off [90].

Beyond a direct effect on homotypic aggregation,
antagonism of P2Y12 receptor has demonstrated efficacy in
reducing CD40L and P-selectin expression, as well as
platelet–leucocyte aggregate formation [91]. In accor-
dance with these findings, thienopyridines, but not aspirin,
have been shown to reduce platelet P-selectin expression,
which can be explained by their ability to inhibit ADP-
induced alpha-granule release [19, 91]. Prasugrel has
shown greater efficacy than clopidogrel in modulating
heterotypic aggregation and P-selectin expression, in ADP-
stimulated platelets obtained from subjects with athero-
sclerosis treated with the two different thienopyridines
[92]. Thus, P2Y12 blockade may modulate vascular inflam-
mation in addition to platelet thrombosis [93].

Gq protein-coupled receptors and the platelet
release reaction
TxA2, ADP and thrombin all induce platelet activation
through G-protein coupled receptors (GPCR). The TxA2

receptor (TP) couples to the Gq and G12/13 subtypes, as do
the thrombin receptors protease activated receptor
(PAR)-1 and PAR-4. G12/13-dependent signalling pathways
positively feed back on the Gq signal-transduction cascade.
ADP binds two main purinoceptors, namely P2Y1 and
P2Y12, which, respectively, couple to Gq and Gi [94].

The main effector of Gq is phospholipase C (PLC), mainly
the PLC-b isoform, which via hydrolysis of membrane
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phospholipids and consequent generation of two second
messengers, inositol trisphosphate (IP3) and diacylglycerol
(DAG), leads to the activation of protein kinase C (PKC) [5].
PKC comprises three groups of isoforms: the classical sub-
group (a, b, g), whose activation is calcium-dependent and
mediated by the synergistic action of IP3 and DAG, the
calcium-insensitive isoforms (d, h, q, e), regulated by DAG
and the IP3-sensitive atypical isoforms [95, 96]. The enzy-
matic activity of PKC has been demonstrated to have
important implications in the regulation of the platelet
release reaction [97, 98], as a consequence of its ability to
phosphorylate and thereby activate the SNARE machinery
[99]. Ablation of PKC-a in murine models gives rise to
defective responsiveness of platelets to in vitro stimulation
with thrombin, because of compromised release of dense
granule contents. Indeed, platelets lacking expression of
PKC-a show a decrease in ATP secretion compared with
wild-type platelets, and the addition of exogenous ADP
restores agonist-dependent aggregation [100].The expres-
sion of P-selectin, an indicator of alpha-granule release, is
also impaired in response to thrombin when PKC-a is not
present. However, in these experiments, the ability of ADP
to restore translocation of P-selectin to the platelet plas-
malemma was not evaluated, so it is not known whether
ADP also restores alpha-granule secretion in this model.

In separate in vitro experiments, the specific role of the
PKC-d isoform in granule content release was evaluated.
Murugapan et al. [101] demonstrated that TxA2 and throm-
bin induce PKC-d phosporylation, and that this effect is
accompanied by dense granule exocytosis which is abol-
ished by selective inhibition of PKC-d activity. However, in
collagen-stimulated platelets, PKC-d was found to exert an
inhibitory effect on platelet activation, implying that differ-
ent stimuli may activate distinct transduction pathways.
Similarly, ADP was not found to exert any modulatory
action on PKC-d. An individual comparison between the
roles of different PKC subtypes has been recently reported
by Gilio et al. [102], who used pharmacological approaches
in human platelets as well as specific knockout mice to
study platelet function under physiological flow condi-
tions and in response to collagen.They demonstrated that
activation of conventional Ca2+-dependent PKC isoforms
stimulates dense granule release and platelet aggregation,
while activation of Ca2+-insensitive isoforms inhibits these
events (Figure 1). Moreover, although PKC-d was found to
regulate negatively dense granule release, no effect on
alpha granule secretion was observed. However, in vivo
studies indicate a co-adjuvant rather than essential role of
PKC in thrombus formation. In PKC-a-deficient mice, no
alteration of bleeding time or thrombus formation com-
pared with wild-type mice is seen [100], despite a decrease
in the volume of thrombus compared with wild-type con-
trols in both PKC-a and PKC-b knockout mice secondary to
compromised platelet-to-platelet adhesion [102].

The ability of ADP to correct the defect in platelet func-
tion in the presence of PKC deficiency demonstrates that

its action on platelets is mediated by alternative signalling
pathways. Its ability to activate Gi as well as Gq protein-
dependent signalling seems to represent a crucial mecha-
nism in ADP-mediated platelet activation, as specific
inhibition of the former pathway has been demonstrated
to compromise its co-adjuvant role in thrombin- or TxA2-
mediated platelet stimulation [103, 104].

Gi protein-coupled receptors and
adenylyl cyclase
The interaction of ADP with the P2Y12 receptor activates
Gi-mediated signalling that, via negative modulation of
adenylyl cyclase (AC) enzymatic activity, reduces intracel-
lular concentrations of cyclic AMP (cAMP) [105]. AC repre-
sents an endogenous inhibitory mechanism of platelet
activation, whose action is mediated by cAMP-dependent
activation of protein kinase A (PKA). PKA-mediated inhibi-
tion of platelet activation involves interference with
calcium release [106], phosphorylation of cytoskeletal pro-
teins such actin binding protein (ABP) and myosin light
chain kinase (MLCK) [107], as well as of the focal adhesion
mediator vasodilator-stimulated phosphoprotein (VASP)
[108]. The inhibition of AC, as caused by P2Y12 activation,
therefore results in amplification of activator pathways
triggered by different agonists. Indeed, P2Y12 stimulation
potentiates the effect of thrombin and TxA2 on platelet
aggregation as well as increasing P-selectin expression
[103, 104]. Evidence for the essential role of Gi-dependent
pathways in regulating the platelet release reaction has
been provided by Li et al. [109], who studied signal-
transduction regulated by TxA2 and thrombin in an animal
model lacking expression of protein kinase G (PKG). They
demonstrated that these two soluble agonists activate
PKG, a cyclic GMP (cGMP)-dependent tyrosine kinase
enzyme, through their specific Gq-protein coupled recep-
tors. PKG activation plays an important role in dense
granule release from platelets. Nevertheless, the impaired
platelet response to thrombin and TxA2 observed in PKG
knockout compared with wild-type animals was counter-
acted by addition of exogenous ADP, an effect abolished
by selective Gi inhibition.The same findings were obtained
in human platelets, in which blockade of Gi signalling nul-
lified the potentiating effect of ADP on thrombin and TxA2

stimulation of platelets. Of note, recent work from Iyu et al.
[110] has demonstrated that Gi blockade, as occurs in
response to P2Y12 antagonists, converts the stimulatory
activity of ADP on platelet activation into an inhibitory
effect mediated by ADP-derived adenosine.

Other antagonists/agonists and pathways
modulating adenylyl cyclase activity
Adenosine is a purine nucleoside that is formed from the
sequential dephosphorylation of ATP. Adenosine modu-
lates platelet function through the engagement of its spe-
cific receptors A2A and A2B, that couple to stimulatory
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Gs-proteins thereby activating AC.The resulting increase in
cAMP gives rise to inhibition of platelet aggregation [110].

Epinephrine is contained in platelet dense granules
and is released upon platelet activation [111, 112]. It acts
on a2A-adrenergic receptors, coupled to Gz-proteins which
belong to the Gi family [113, 114]. Epinephrine is consid-
ered a weak platelet agonist, as alone it does not sustain
platelet aggregation in the absence of other agonists [94];
rather, it sensitizes platelets to the action of other agonists
[115], and is able to induce P-selectin expression on plate-
lets as well as to sustain platelet–leucocyte aggregation
[116].

Prostaglandin E2 (PGE2) modulates platelet function via
its binding to EP3 receptors,which are coupled to Gi protein
[94] and EP4 receptors,which feed back on Gs-protein [117].
As with epinephrine,PGE2 is not an aggregating agent per se
at low concentrations, but potentiates the effect of other
agonists, as demonstrated in both in vitro experiments and
in vivo animal models [118,119].The pro-aggregatory effect
of PGE2 has been recently demonstrated to be secondary to
cAMP reduction, as a consequence of EP3 receptor activa-
tion. On the other hand, PGE2 binding to EP4 induces an
opposite inhibitory effect on platelet function,mediated by
increased cAMP [117].Similarly opposing effects on platelet
activity have been described for prostaglandin E1 (PGE1)
which, via binding to EP3 receptors, reduces cAMP thereby
promoting platelet activation, while on the other hand, by
interacting with IP receptors (as does prostacyclin), inhibit-
ing platelet function [120].

All the chemokine receptors identified on the platelet
plasmalemma, including CCR1, CCR2, CCR3, CCR4, CXCR4
and CX3CR1, are coupled to Gi. They all are considered
weak platelet activators, but their role appears to be pre-
dominantly in the inflammatory response that accompa-
nies atherosclerotic vascular disease and thrombosis [94].

Overall, the evidence suggests that negative modula-
tion in platelets of the basal activity of AC, resulting in
decreased cAMP, favours their aggregation, and even in the
absence of effective homotypic aggregation, this mecha-
nism suffices to induce platelet P-selectin expression and
consequent heterotypic aggregation.

Pharmacological modulation of adenylyl
cyclase: effect on heterotypic aggregation
Stimulation of AC with consequent cAMP elevation pre-
vents platelet activation and adhesion.This effect has been
observed in response to stimulation of Gs-coupled
b-adrenoceptors in platelets that, via cAMP-dependent
activation of nitric oxide (NO) synthase (NOS) type 3, pri-
marily reduce platelet heterotypic adhesion with minimal,
or no effect, on homotypic aggregation [121]. Similarly, in a
study of healthy subjects, ex vivo treatment of platelets
with exogenous NO was found to decrease their aggrega-
tion with monocytes [16]. In line with these results, Morell
et al. [122] have shown that NO inhibits exocytosis of dense
and alpha-granules, but the effect on the latter is more

pronounced than on the former, as it is evident at concen-
trations as low as 10 nM compared with 1 mM required to
modulate significantly dense granule release. Conversely,
decreased NOS activity enhances monocyte–platelet
complex formation [16, 123]. The effect of NO on platelet
activation is mediated through soluble guanylyl cyclase
(sGC) and consequent increase in cGMP. It has been
reported by one group that cGMP plays a biphasic role on
the platelet release reaction, with an early stimulatory
action mediated through PKG and a late inhibitory
effect occurring at higher cGMP concentrations and in a
PKA-dependent manner [124, 125], although this is
controversial.

Cilastozol, which is a phosphodiesterase (PDE) 3 inhibi-
tor, can increase platelet cAMP [126], as well as efficiently
suppress P-selectin expression and platelet–leucocyte
aggregate formation induced by a variety of agonists [126,
127]. Addition of cilastozol to standard dual antiplatelet
therapy (aspirin plus clopidogrel) in patients undergoing
coronary artery stent implantation has been reported to
result in increased inhibition of platelet aggregation and
P-selectin expression, in ex vivo functional assays [128].

Pharmacological modulation of the serotoninergic
system can modify platelet activation status and hetero-
typic complex formation. Indeed, selective serotonin
re-uptake inhibitors, commonly used for the treatment of
depression, have been shown to inhibit platelet–leucocyte
aggregation [129, 130], most likely as a consequence of
their demonstrated ability to activate AC in platelets [131].
Similar findings have been reported in rodents treated with
herbal medicines such as magnolol and honokiol from
Magnolia officinalis [132], used for treatment of depression
in traditional Chinese medicine, as well as curcumin from
Curcuma longa [133], used by alternative practitioners for
improving cognitive function and for its purported anti-
inflammatory and antitumour effects, all of which enhance
platelet AC activity and thus intracellular cAMP.

From all of these data, Gi-dependent signalling appears
to be crucially implicated in alpha granule release and con-
sequent heterotypic aggregation, independently of other
biomolecular events activated during platelet adhesion to
the vascular wall and thrombus formation. At the same
time, it exerts a modulatory effect on platelet activation
and homotypic aggregation induced by agonists whose
direct action is Gq-mediated.

Table 2 summarizes the effects of different agents that
modulate intraplatelet cAMP on homotypic and hetero-
typic aggregation.

Novel therapeutic approaches to
modulation of homotypic and
heterotypic aggregation

The development of new drugs which target the above
described molecular mechanisms underlying adhesion
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molecule expression on activated platelets, as well as that
of agents which interfere with the multiple receptor-ligand
interactions involved in homotypic or heterotypic aggre-
gation, represent exciting and promising strategies for
future antithrombotic therapies. GPIIb/IIIa blockers are an
emblematic example of this pharmacological approach.
They have been demonstrated to prevent thrombotic
events when given acutely and intravenously in patients
with acute coronary syndromes and in those undergoing
percutaneous coronary intervention, albeit at a price of
increased risk of bleeding complications [134]. However,
their counterpart oral GPIIb/IIIa inhibitors have shown
no benefit or even increased mortality in clinical trials
[135–137].

Interference in GPVI interaction with collagen has been
also proposed as a viable antithrombotic strategy, and
GPVI blocking agents are under development. Indeed,
soluble GPVI dimers and anti-GPVI antibodies have been
produced and tested in a variety of animal models [138–
140]. However those tested to date appear to lack potency
and efficacy and consequently in vivo data have not dem-
onstrated a convincing antithrombotic effect. Fab frag-
ment of anti-GPVI monoclonal antibody [141] and a novel
GPVI-binding peptide [142] are currently undergoing
evaluation in terms of their GPVI affinity and antithrom-
botic effectiveness in different species.

A novel and potentially attractive area of therapeutic
development in this field is represented by so-called
aptamers. Aptamers are protein-binding oligonucleotides
that offer potential advantages over standard methods, in
particular the possibility to combine a selective action
against a specific protein–protein interaction with lack of
antigenic activity (extensively reviewed by Keefe & Shaub
[143]). Amongst the different antithrombotic aptamers
that have been developed, inhibitors of vWF have shown
good efficacy as antiplatelet agents in animal models,
including non-human primates [144, 145], and have
moved into the clinical setting with a first phase I trial [146]
which has shown promising results.

Despite these considerations, the complexity of homo-
typic aggregation, whose main effector molecules vary
depending on the haemodynamic conditions and specific
features of the vascular lesions, may render it difficult to
select a single ligand/receptor axis on which pharmaco-
logical modulation might result in a clear therapeutic anti-
thrombotic action. On the other hand, interference with
the adhesive interaction sustaining heterotypic complex
formation may be more straightforward, given the critical
role of P-selectin/PSGL-1 binding in mediating platelet-
leucocyte aggregation. A number of different molecules
have been identified or chemically synthesized with dem-
onstrated ability to interfere with this binding. Heparin and
heparin sulphate are ligands for P-selectin and block its
binding to sialylated, fucosylated carbohydrate antigen
related to sialyl LewisX (SLeX), which is expressed on its
ligands including PSGL-1. Several chemically-modified
heparin derivatives (heparinoids) have been developed
and have shown in vivo anti-inflammatory activity because
of their blocking activity on P-selectin as well as L-selectin,
the latter being expressed on leucocytes and endothelial
cells [147]. More specific inhibitors of P-selectin such as
monoclonal antibodies [148], SLeX mimetics [149, 150] and
recombinant PSGL-1 [151] have been produced and have
demonstrated in vivo antithrombotic as well as anti-
inflammatory effects in different animal models. However,
the development of these compounds into effective drugs
for clinical use has been greatly limited because of their
relatively low selectivity amongst the different selectins,
short circulating half-life, expense and potential antigenic-
ity. In this context, apatmers offer a good therapeutic alter-
native. Indeed, P-selectin inhibitor aptamers are now
available and have demonstrated higher binding affinity
for P-selectin compared with SLeX, and consequently a
selective effect on PSGL-1 engagement. Moreover, little
cross-interaction appears to occur with other selectins,
including the L- and E-isoforms. It now needs to be estab-
lished whether the in vitro data showing inhibition of het-
erotypic aggregation mediated by P-selectin aptamers

Table 2
Effects of platelet agonists/inhibitors on intraplatelet cAMP and consequent effects on homotypic vs. heterotypic aggregation

cAMP modulation Effect on homotypic aggregation Effect on heterotypic aggregation

ADP ↓ Stimulatory, requires activation of both P2Y1 and P2Y12 Stimulatory, mainly sustained by P2Y12
Adenosine ↑ Inhibitory Inhibitory

Epinephrine ↑ Very little Stimulatory
Prostaglandin E2 via EP3 receptor ↓ None alone Stimulatory

Prostaglandin E2 via EP4 receptor ↑ Inhibitory Inhibitory
Prostaglandin E1 via EP3 receptor ↓ None alone Stimulatory

Prostaglandin E1 via IP receptor ↑ Inhibitory Inhibitory
Chemokines ↓ None alone Likely stimulatory

b-adrenoceptors ↑ Inhibitory Inhibitory
Cilostazol ↑ Inhibitory Inhibitory

SSRI ↑ Inhibitory Inhibitory
Magnolol, homokiol, curcumin ↑ Inhibitory Inhibitory
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[152] will be supported by antithrombotic and anti-
inflammatory effects in vivo.

Conclusions

We have here reviewed how the two main biological func-
tions of platelet activation, namely thrombotic and inflam-
matory activity, can be differentially regulated in platelets.
Examination of Gq- and Gi-dependent signalling pathways
reveals that the combined activation of these two trans-
duction cascades is necessary for effective thrombus for-
mation, which requires the full platelet release reaction.
However, regulation of Gi signalling alone, as occurs with
pro-inflammatory cytokines, ADP and molecules involved
in redox regulation, such as NO, appears to be crucially
involved in alpha granule release, even in the absence of
full platelet activation secondary to vascular damage.Phar-
macological intervention on this molecular pathway, as
provided by thienopyridine derivatives or cilastozol,as well
as NO-potentiating agents, reduces heterotypic aggregate
formation. Additionally, aptamers represent a novel and
potentially effective means to inhibit platelet aggregation,
especially of the heterotypic kind. However, in spite of
rapid advances in our understanding of the molecular
mechanisms regulating platelet function, further studies
are required to define better the role of the different
molecular effectors so far identified, as well as to identify
novel potential molecular targets in order to develop
more effective therapeutic strategies to correct platelet
disorders.
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