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Abstract
We used functional MR imaging (FMRI), a robotic manipulandum and systems identification
techniques to examine neural correlates of predictive compensation for spring-like loads during
goal-directed wrist movements in neurologically-intact humans. Although load changed
unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from
recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt
performance so that the task was accomplished with minimum effort. Population analyses of
functional images revealed a distributed, bilateral network of cortical and subcortical activity
supporting predictive load compensation during visual target capture. Cortical regions - including
prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal
consistent with the storage and recall of sensorimotor memories or “states” important for spatial
working memory. Bilateral activations in associative regions of the striatum demonstrated
temporal correlation with the magnitude of kinematic performance error (a signal that could drive
reward-optimizing reinforcement learning and the prospective scaling of previously learned motor
programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex
and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals
facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback
adjustments to ongoing motor commands and feedback error learning). Analysis of single subject
images revealed that predictive activity was at least as likely to be observed in more than one of
these neural systems as in just one. We conclude therefore that motor adaptation is mediated by
predictive compensations supported by multiple, distributed, cortical and subcortical structures.
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1. Introduction
In Lewis Carroll’s Through the Looking Glass (Carroll, 1871), the white queen remarks, “It
is a poor sort of memory that only works backwards.” Indeed, if memory is to improve
fitness for survival it must shape future actions to satisfy changing environmental demands.
Take for example the capture and retrieval of an early-morning cup of coffee. Lifting the
cup over a laptop computer requires accurate estimation of the cup’s weight. Misestimating
the load can have costly consequences. As the coffee level decreases, the nervous system
compensates by adjusting muscular activities through a form of motor learning known as
motor adaptation (Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi 1994;
Thoroughman and Shadmehr, 1999). Motor adaptation relies on limited memory of prior
sensorimotor experiences to adjust muscle activity in anticipation of future loads (Scheidt et
al. 2001) so as to minimize kinematic performance errors (Shadmehr and Mussa-Ivaldi,
1994; Flanagan and Rao, 1995) while also minimizing “effort” (Nelson 1983; Hasan 1986)
or other costs of control (for a review see Shadmehr and Krakauer 2008). Experimental data
show that minimization of kinematic errors progresses faster than does minimization of
kinetic effort in goal-directed arm movements such that overall performance is dominated
by kinematic optimization (Scheidt et al. 2000). The present study exploits these
observations to ask “Which brain structures contribute to the processing of recent
sensorimotor memories for the prediction and compensation of future environmental loads
during goal-directed movement?”

Psychophysical studies have provided compelling evidence that motor adaptation involves
compensatory responses that occur on (at least) two time scales (Lee and Schweighofer,
2009; Smith et al 2006), and that the different adaptive processes may have distinct neural
bases (Keisler and Shadmehr, 2010). In fact, three computationally distinct forms of neural
plasticity have been implicated in motor learning (Houk and Wise, 1995; see Doya 1999,
2000 and Hikosaka et al 2002 and Hikosaka et al 2008 for reviews) and the extent to which
each contributes to predictive load compensation is unknown. First, supervised learning
within microzones of the cerebellum is thought to facilitate the estimation or modeling of
the state of the limb and its environment (Kawato and Gomi 1992; Miall et al. 1993;
Wolpert et al. 1995, 1998; Imamizu 2000; Ito 2000, 2005; Bursztyn et al. 2006), information
that can be used to predict the sensory consequences of action (Angel 1976; Blakemore et al.
2001; Bell et al. 2008). By comparing predicted and realized sensations, deviations from
expectation provide a signed error signal (i.e. one that has magnitude and direction) that can
drive both corrective actions via model reference feedback control (Houk and Rymer, 1981;
see also Seidler et al. 2004) and internal model updating via feedback error learning
(Kawato et al 1987; Kawato and Gomi 1992; see also Fagg et al. 1997). Second,
reinforcement learning within the basal ganglia is thought to improve selection of motor
commands based on information of the current sensorimotor state, thereby maximizing
rewards or minimizing costs associated with action (cf. O Doherty et al., 2003; Haruno and
Kawato 2006; Houk et al 2007; Jueptner et al. 1997; Schultz et al. 1997, 2000; see also
Mink 1996; Graybiel 2005). Commonly, rewards (costs) for reinforcement learning are
modeled as scalar-valued signals that are maximized (minimized) when the desired task is
performed successfully (Gurney et al 2001a, 2001b). Third, unsupervised learning within
cerebral cortex is thought to construct arbitrary mappings (associative memories) that
maximize information transmission between input/output pathways via Hebbian potentiation
and activity-dependent synaptic decay (cf. Lucke and Malsburg, 2004; Sanger 1989; see also
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Linsker 1988). Unsupervised learning enables the cortex to encode the current and recent
state of the limb and its environment (Andersen and Buneo 2002; Buneo and Andersen
2006; Gandolfo et al 2000; Gribble and Scott 2002; Li et al. 2001) as well as the subject’s
own internal state in working memory (Fuster and Alexander 1971; Jonides et al 1993;
D’Esposito et al. 1995). This may provide a common representational basis for sensorimotor
information processing within the cerebellum and basal ganglia (Houk 2011). Are motor
adaptation and the prediction of future environmental loads largely the responsibility of just
one of the neural systems described above (i.e. the cerebellum, its associated pathways and
their targets; Doyon et al 2003; Kawato and Gomi 1992; Imamizu et al. 2000, 2004;
Spoelstra et al. 2000; Wolpert et al. 1998), or are these important computational functions
subserved by multiple distributed modules as predicted by recent models of sensorimotor
learning (Grosse-Wentrup and Contreras-Vidal 2007; Houk and Wise, 1995; Houk 2010; see
also Doyon et al. 2003, 2009; Hikosaka et al. 2002)?

Here we examined trial-by-trial adaptation to changing mechanical loads during goal-
directed wrist flexion movements. We conducted a novel neuroimaging experiment that
combined human motor psychophysics, functional magnetic resonance imaging (FMRI), and
engineering systems analysis techniques to identify neural responses (blood oxygenation
level dependent BOLD signal fluctuations) that correlate with behavioral variables relating
to signed performance errors (for supervised learning), unsigned errors (for reinforcement
learning) and representations of current and past states (for unsupervised learning).
Importantly, our approach allows us to form a priori estimates of each subject s prediction
of impending environmental loads (i.e. the output of an internal model of the environment)
and to identify neural correlates of these predictions. Population analysis of functional MR
images and follow-on analyses of individual subject BOLD data test the hypothesis that
activities in select regions of cerebral cortex, basal ganglia, and lateral cerebellum predict
changes in the limb’s mechanical environment. Implications for the adaptive real-time
control of limb movement are then discussed. Portions of this work have been presented
previously in abstract form (Zimbelman et al. 2007, 2008; Salowitz et al. 2010).

2. Methods
2.1. Subjects

Twenty healthy volunteers participated in this study (6 female, 14 male; mean age = 29
years, range: 19 to 46 years). All subjects scored greater than 68 on the Edinburgh
Handedness Inventory (strongly right-handed; Oldfield 1971). Potential subjects were
excluded from the study if they had significant neurological, psychiatric or other medical
history, or were taking psychoactive medications. Additional exclusion criteria were specific
to MR scanning: pregnancy, ferrous objects within the body, low visual acuity, and a history
of claustrophobia. Written informed consent was obtained from each subject in accord with
the Declaration of Helsinki and institutional guidelines approved by Marquette University
and the Medical College of Wisconsin.

2.2. Experimental Setup
Subjects rested supine within a GE Signa 3T EXCITE MR scanner equipped with a standard
quadrature head coil. We minimized head motion within the coil using foam padding. Visual
stimuli were computer-generated and projected onto an opaque screen that subjects viewed
using prism glasses attached to the head coil. With arms at their sides, subjects grasped the
handle of an MR-compatible, single degree-of-freedom, robotic manipulandum with their
right hand (Fig 1A). For each subject, the handle s axis of rotation was aligned with that of
the wrist, and the frame of the device was secured to the forearm for support. The
manipulandum was mounted on an adjustable support structure fixed to the subject s waist,
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positioning the manipulandum comfortably while reducing motion of the subject s proximal
arm segments. The manipulandum includes a pneumatic actuator that exerts computer-
controlled torques about the wrist. Wrist position and wrist torque were monitored within
0.05° and 0.001 Nm, respectively. Analog measurements of pressure within the actuator
were amplified and low-pass filtered with a cutoff frequency of 20 Hz. Joint angle
measurements were also filtered at 20 Hz. Wrist angle and actuator pressure data were
acquired at the control loop rate of 1000 Hz. Robot control was achieved using custom
hardware and software designed to use the XPC target, real-time operating system (The
Mathworks Inc., Natick, MA). Additional details of the device design, performance and
MR-compatibility are described elsewhere (Suminski et al. 2007b).

2.2.1. Behavioral Task—Subjects made 250 goal directed wrist flexion/extension
movements in five blocks of 50 trials (1 movement per trial). Prior to the start of a trial,
subjects were instructed to relax and visually fixate on a central crosshair stimulus while the
robot held the hand at the home position of 30° wrist extension. Trials began with the
appearance of a “Go” cue that consisted of a pair of black circles (1 cm dia.) representing
the home position (top) and goal target (bottom) at 10° wrist extension (Fig 1B; “Go”). A
circular red cursor (0.5 cm dia.) representing the current wrist angle appeared within the
home target along with the GO cue. Subjects were instructed to “Wait for the GO cue, then
move out-and-back to the target in one fluid motion, reversing direction as accurately as
possible within the target goal without pausing.” The cursor disappeared at movement onset
such that no visual feedback of ongoing motion was provided during movement. This was
done to minimize the occurrence of corrective movements in the neighborhood of the target.
We provided knowledge of results (KR) of kinematic performance for 1.0 s immediately
upon movement reversal to promote movement accuracy (Fig 1B, “Feedback”). KR
consisted of a static display of the red cursor at the location corresponding to the end of the
flexion movement (i.e. at the angle where wrist flexion velocity fell below 10 °/s) on the
linear scale established by the home and goal targets. A secondary graphical element
provided feedback of movement duration on a linear scale that also indicated the desired
movement time (400±25 ms). This information was intended to encourage consistency of
movement duration across both trials and subjects. Subjects were instructed to relax after the
movement. Once performance feedback had disappeared, they were to visually fixate the
central cross hair while the robot maintained the hand at the start location in preparation for
the next trial (Fig 1B, “Relax”). The interval between GO cues varied randomly from 8 to 18
sec, with a mean of 10 sec. This variable inter-trial interval maximized the ability of the
FMRI deconvolution analysis (described below) to extract hemodynamic response functions
(see Toni et al. 1999).

During the trials, the robot applied resistance that increased in proportion to wrist rotation in
the flexion direction (i.e. a position-dependent, “spring-like” load). The first 50 trials (the
practice block) were conducted prior to functional MR imaging and were performed against
a load stiffness (K) of 0.13 Nm/°. This was done to familiarize subjects with the temporal
and spatial accuracy requirements of the task. These initial practice trials were excluded
from subsequent analyses. The next four blocks (the test blocks) were performed while
undergoing concurrent functional MR imaging (one block per functional imaging ‘run’).
Here, the load was sampled from a uniform distribution between 0.05 and 0.21 Nm/° such
that K varied pseudorandomly from trial to trial about a mean value of 0.13 Nm/°. This
mean value corresponded to information about the perturbation sequence that the subject
might learn. All subjects experienced the same sequence of loads (Fig 1C). The sequence
was designed to ensure insignificant correlation between loads on consecutive trials
(required by the systems identification analysis described below). The total time to complete
all 250 trials was about 45 minutes. Subjects rested 2 to 5 minutes between test blocks.
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2.2.2. MR Imaging—After the initial block of practice trials and prior to functional
imaging, we acquired 146 high-resolution spoiled GRASS (gradient-recalled at steady-state)
axial anatomic images on each subject (TE = 3.9 ms, TR = 9.5 ms, flip angle = 12°, NEX =
1, slice thickness = 1.0 mm, FOV = 240 mm, 256 × 224 matrix). These images allowed
localization of functional activity and spatial co-registration between subjects. Functional
echo planar (EP) images were collected using a single-shot, blipped, gradient echo EP pulse
sequence (TE = 25 ms, TR = 2 s, FOV = 240 mm, 64 × 64 matrix). Thirty-five contiguous
axial 4 mm thick slices were selected in order to provide coverage of the entire brain (3.75 ×
3.75 × 4.00 mm voxel size). An additional 4 images were collected at the beginning of each
run to allow the FMRI signal to equilibrate and 7 more were added to the end of each run to
accommodate the rise and fall of the hemodynamic response.

2.3. Behavioral Data Analysis
We computed four kinematic measures of task performance from the flexion phase of each
movement. Movement onset occurred when wrist flexion velocity first exceeded 10°/s.
Flexion movement offset occurred when wrist flexion velocity subsequently dropped below
10°/s. Movement error, ε, was defined as the angular deviation from the target at flexion
movement offset. Absolute error, |ε|, was defined as the absolute magnitude of the quantity
(εi- ε ̄) where ε ̄ was the across-trials average movement error in the last 100 trials (i.e. at
steady-state). We next computed secondary performance measures including reaction time
RT (the time delay between GO cue presentation and movement onset) and flexion
movement duration (the time between flexion movement s onset and offset). Movements
were considered unsuccessful if they were less than half the desired extent, if movement
occurred in anticipation of the GO cue (RT < 100 ms) or if subjects were inattentive (RT >
800 ms). Unsuccessful movements were excluded from further analysis.

2.3.1. Adaptation Modeling—We constructed three behavioral time series from the four
test blocks performed by each subject. These included the environmental load Ki as a
function of trial number i (1 ≤ i ≤ 200), a directional or signed kinematic error εi, and the
absolute error |εi|, which is uncorrelated with εi as a result of nonlinear rectification. As we
will show below, Ki and εi both provide information relevant to the current state of the limb
and its environment. Because |εi| is zero when performance is successful and increasingly
positive otherwise, it is inversely proportional to task success regardless of whether subjects
over- or under-shot the target. For the purpose of our analysis, we consider |εi| a suitable
proxy for a graded reward signal that might drive reinforcement learning. Note that |εi| may
be correlated with other signals of importance for reinforcement learning such as the
magnitude of a prediction error (assuming subjects expect to hit the target on each trial),
salience (more noticeable error, more “fast” learning; cf. Keisler and Shadmehr, 2010) and,
possibly, mechanisms supporting procedural learning and/or error correction processes that
are themselves dependent on the magnitude but not sign of kinematic errors.

The sequence of environmental loads was uncorrelated from one trial to the next. Therefore,
history-dependent changes in performance errors could not have originated from the
perturbation sequence itself but rather must have originated from the processing of
sensorimotor memories within the neuromotor controller (i.e. learning). Studies of motor
adaptations during goal-directed movements of the arms (Scheidt et al 2001; Takahashi et
al., 2001; Scheidt and Stoeckmann 2007), legs (Emken and Reinkensmeyer 2005) and
fingers (Liu et al 2010) have shown that this learning is well-described by a family of
limited-memory, autoregressive models with external inputs:
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[1]

where the a’s and b’s are constant coefficient factors scaling the influence of prior
performance errors εi-m as well as current (Ki) and previous (Ki-p) perturbations,
respectively. Constants N and Q correspond to the minimum number of memory elements
needed to describe the evolution of trial-by-trial errors. The family of model structures
described by Eqn 1 can represent processes having very limited memory requirements (e.g.
when both N and Q are small), as well as processes having more complex dynamics.

We sought to determine the most parsimonious model structure characterizing adaptive
performance changes in our wrist flexion task. We first averaged movement error across
subjects on a trial-by-trial basis, thus reducing the effect of inter-subject execution
variability on the structure estimation procedure. We then used the systems identification
toolbox (ident) within the Matlab computing environment to fit all model structures of
moderate complexity (N and Q ≤ 10) to one half of the data (the estimation dataset), and
evaluate the models’ abilities to predict the sequence of errors in the other half (the cross-
validation dataset). We used the minimum descriptor length (MDL) criterion (Ljung 1999)
to identify the structure most consistent with the information filtering manifest in the
sequence of errors observed during adaptation. Of all models considered, the MDL model is
the one that minimizes a modified mean-square-error (MSE) function:

[2]

where n is the total number of parameters in the model being considered (N+Q) and k is the
number of data points in the estimation data set. The MDL criterion offers an efficient
compromise between model complexity and the quality of fit to the data. We then re-fit the
resulting model to each individual subject’s time series to obtain individualized estimates of
model coefficients am and bp.

An important observation from prior studies of adaptation to stochastic loads is that the
relationship between current performance error and magnitude of current load is often linear
about the adapted load magnitude K̂:

[3]

As shown in (Scheidt et al. 2001), it is possible to obtain a trial-by-trial estimate of each
subject s prediction of upcoming perturbation amplitudes, K̂i, based on the model
coefficients derived from Eqns [1] and [3] above. For example, if the adaptation model
includes a single memory term for both kinematic error and environmental load (as in
horizontal planar reaching; Scheidt et al., 2001; Scheidt and Stoeckmann, 2007), we obtain:

Likewise, if the adaptation model were to include two memory terms for load, but no
memory of prior errors:
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[4]

Of course, subjects cannot actually predict future loads because the sequence Ki is
unpredictable by design, but this in no way precludes subjects from attempting to use recent
sensorimotor memories to minimize errors. K̂i is ideally suited for neuroimaging analyses of
motor adaptation because it provides a trial-by-trial signature of the subject s prediction of
future load based solely on memories of observable behavioral variables.

2.4 Image Analysis
Functional imaging datasets were generated and analyzed using the Analysis of Functional
NeuroImages (AFNI) software package (Cox 1996). Slice values were time shifted to the
midpoint of the corresponding volume using Fourier interpolation. The first 4 volumes were
removed from each imaging run (test block) and the 4 imaging runs were concatenated
together for each subject to yield the functional imaging datasets analyzed using sequential
multilinear regression (Draper and Smith, 1998). The rationale for this analysis is based on
the fundamental geometry of least squares, which permits the partitioning of a multilinear
regression into separate (sequential) regressions when the input regressors are mutually
independent (orthogonal). We modeled BOLD signal fluctuations within each voxel as a
combination of four independent sources of variability: a) nuisance variables (cofactors)
typical of FMRI data collection; b) factors related generally to the performance of the
visuomotor task (i.e. factors that do not change from one trial to the next, including the
processing of visual stimuli and production of wrist flexion movements); c) factors related to
how current-trial performance variables change from one trial to the next (eg. |εi|, Ki); and d)
factors identified by adaptation modeling to be related to memories of prior events (eg. Ki-1,
Ki-2), including memory-based predictions of upcoming environmental loads (eg. K̂i ). We
therefore performed a sequential multilinear regression analysis wherein the unmodeled
(residual) signal variations that remained after an initial Level-1 analysis became the
dependent variables to be predicted by a subsequent Level-2 analysis. Similarly, the
unmodeled signal variations that remained after the Level-2 analysis became the dependent
variables to be predicted by two subsequent Level-3 analyses (Fig 2A). Thus, four regression
analyses were performed in total. By separating analysis of current-trial regressors from
memory-related regressors, differences in the degrees of freedom inherent to the two Level-3
models could not influence the distribution of data variance attributed to the Level-1 and
Level-2 regressors. That is, by splitting our regression into stages or Levels, we can fairly
compare the relative merits of the two Level-3 models (see Section 2.5 below) without
potential confound due to re-partitioning of variance for the earlier Level regressors, as
would occur if we had instead performed separate nonsequential multilinear regressions for
the memory- and prediction-model analyses (see Supplemental Information online).

2.4.1 Baseline Noise Model and the Level 1 Analysis: Main Effect of Task—We
sought to eliminate from the functional image dataset those BOLD signal modulations
correlated with covariate factors expected to mask signal changes of interest and to identify
the task-related BOLD signal components that did not vary from one trial to the next. We
considered as noise all baseline drift (modeled as the linearly-weighted set of orthogonal
Legendre polynomials inclusive to order 4) as well as head motion parameters identified
using an interactive, linear, least squares method for spatial registration of the image time
series (AFNI program 3dvolreg; Cox 1996). Registration yielded six scalar head motion
indices per functional imaging interval (period: 1 TR): rotation about the superior-inferior S/
I, anterior-posterior A/P, and left-right L/R axes along with translation along each of those
axes. The across-subjects average magnitude of head rotation was 0.12° ± 0.07° (mean ± 1

Scheidt et al. Page 7

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SD, here and elsewhere), 0.17° ± 0.12° and 0.35° ± 0.28° about the S/I, A/P, and L/R axes,
respectively. Average translations were 0.34 ± 0.35, 0.91 ± 0.28 and 0.08 ± 0.05 mm in the
superior, posterior, and left directions (range: 0.03 mm and 1.51 mm); no subject was
excluded from analysis due to head motion.

We considered as a main effect of the subject’s task those BOLD signal fluctuations related
only generally with task performance. We therefore created a trial onset time reference
function using a comb function (a series of 1 s and 0 s) with 1 s assigned to TR times of trial
onset (the GO cue) and 0 s assigned to the remaining imaging intervals. This time series was
then convolved with a gamma variate function resembling the canonical hemodynamic
response (Cohen 1997). Note that the Legendre polynomials modeling baseline drift were fit
only to functional data from TRs wherein the estimated hemodynamic response to the GO
reference function fell below 1% of its maximum value, thereby removing the approximate
mean of the raw BOLD signal while preserving those signal components having potential
correlation with trial-by-trial fluctuations in the behavioral regressors in this and subsequent
analyses.

Because the visuomotor task was persistently challenging, we expected to find robust GO-
related activity in brain regions known to engage in visuomotor tasks, including primary and
non-primary sensorimotor cortices, visual and parietal association cortices as well as regions
of the cerebellum (CER), thalamus (TH) and basal ganglia (BG).

2.4.2 Level 2 Analysis: Current-Trial Dependencies—The purpose of this analysis
was to identify BOLD signal fluctuations that correlated significantly in time with small,
trial-by-trial fluctuations in specific behavioral variables of interest (εi, |εi|, and Ki). Because
the signed kinematic error εi generally demonstrates strong correlation with Ki, Ki can be
interpreted as representing both environmental load and performance error, equivocally.
Thus, the BOLD signal residuals resulting from the Level-1 analysis were modeled as a
linearly weighted combination of input reference functions corresponding to the state
variable Ki and the absolute value of kinematic error |εi| (representing a reinforcement
reward signal). The choice to use Ki as a current-trial regressor as opposed to εi was further
motivated by the appearance of Ki (and not εi) in the time series model of error we obtained
from the systems identification analysis of behavioral data described below (see Eqn 6
below). As with the GO cue events, each behavioral reference function was constructed
using a comb function with (typically) non-zero values assigned to TR times of trial onset
and 0 s assigned to the remaining imaging intervals. Unlike the GO reference function, the
non-zero values were drawn sequentially from the trial-by-trial behavioral time series
resulting from the kinematic analysis performed for each subject. These subject-specific
reference functions were convolved with a gamma-variate function prior to multilinear
regression (Fig 2B, zoomed panel). Note that correlations between |εi| and Ki are negligible
because of the nonlinearity introduced by rectification.

2.4.3 Level 3 Analyses: Memory and Prediction Models—We performed two
separate Level-3 analyses to assess the strength of neuroimaging evidence supporting the
participation of the cerebellum, basal ganglia and cerebral cortices in memory-based motor
adaptation. The first Level-3 analysis (the Memory Model Analysis) was motivated by the
results of our systems identification efforts (see Fig 4C and section 3.1 of RESULTS):
BOLD signal residuals resulting from the Level-2 analysis were modeled as a linear
combination of reference functions corresponding to memories of prior trial performance
variables (Ki-1 and Ki-2). The second event-related analysis (the Prediction Model Analysis)
was motivated by Eqn [4], which was also based on the results of system identification and
describes how these memories may be combined to predict upcoming environmental loads.
For this analysis, we evaluated the extent to which the Level-2 residuals correlated with K̂i.
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Because K̂i is a particular, subject-specific, weighted combination of Ki-1 and Ki-2, the two
analyses differed in the degrees of freedom available for partitioning the variability within
the Level-2 residual and therefore addressed different questions. Whereas the first assessed
whether and how BOLD signal fluctuations correlated generally with trial-by-trial variations
in sensorimotor memories of behavioral significance, the second analysis asked whether and
how BOLD signal changes correlated with the one particular combination of sensorimotor
memories that emulates trial-by-trial changes in the subject’s prediction of upcoming load.
In both analyses, model reference functions were convolved with a gamma-variate function
prior to regression analysis. The means of all Level-2 and Level-3 regressors were removed
prior to entering into the regression analyses to minimize the potential for spurious
correlation between them and any steady-state bias missed by the noise model and Level-1
analysis.

2.5 Statistical Inference
Prior to performing multilinear regression (AFNI program 3dDeconvolve), we verified the
independence of all input regressors for each subject to ensure that the analyses would be
free from confound due to multicollinearity.

Subject-specific anatomical and functional images were cubically interpolated to 1 mm3

voxels, co-registered and converted to stereotaxic coordinate space following the method of
Talairach and Tournoux (Talairach and Tournoux 1988). Functional images were blurred
using a 4 mm full-width half-maximum Gaussian filter to compensate for subject-to-subject
anatomical variations. For each analysis, voxel-wise t-tests were performed to compare the
deconvolution fit coefficients to zero. These across-subject comparisons identified voxels
with statistically significant correlation between the hemodynamic response and the input
regressors. A cluster-size and thresholding technique was used to correct for multiple
comparisons in the group analysis. Appropriate cluster size and individual voxel p-value
thresholds were estimated by performing 10,000 iterations in a Monte-Carlo simulation
using the 3dClustSim tool included within the AFNI toolkit (Cox 1996). For the Level-1
analysis, we used a minimum cluster size of 113 μl and an individual voxel probability of t =
7.407 (p= 1×10−6) to yield a whole brain family-wise error threshold of α = 0.0001. For the
Level-2 and Level-3 analyses, where the regressors of interest were small trial-by-trial
fluctuations in performance, this approach was unduly conservative. For these analyses, we
used a lower individual voxel probability of t = 3.950 (p = 0.001) to identify regions of
‘significant’ activation (minimum cluster size of 20 μl). To further ascertain the level of
confidence in our behavioral correlates, we performed a jackknife analysis (df = 16)
repeating the population t-test analysis 18 times, each time removing a different subject
from the pool. We compared the resulting clusters to the original 18-subject analysis and
report the number of times each cluster dropped from significance in the jackknife analysis.
We consider as high-confidence those activation regions that dropped from significance
rarely (≤ 1 time) whereas low-confidence activations dropped from significance frequently
(≥ 10 times).

We visualized the relationship between each regressor and the residual BOLD signals within
selected, masked, brain regions of interest (ROI). We identified the centroids of the selected
ROIs and warped these locations back onto each individual subject s dataset. We then
extracted a trial sequence of scalars (αi, βi) from each centroid voxel. The trial sequences
consisted of regressor magnitude α on trial i and the raw BOLD signal β at the approximate
peak of the hemodynamic response on that same trial. We then plotted the relationship
between the regressor of interest and the residual BOLD signal values computed by
subtracting the contributions of all other regressor variables, excepting the variable of
interest, from the raw BOLD signal. To do so, we sorted the data pairs into five bins of equal
width and ascending values of α before averaging within subjects for each bin. We then
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computed the across-subjects correlation coefficients between regressor magnitude and the
residual BOLD signal.

Finally, for regions of overlap between the two Level-3 models (memory and prediction),
we compared the ability of each model to account for variance in the individual-subject
BOLD signal using a maximum power test (Bohlin, 1978; cf. Ljung, 1999 p. 508). The null
hypothesis stated that the data were generated by the model with fewest free parameters (i.e.
the prediction model). The test compared the MSE computed from the residuals of each
model while correcting for the difference (d = 1) in degrees-of-freedom between the two
models. The correction factor was kd(α)/N with α = 0.95 for a χ2 distribution kd(α) with d
degrees-of-freedom and N data points. Here, N was the number of trials with a full set of
valid data [i.e. no unsuccessful movements for trials i, i -1 and i-2; across subjects, N
averaged 177 ± 15; range: 144 to 195]. Data were taken from the local voxel having greatest
within-subject correlation so as to maximize the BOLD signal:noise ratio for this
comparison (one datum per trial). The null hypothesis is rejected if the following holds true:

[5]

Error bars in figures represent ± 1 SEM.

3. Results
3.1. Behavioral results

As shown for a representative subject (Fig 3), wrist angle trajectories out and back to the
target were performed smoothly with an across-subject average reaction time of 490±62 ms
and an average flexion duration of 400±18 ms. Both average values were well within their
respective desired ranges. Few trials were unsuccessful (see section 2.3 in Methods),
averaging only 8±5 trials across subjects. Unpredictable changes in spring-like load
produced considerable trial-to-trial variability in the peak extent of movement (Fig 3 top,
grey traces). However, performance was reasonably accurate on average (Fig 3 top, black
trace); this was true for all subjects. Angular velocities peaked at about 80°/s during flexion
(Fig 3, middle). The extensor torque applied by the manipulandum varied smoothly in time
(Fig 3, bottom), in approximate proportion to wrist angle displacement. As desired, peak
torque scaled linearly with commanded load (across-subject average r2 = 0.82).

On average, subjects overshot the target at the beginning of the testing session, giving rise to
initial movement errors that were positively biased in the first test block (Fig 4A, first eleven
trials). This is consistent with a modest fatigue-dependent reduction in force production at
the end of the baseline block, and subsequent recovery during anatomical scanning (cf.
Bigland-Ritchie and Woods 1984). If the same descending commands were applied initially
after the rest as were applied before, slight overshoot would be expected at the beginning of
the test blocks. We fit a falling exponential to the movement error time series, which
decreased with a time constant of 31 trials (Fig 4A, red). Asymptotic performance was
approached within 100 trials; final error within the last 100 trials averaged -0.47±2.46°
across subjects. This value closely matched the minimum movement extent (−0.50°) for
which the cursor fully penetrated the target (Fig 4A, inset). Movement errors were clearly
load-dependent, varying in approximate proportion to load stiffness (Fig 4B). When the
perturbation strength was strong, the hand undershot its target whereas when the load was
weak, the hand overshot its goal. This relationship was approximately linear (r2 = 0.75). The
intersection of the regression line with the asymptotic error value represents the perturbation
to which subjects had adapted on average ( K̂ = 0.129 Nm/°).
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We considered whether trial-by-trial changes in kinematic error might reflect the influence
of prior performance on subsequent movement attempts (cf. Scheidt et al. 2001; Scheidt and
Stoeckmann 2007; Takahashi et al., 2001). We therefore analyzed a family of linear
adaptation models of moderate complexity (see Eqn 1 in section 2.3.1 in Methods) and
found the model of Eqn 6 to be the minimum descriptor length structure (Ljung 1999):

[6]

with 86.6% of cross-validation data variance accounted for (VAF) in the average response
(Fig 4C). While other structure selection techniques were also evaluated (including the
Akaike s Information Criterion choice, AIC) (Ljung 1999), the best improvement in data
VAF over the MDL choice was 0.37% at a cost of considerable model complexity (i.e. 8
additional memory terms: 3 for perturbations and 5 for errors). Thus, Eqn [6]
parsimoniously describes the average trial-by-trial changes in wrist flexion movements,
demonstrating that only recent sensorimotor memories influence the updating of motor
commands on subsequent trials in this task. Table 1 details the model coefficients obtained
by refitting Eqn [6] to each individual subject’s time series. We used these coefficients and
the subject-specific behavioral time series to estimate the trial-by-trial fluctuations in each
subject’s prediction of the upcoming environmental load (Eqn [4]). The time series |εi|, Ki,
Ki-1, Ki-2, and K̂i obtained from these analyses were used as input regressors in the
sequential analysis of functional images.

3.2. Functional imaging results
To obtain reliable model coefficients, sequential regression analysis requires statistical
independence of its input regressors. We assessed pair-wise correlations between the
behavioral regressor time series (GO, |εi|, Ki, Ki-1, Ki-2) for each subject and found spurious,
but statistically significant, correlations between |εi| and Ki in two subjects, who were
excluded from further analysis (see Table 1). Because K̂i is by definition a linear
combination of Ki-1 and Ki-2, it also was uncorrelated with the GO, |εi|, Ki regressors.

3.2.1. Level-1 Analysis - Main Effect of Task—We sought to identify those BOLD
signal components related generally to task performance (recall that the GO signal
waveform was identical on each trial). Target capture elicited widespread and distributed
BOLD activation changes correlated in time with the production of goal-directed wrist
movements (Fig 5; Table 2). As expected for a right-handed visuomotor task (cf.
Kawashima et al. 1995; Toni et al 1999) requiring substantial muscle force production (Dai
et al. 2001), large activation volumes spanned the central sulcus in the left hemisphere,
encompassing primary sensorimotor (S1 and M1), dorsal and ventral premotor (PMd and
PMv), and posterior parietal cortices (PPC). Because the subjects’ target was presented
visually, we expected and found widespread and distributed cortical activities in areas that
contribute to visual perception, processing of visuospatial instruction cues and the encoding
of visual targets relative to the initial position of the hand: middle occipital gyrus (MOG),
middle temporal gyrus (MTG), fusiform gyrus (FG), lingual gyrus (LG) and anterior
intraparietal sulcus/supramarginal gyrus (BA 40). Smaller cortical activation volumes were
located bilaterally in cingulate, inferior parietal and insular cortices, areas thought to be
involved in motor response selection in the presence of uncertainty and errors (Paus 2001;
Seidler et al. 2006; Kayser et al. 2010; Picard and Strick 1996; Grinband 2006; see also
Singer et al. 2009). By construction, our task minimized the importance of online feedback
stabilization of wrist posture because the ballistic motions emphasized spatial accuracy at
mid-movement. Nevertheless, transcortical feedback mechanisms probably were active
during the initial “ballistic” phase of the reach (Prablanc and Martin 1992; Seidler et al.
2004; Grafton 2008; see also Desmurget et al. 1999, 2001). Consistent with so-called long-
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loop reflex actions (Evarts and Fromm 1981; Evarts and Tanji 1976; Miall et al. 1993; Strick
1978), we observed general task-dependent activations (Fig 5) in cortical and subcortical
areas previously implicated in the closed-loop feedback compensation for limb positional
errors during wrist postural stabilization (Suminski et al. 2007a, their Fig. 6) and movement
(Diedrichsen et al, 2005; Grafton et al, 2008; Seidler et al, 2004). These included subcortical
activations spanning anterior (lobule V) and posterior (lobule VI) regions of right lateral
cerebellar cortex, deep cerebellar nuclei (interposed and/or dentate), bilateral red nucleus
and bilateral activations in the cingulate motor areas that extended into the superior frontal
gyri: left supra-adjacent supplementary motor area (SMA), and right pre-SMA.

Although the task was persistently novel, subjects did optimize performance by adapting to
the approximate mean of the load distribution (Fig 4B) and thus, we expected BOLD
activation in areas previously implicated in the feedforward compensation for altered
kinematic or kinetic behavior of a hand-held tool (Grafton et al. 2008; Imamizu et al. 2000,
2004; Jueptner et al. 1997; Krakauer et al. 2004; Seidler et al. 2004, 2006; Shadmehr and
Holcomb, 1997; see also Desmurget et al. 2004). Indeed, the primary-, pre-, supplementary-
and cingulate-motor area activities highlighted above could reflect these areas’ contributions
to motor learning (cf. Sanes, 2003). The observed activity in lobule VI of the left posterior
cerebellum was in an area frequently implicated in visuospatial motor learning (Imamizu et
al. 2003, their Fig 4; Krakauer et al. 2004; Diedrichsen et al. 2005; see also Boyd and
Winstein, 2004; Gilbert and Thach 1977). Additional subcortical activations were observed
in motor regions of the left striatum (posterior putamen) and bilateral thalamic nuclei:
ventrolateral (VL), dorsomedial (DM) and lateralposterior (LP), structures thought to be part
of cortico-thalamo-striatal-cortical loops important for procedural and motor skill learning
(Doyon et al., 2003; Graybiel 1995; Houk 2011; Houk and Wise 1995; see also Seidler et al.
2006). Smaller cortical activation volumes were located in the right hippocampal/
parahippocampal region, areas thought to be important for the formation and maintenance of
sensorimotor and spatial memory (Burguess et al. 2002; Rolls 1991, 1999; Fuster 2009;
Nadel, 1991) as well as other functions supporting sensorimotor integration and learning
(see Bland and Oddie, 2001; Cohen and Eichenbaum 1991; Dypvik and Bland, 2004).

3.2.2 Level-2 and Level-3 Analyses—The sequential Level-2 and Level-3 analyses
were intended to identify small signal modulations superimposed on the average task-related
activity removed by the Level-1 analysis. Based on Eqn [6], we hypothesized that the
Level-1 residual BOLD time series would reflect trial-by-trial fluctuations in environmental
load and kinematic performance (Level-2) as well as fluctuations related to memories of
prior loads and performances (Level-3).

Altogether, the Level-2 and Level-3 analyses revealed robust activity in multiple areas
previously implicated in processing motor performance errors and the acquisition of
compensatory responses reducing such errors (Table 3) (Desmurget et al. 1999; Doyon et al.
2009; Graybiel 2005; Hikosaka et al. 1999, 2000; Imamizu et al. 2003; Jueptner and Weiller,
1998; Miall et al. 2001; Seidler et al. 2006; Tunik et al. 2005). Confidence in the activity
within each region was further assessed by a post-hoc jackknife analysis (Table 3), which
counted the number of times a region dropped from significance when each subject, in turn,
was excluded from analysis. Note that many regions with “small” activation volumes (< 50
μl) were robust against dropout in the jackknife analysis.

Level-2 analysis identified two large clusters of activation correlated with trial-by-trial
fluctuations in Ki (Fig 6A): left sensorimotor cortex and right cerebellar hemisphere lobule
V/VI. Smaller clusters were identified in areas previously implicated in the spatial planning
and execution of visually-directed movements (Boussaoud 2001; Dieber et al. 1998; Taira et
al. 1990; see also Paus 2001): left pre-PMd, right PMd and PMv, anterior cingulate and
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inferior parietal cortices. BOLD signal changes in the basal ganglia correlated with trial-to-
trial fluctuations in unsigned errors |εi| (Fig 6B): bilateral anterior dorsal putamen (rostral to
the anterior commissure), left globus pallidus and right substantia nigra. These areas are
thought to support reinforcement learning and the conditional selection of spatially-directed
motor actions and sequences of actions (Graybiel 1998; Graybiel and Kimura 1995; Gurney
et al. 2001). We also found |εi|-correlated activities distributed throughout neocortical areas
with reciprocal connections to the basal ganglia (Middleton and Strick, 2001b; Alexander et
al. 1986; see also Selemon and Goldman-Rakic 1985, 1988): left hemispheric pre-frontal
(BA 10) and inferior parietal (BA 39) cortices; right hemispheric pre-PMd (per the
convention of Picard and Strick, 2001), anterior cingulate, superior parietal and superior
temporal cortices; bilateral activity in PMv, posterior cingulate, fusiform and precuneate
cortices. We also found |εi|-correlated activity within the pontomedullary tegmentum, an
area that includes the inferior olive, serotonergic raphe nuclei and reticulospinal projections.

Both of the Level-3 analyses modeled the Level-2 residuals as a weighted combination of
prior trial perturbation Ki-1 and Ki-2 reference waveforms. In the memory model analysis
(Fig 7), the regression treated the memories independently and so they competed to capture
variability within the residual BOLD data. Signal components that correlated with Ki-1 (Fig
7A) were located cortically, broadly distributed throughout right hemispheric regions
associated with the formation and maintenance of sensorimotor memories (Lenartowicz and
McIntosh 2005; Gazzaley et al. 2004): in dorsal prefrontal cortex (pre-PMd) and in anterior
cingulate, middle temporal, and fusiform cortices, areas thought to interconnect with the
basal ganglia and/or cerebellum (eg. Bostan et al. 2010; Goldman–Rakic, 1988; Hoshi et al.
2005; Hoover and Strick, 1993, 1999; Kelly and Strick 2003; Middleton and Strick 1998,
2001; Selemon and Goldman-Rakic 1988). Moreover, memory-related activity in the septal
area is consistent with engagement of a septo-hippocampal system important for
maintenance of spatial memories (Olton, 1977). BOLD signal components correlating with
Ki-2 also spanned neocortex (Fig 7B): right superior- (i.e. pre-SMA, BA 6) and inferior- (BA
44) frontal gyri, pre-PMd (BA 6), middle temporal (BA 21) and fusiform cortices; left
prefrontal (BA 46), superior parietal, middle temporal (BA 37) and posterior cingulate
cortices (BA 23). Areas with activities correlated with Ki-2 did not overlap with those
correlated with Ki-1. We also observed memory-model correlations with both Ki-1 and Ki-2
in the right parahippocampal cortex (BA 36); parahippocampal cortex is part of an
interconnected network of prefrontal and hippocampal formation regions (Goldman-Rakic et
al 1984) thought to play a critical role in the encoding/retrieval (Burgess et al. 2002) and
maintenance of novel, short-term sensorimotor memories (Ranganath and D’Esposito 2001;
Hasselmo and Stern 2006; for a review see Eichenbaum 2000), particularly those of spatial
locations within a visual scene (but see also Eichenbaum et al. 1999).

In the prediction model (Fig 8), Ki-1 and Ki-2 entered the regression in a subject-specific
proportion corresponding to our best estimate of his or her prediction of the upcoming load
(Eqn. [4]) and so the two memory terms did not compete for data variance in the analysis.
We found high-confidence correlation with K̂i in the left cerebellar hemisphere (lobules VI
and VIII/IX), regions thought to contribute to internal representation of novel hand-held tool
behaviors (Imamizu et al. 2000, 2003; Diedrichsen et al. 2005; for a review see Wolpert et
al. 1998), reward-based behavioral learning (Haruno et al. 2004) and, potentially, the
prediction of neural events (Dugas and Smith 1992; see also Coenen and Sejnowski 1996;
for a review see Courchesne and Allen 1997). High confidence clusters were also located
bilaterally in the region of the red nuclei, which receive cerebellar output through the deep
cerebellar nuclei (Courville 1966; cf. Glickstein et al. 2011; for review and discussion see
Kennedy 1990) and which influence spinal gamma motor neurons via the rubrospinal and
rubrobulbospinal tracts (Appelberg 1962a, 1962b; Appelberg et al. 1975; Johansson 1988).
The red nuclei also send projections back to the cerebellum via the principal olive
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(Appelberg 1967; Jeneskog 1974; Nathan and Smith 1982), a pathway that appears to play
an important role in the control of limb posture (Kennedy et al. 1982) and movement
(Jeneskog 1974). Several smaller clusters were observed in the right substantia nigra, globus
pallidus and centromedian nucleus of the thalamus. These nuclei contribute to cortico-
striatal and thalamo-striatal “loops” (Ilinsky et al. 1985; Matsumoto et al. 2001; Glimcher
and Lau 2005) thought to be involved in reward-optimizing behaviors (Schultz et al. 1993;
Middleton and Strick 2001b; see also Schultz et al. 1995) and the selection of actions in
response to unexpected stimuli (Matsumoto et al. 2001; Minamimoto et al. 2005, 2009; see
also Tunik et al. 2009). Additional BOLD signal correlations with K̂i were found in the
region of the hippocampus, an area thought to be important for the formation of spatial
memories (Mahut 1971), maps of the body in space (Nadel and MacDonald 1982; Nadel
1991) and “memory spaces” (Eichenbaum et al. 1999), as well as in the anterior and
posterior intraparietal sulcus, areas involved in the estimation of dynamic limb state and
prediction of the sensorimotor consequences of motor commands (Desmurget et al. 1999;
Tunik et al. 2005), the on-line feedback control of goal-directed actions (Tunik et al. 2005)
and the multimodal sensory integration (Beuchamp et al., 2010) required for a mixed body-
and gaze-centered spatial encoding of motor goals (Bernier and Grafton, 2010).

BOLD signal components correlating with K̂i overlapped with two regions identified in the
memory model analysis [right pre-PMd and middle temporal gyrus (BA 21)] but were
distinct in other cortical areas including the right hippocampus, right superior parietal lobule
(anterior and posterior intraparietal sulcus, IPS; BA 7) and left fusiform gyrus (BA 37). In
pre-PMd, a comparison of MSE values from the two models revealed a slight explanatory
advantage for the memory model over the prediction model (memory model: median MSE =
343 %2, range: 81 to 1235 %2; prediction model: median MSE = 345 %2, range: 82 to 1242
%2; 1-sample sign test on the intrasubject difference between MSE values: p<0.0005).
However, when we account for the memory model’s additional degree of freedom (Bohlin,
1978; cf. Ljung, 1999 p. 508), we find no compelling evidence to reject the prediction model
as the most parsimonious explanation of the data variance. Based on this equivocal outcome,
we cannot conclude whether activity in pre-PMd corresponds to the storage/recall of
sensorimotor memories needed to compose a prediction of upcoming loads or the
composition of that prediction itself. We also found equivocal results for the MTG overlap
region.

In regions of interest throughout the brain, the relationship between the regressor magnitude
and BOLD signal change was approximately linear (Fig 9). The linearization of kinematic
performance about the operating point defined by the currently predicted load (Fig 4B) was
matched by a corresponding linear relationship between BOLD signal change and the
behavioral variables contributing to that prediction. For example, the BOLD signal varied by
3.5%±6.2% across the range of Ki values in the cerebellar cortex (across-subjects mean ±
SD, n=18), by 1.9%±4.9% across the range of Ki-1 values in MFG, by 1.4%±7.7% with
variation in Ki-2 in FG, by 4.8%±8.7% with variation in |εi| in the PUT and by 4.5%±6.7%
with variation in K̂ in the GP. We then evaluated the extent to which the population trends of
Figures 8 and 9 reflected predictive neural activity within individual subjects (Table 4). We
performed within-subject fits of a linear equation to the binned (regressor αi, response βi)
data within GP, HIP and CER. We considered as significant those fits with linear trends with
p ≤0.1. Out of 18 subject datasets analyzed, three demonstrated predictive activity in all
three regions of interest (GP, HIP and CER), four subjects had predictive activity in two out
of the three regions whereas seven subjects had predictive activity in just one of them. We
found no compelling evidence of predictive BOLD signals in four subjects. Thus, subjects
were just as likely to exhibit predictive activity in multiple neuroadaptive systems as they
were to have it in just one. Subjects were unlikely to exhibit no predictive activity in any of
these regions. There was no clear grouping of subjects according to which regions displayed
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predictive signals: For subjects exhibiting multiple predictive responses at p ≤0.1, four
displayed the combination GP and HIP, four had the combination GP and CER, whereas
five had the combination HIP and CER. Although the absolute counts differ somewhat if we
instead use a significance threshold that is more strict (p ≤ 0.05) or more liberal (p ≤ 0.15),
the relative frequency of single vs. multiple predictive responses would not change
meaningfully.

4. Discussion
Subjects performed goal-directed wrist movements against spring-like loads that varied
randomly from one trial to the next. Although the loads were in fact unpredictable, subjects
tried to use sensorimotor memories from recent movements to predict and compensate for
upcoming loads (Fig 4C). These predictions enabled subjects to adapt performance so that
the task was accomplished, on average, with a minimum of effort (Fig 4A, inset). Using an
approach proposed by Scheidt and colleagues (Scheidt et al. 2001), we estimated each
subject’s prediction of upcoming load based solely on performance variables observed
during the most recent trials. We used these estimates to identify neural correlates of
memory-based sensorimotor prediction - a subject-specific ‘signature’ of prediction within
the neuromotor system (Eqn 4). We used this time series, along with others reflecting trial-
by-trial modulations in perturbation strength and performance errors, as inputs to a set of
event-related analyses of the functional MR images obtained as subjects practiced the visual
target capture task. The input time series were crafted (and verified) to be statistically
independent, thereby enabling us to decompose, sequentially, the overall BOLD signal into
components related only generally to performance of the task (Fig 5), components
correlating with current-trial variations in performance (Fig 6), and components related to
the storage/recall (Fig 7) and integration (Fig 8) of sensorimotor memories. The analyses
revealed a distributed, bilateral network of cortical and subcortical activity supporting
predictive compensation for changing environmental loads during visual target capture.
Cortical regions exhibited trial-by-trial fluctuations in BOLD signal consistent with the
associative storage and recall of task-relevant sensorimotor memories or “states” (Figs 6A
and 7); bilateral activations in associative regions of the striatum were consistent with
reward-optimizing reinforcement learning (Fig 6B); activity in the cerebellar cortex
implicated this structure in both the online (Figs 5 and 6A) and predictive (Fig 8)
compensation for environmental disturbances. These results suggest active engagement of
each of the three primary neuroadaptive mechanisms thought to contribute to motor learning
and adaptation (Houk and Wise, 1995; Doya, 1999, 2000). Importantly, BOLD signatures of
memory-based prediction of upcoming load were not limited to the cerebellum, but were
also observed in an output pathway of the basal ganglia and in several cortical areas,
including the hippocampus and posterior parietal cortex. Analysis of individual subject
images in these regions found that subjects were just as likely to exhibit predictive activity
in multiple regions, as they were to display it in one. Although the multiplicity of predictive
activity might have been due, in part, to the highly-constrained nature of our task (discussed
in section 4.2.1 below), the results demonstrate that compensation for environmental load
relies on contributions from multiple neuroadaptive mechanisms.

4.1. BOLD signal correlates of current sensorimotor state
By design, the applied load Ki correlated strongly with peak torque applied to the subject’s
hand during wrist flexion. Because neuromuscular control of the wrist is compliant, Ki also
correlated with “signed” kinematic error: subjects undershot the goal (a negative error) when
the load was stiffer than average and overshot the goal (positive error) when the load was
more compliant than average (Fig 4B). A limitation of the regression analyses we used is
that they cannot determine whether BOLD signals that correlate with Ki actually depend on
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load, error, or some combination of factors that co-vary with load. The Level-2 analysis
identified Ki-related activities in areas previously implicated in the representation and online
(moment-by-moment) compensation for kinematic performance errors, including left
primary sensorimotor and right inferior parietal and anterior cingulate cortices as well as
right cerebellar lobules V–VI (cf. Diedrichsen et al. 2005; Suminski et al. 2007a; see also
Jueptner et al. 1997). The same analysis also identified activities in areas implicated in the
production of graded force at the hand: primary sensorimotor, premotor, and anterior
cingulate cortices (cf. Cramer et al., 2002; Dai et al., 2001; Vaillancourt et al. 2003, Ward et
al. 2008). Although the question of whether cortical neurons encode information related to
movement kinematics or kinetics has received great interest (Georgopoulos et al. 1989;
Georgopoulos et al. 1992; Kalaska et al. 1989; Moran and Schwartz 1999; but see also
Hatsopoulos et al. 2007), recent theoretical and experimental evidence suggests that the
brain adjusts its neural tunings (feedback sensitivities) according to prevailing task demands
(i.e. optimal feedback control: cf. Loeb et al. 1990; Loeb and Marks 1985; Todorov and
Jordan 2002; Scott 2004). Consistent with this idea, a recent FMRI study found that separate
brain regions contribute to the moment-by-moment feedback regulation of wrist angle
during a stabilization task and the adjustment of feedback set-point and/or sensitivity on a
longer time scale when the moment-by-moment control fails to achieve subjective
performance criteria (Suminski et al. 2007a). The fact that the regressor Ki (commanded
load) correlates with signed kinematic error (εi) is not a limitation in our analysis, but rather
makes Ki an ideal proxy for whatever kinematic or kinetic sensorimotor states contribute to
feedback control in our task.

4.2. Mechanisms supporting predictive compensation during visually-directed movement
Predictive compensations must be guided by past experience if they are to be effective in
improving performance. Even trial-and-error exploration requires storage of recent
performance information so that actions with greater reward are repeated. Behavioral
analysis (Fig 4) identified Ki-1 and Ki-2 as a minimal set of memories/states contributing to
trial-by-trial evolution of performance observed in our task. Image analysis found Ki-1 and
Ki-2 represented in multiple, widely-separated, and non-overlapping regions in the right
hemisphere, including prefrontal (pre-PMd) and temporal (MTG) association areas,
cingulate cortex, septum and parahippocampal areas. These results are consistent with the
idea that a fundamental role of cortex is to encode states of behavioral significance (Houk
and Wise 1995; Doya 1999, 2000). More specifically, they are consistent with studies
exploring the neural basis of working memory (for reviews see Eichenbaum 2000; Fuster
2009; see also Ullman 2004), which implicate reentrant cortical-cortical and cortico-
subcortical loops in the storage and maintenance of memoranda. Unit recording evidence in
animals and functional imaging and lesion studies in humans demonstrate that memory
networks are “largely interregional, linking neuron assemblies and smaller networks in
separate and noncontiguous areas of the cortex” (Fuster 2009). Procedural memory, which
facilitates the learning and adaptation of sensorimotor skills, is mediated by prefrontal and
middle temporal cortices, in connection with anterior putamen and caudate (Knowlton et al.
1996; Miyachi et al. 2002). In contrast, prefrontal, parietal, septal, parahippocampal and
thalamic areas contribute to the formation and maintenance of episodic memories (of
personal experience) and spatial memories, (of object location; for reviews see Aggleton and
Brown 1999; Burgess et al. 2002; Fuster 2009) and to the consolidation of new declarative
memories (memories that can be held in consciousness; cf. Tulving 1987). Because these
forms of memory may be important during the initial stages of adapting to a novel
visuomotor perturbation (cf. Anguera et al. 2009; Keisler and Shadmehr, 2010; see also
Redding and Wallace 2002), both may have contributed importantly to subject performance
in our persistently novel task.
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Although activation sites for Ki-1 were adjacent to those for Ki-2 in executive and sensory
association cortices (pre-PMd and MTG), they were non-overlapping in other areas
(cingulate, fusiform and inferior frontal cortices, septum). This result implies a distributed
network encoding of serial order in goal-directed reaching. That is, as information cascades
through working memory, it shifts from circuits associated with the most recent movement
attempt to circuits representing events further in the past.

Predictive BOLD signals based on these memories were located in cerebral cortex
[including right hippocampus, right posterior parietal (anterior IPS) and right PMd cortices],
in the right globus pallidus and centromedian nucleus of the thalamus (an output pathway of
the basal ganglia) and in the left cerebellar cortex (lobule VI) and bilaterally in the red
nucleus. These regions are thought to play very different roles in the planning and control of
sensory-guided movements. In addition to it’s role in declarative memory formation in
general, the right hippocampal system is also believed important for forming spatial
memories and/or “maps of the body in space” (Piekema et al. 2006; but see also
Eichenbaum et al. 1999), information that is conveyed to neocortical association areas via
cingulate cortex (Sutherland et al. 1988) for possible use in determining which joints to
move, in which direction. In contrast, anterior intraparietal cortex plays a critical role in the
estimation of dynamic limb state for use in the prediction of the sensorimotor consequences
of motor commands (Desmurget et al. 1999; Tunik et al. 2005) and the on-line feedback
control of goal-directed actions (Tunik et al. 2005; see also Suminski et al. 2007). The basal
ganglia play a critical role in selecting movements (Graybiel 1998; Gurney et al 2001a,
2001b; Houk 2010; Tunik et al. 2009) and in the scaling of movement amplitudes
(Desmurget et al. 2004; Krakauer et al. 2004; see Jueptner and Weiller 1998). The
cerebellum is implicated in the ongoing feedback regulation of limb position (Eccles 1967;
Mackay and Murphy 1979), in the predictive cancelation of sensory afference (Blakemore et
al. 1998, 2001; see also Serrien and Wiesendanger 1999) and in the adaptation to novel
visuomotor (Imamizu et al. 2000, 2003, 2004, 2007; Seidler et al. 2004; Tseng et al. 2007)
and dynamic environments (Diedrichsen et al. 2005; Shadmehr and Holcomb 1997) that
require complex adjustments in the coordination of phasic activations in muscles driving
limb motion (see Krakauer et al. 2004; see also Liu et al. 2011). How might these predictive
signals have contributed to adaptive control in the present experiments?

4.2.1. Strategies…—At least three different adaptive strategies could have been used to
solve the visual target capture task. First, subjects could have implemented a spatial
remapping strategy to capture the target. Here, the appropriate response to overshoot
(undershoot) would be to move the internal representation of the target closer to (farther
from) the starting point of the hand. As the right hippocampus is thought to be involved in
storing and maintaining the topographic memory (spatial map) needed to move to a
remembered goal (Maguire et al. 1996, 1998; Nadel and MacDonald 1980; Vargha-Khadem
et al. 1997; for a review see Burgess et al. 2002), our data suggest that subjects may have
recruited the hippocampus to remap the visuospatial relationship between visually-perceived
target distance and desired movement extent. Cingulate cortex conveys hippocampal
information to neocortical association areas (Sutherland et al. 1988), thus providing a means
by which the hippocampus could influence the spatial planning of subsequent movements
(cf. Anderson and Buneo 2002). We also found two clusters of predictive activity in the
right SPL around the IPS, one located near the parieto-occipital junction and the other
located more anteriorly - areas previously shown to display reach-related activity (Filimon et
al. 2009; Bernier and Grafton 2010). Our observations are consistent with the idea that
posterior parietal cortex plays a critical role in multimodal sensory integration for spatially
directed action (Avillac et al. 2005; Prevosto et al. 2009; Bisley and Goldberg 2003, 2010).
Spatial remapping could be part of a ‘fast’ compensatory response to kinematic error that
shares critical resources with the declarative memory system (Keisler and Shadmehr, 2010)

Scheidt et al. Page 17

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Second, because the manipulandum constrained the wrist in all dimensions except the task-
relevant degree-of-freedom, subjects could have compensated for target overshoot
(undershoot) by decreasing (increasing) the amplitude of any preexisting pattern of feed-
forward motor commands inducing wrist flexion. A large body of evidence suggests that the
basal ganglia play a vital role in selecting which movement to make in a given circumstance
and in planning/controlling the selected movement’s amplitude (Desmurget et al. 2003,
2004; Krakauer 2004; see also Houk 2010). In our experiments, anterior putamen, globus
pallidus and substantia nigra all demonstrated strong activity related to reward, prediction
error and/or other error correction processes that are dependent on the magnitude but not
sign of kinematic errors. Moreover, the observation of predictive activity in right CM
thalamus is suggestive because this structure receives projections from the globus pallidus
and sends reciprocal projections back to striatum (Glimcher and Lau 2005; Matsumoto et al.
2001; McLardy 1948), thus providing a way for load predictions in the basal ganglia to
influence movement selection and/or amplitude planning on the subsequent movement
attempt (see Schultz et al. 1995; see also Minamimoto 2005).

Third, subjects could have adapted to the novel spring-like dynamics of the manipulandum
by adjusting coordination among the multiple muscles spanning the wrist. Numerous
experimental, lesion, and theoretical/modeling studies implicate the cerebellum in the
sensorimotor adaptation and learning of coordinated movement (for example: Martin et al.
1996; Thach 1996; Imamizu et al. 2000, 2003, 2004; Bastian 1996; see also Miller and
Sinkjaer 1997; Tseng et al. 2007). In one model of cerebellar function (Kawato and Gomi
1992; Wolpert et al. 1998; Imamizu et al. 2003), a feedback controller, in conjunction with
an inverse model of the controlled object, transforms a desired trajectory of the arm into an
appropriate set of motor commands. Learning an accurate inverse model is facilitated by
action of the feedback controller, which transforms trajectory error into a feedback motor
command that can both augment the ongoing movement and train the inverse model used to
generate the commands in the first place. The controller also includes a forward model that
takes as input the current state of the arm and an efferent copy of motor commands (von
Holst and Mittelstadt 1950, as cited in von Holst 1996) and produces an estimate of the new
state of the arm. One possible use for the predictions provided by a forward model is to
serve as an estimate of sensory signals during the delay associated with sensory transduction
and transport (Wolpert et al. 1995; Miall et al. 1993; Bell et al. 2008; Ebner and Pasalar
2008).

The observation of bilateral predictive activity in the mesodiencephalic area of the red
nucleus in the current study suggests another use for predictive signals. Recall that the red
nuclei are an important output channel of the cerebellum that receives projections from the
deep cerebellar nuclei (Courville 1966; cf. Glickstein et al. 2011) and send projections back
to the cerebellar nuclei and cortex via the principal olive (Appelberg 1967; Nathan and
Smith 1982; Onodera 1984; DeZeeuw et al. 1998). The red nuclei also send descending
projections to the spinal cord, where they act primarily on gamma motor neurons γMNs
(Appelberg et al. 1975; Johansson 1988) to encode the dynamics of limb muscle activity
(Miller and Sinkjaer 1998). Whereas the reciprocal connections may provide a way for
current load predictions to influence cerebellar feedback control of ongoing movement, the
descending projections provide a means for the cerebellum to assert conditional feedback
control over the movement (see Houk and Rymer 1981). Accordingly, the cerebellum need
not produce the primary motor commands that drive limb motion via extrafusal muscle fiber
activation (although it may play a primary role in the learning of these commands). Instead,
we take the traditional view that the cerebellum serves as an “accessory adjustor” to primary
motor commands generated elsewhere, for example primary motor cortex (MacKay and
Murphy 1979). Based on our observations, we speculate that predictive mechanisms in
lateral cerebellar cortex compute motor commands sent to γMNs, which innervate intrafusal
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muscle fibers that give rise to muscle spindle afferents. As noted by Houk and Rymer
(1981), the intrinsic parallel configuration of intrafusal and extrafusal muscle fibers make
muscle spindles ideal model reference error detectors - elements designed to “cancel”
expected sensory feedback signals under conditions in which the controlled system (the
extrafusal muscle fibers) responds precisely as does the model (the intrafusal fibers).

In conditional feedback control, movement control is exclusively feed-forward except when
disturbances interfere with ideal performance, thus producing a model reference error signal
(see Houk and Rymer, 1981). For this to work, however, γ-drive to the intrafusal fibers must
predict the response of the limb as coupled to its (variable) external load - which can only
occur if the γ command is itself adaptive. The cerebellar and red nucleus activity we
observed (Fig 8) could be the origins of this adaptive command. Since spindle feedback
projects back to the cerebellum via the spinocuneocerebellar tract, it is possible that
conditional error signals originating from muscle spindles could be used to drive online
feedback corrections (the conditional feedback control of Houk and Rymer 1981) and/or to
update the forward and inverse models that may have been used to learn the commands in
the first place (Fagg et al. 1997; Kawato and Gomi 1992).

4.2.2. …speculations…—All three of these compensatory strategies are viable solutions
to our visual target capture task. To the extent that predictive BOLD activity in the
hippocampal and posterior parietal cortices, basal ganglia and cerebellum reflect the
different adaptive approaches, the pattern of activations displayed in Table 4 suggests that
all three may have been recruited to compensate for the imposed loads. For example,
movement planning in frontal parietal networks may have been conducted within a spatial
reference frame established by the hippocampus and associated structures. The basal ganglia
may then have selected one particular sequence and scaling of muscle activations (a
feedforward motor program) likely to realize that plan. Finally, the cerebellum may have
monitored the ongoing movement by predicting the sensory consequences of the evolving
action and by initiating feedback corrections and internal model updates when the realized
sensations deviated from expectation. Future studies should examine how the brain might
integrate multiple predictive compensations to achieve a final overall motor response and
whether the multiple predictive mechanisms identified here compete or cooperate to
compensate for imposed environmental loads.

We observed two regions of overlap in the two Level-3 analyses (right pre-PMd and right
middle temporal gyrus). When we accounted for differences in model degrees of freedom,
we found no compelling evidence to accept one model over the other in these areas and so,
this activity equivocally corresponds to the representation of sensorimotor memories needed
to compose a prediction of upcoming loads and/or the composition of that prediction itself.
A previous PET study of motor adaptation and consolidation (Shadmehr and Holcomb,
1997) found activity “specific to the recall of a recently acquired internal model of the field”
at nearly the same pre-PMd location as observed in our level-3 analyses, except in the left,
not right, hemisphere (their Figure 3B). In the experiments of Shadmehr and Holcomb,
subjects were required to adapt to the novel dynamics of a viscous curl force field while
moving a planar, 2-joint manipulandum in 8 different directions and so, they could not have
adapted using either a simple rescaling of existing coordination patterns or a spatial
remapping of the target relative to the hand’s starting location. In contrast, a PET study by
Krakauer and colleagues (Krakauer et al. 2004) and an FMRI study by Imamizu and
colleagues (Imamizu et al. 2007) both found right-hemispheric premotor activity associated
with visuomotor adaptation of right-handed movements in the presence of cursor rotation.
Given the hemispheric difference between dynamic and visuomotor adaptations revealed by
these previous studies and others (Sainburg 2002; Sainburg and Kalakanis 2000), the fronto-
parietal activity observed in our Level-3 analysis may well indicate that subjects in our study
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adopted a visuospatial solution to the movement task rather than a dynamic adaptation.
Indeed, subjects may have been predisposed to this kind of solution because they were
already forced to solve a novel visuospatial transformation: they were required to lay
recumbent in a scanner while making flexion/extension movements of the wrist, movements
that were translated into vertical motions of a visual cursor.

4.2.3. … and implications—This study provided direct experimental evidence that
prediction of hand-held load is a distributed computation supported by a bilateral network of
cortical and subcortical activity, thus reflecting active engagement of three neuroadaptive
mechanisms previously implicated in motor learning and adaptation (cf. Houk and Wise,
1995; Doya, 1999, 2000): cortical regions for the storage and recall of task-relevant
sensorimotor and visuospatial memories, basal-ganglionic networks for selecting and scaling
movements to optimize reward or a related signal, and cerebellar pathways for both the
online and predictive compensation for environmental disturbances. Based on
neurophysiological considerations and evidence from the literature, we concluded that these
predictions likely represent distinct computations within cerebellar, basal ganglionic and
hippocampal loops that engage cortical working memory. Although multiplicity of
representations of predictive activity may have been facilitated by the highly constrained
nature of our task, the results nevertheless demonstrate that compensations for
environmental load can recruit multiple neuroadaptive mechanisms. By disambiguating load
prediction from the processing, storage/recall, and weighted integration of recent
sensorimotor memories, the present study demonstrates a new experimental approach that
can be exploited to advance understanding of how the neural systems supporting motor
adaptation are altered by experience, neurologic disease and pharmacological intervention.
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Highlights

We used FMRI, a robot and time series analysis to study motor adaptation

People use limited memory from recent movements to predict and cancel imposed
loads

Image analysis used state variables and predictions estimated from behavioral data

BOLD correlates of prediction in: cerebellum, basal ganglia,several cortical areas

Prediction is a distributed computation served by cortical/subcortical memory
systems
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Figure 1.
(A) Schematic representation of the one-degree of freedom pneumatic manipulandum. (B)
Illustration of the visual cues, summary feedback and instructions provided to subjects.
Trials began with a “Go” cue wherein a black target appeared near the bottom of the screen.
There was a one-to-one correspondence between the subject’s actual wrist angle and the
location of a red cursor on the screen. No visual feedback was provided during the
movement. Instead, feedback of peak wrist angle and movement duration was presented
after movement completion (“Feedback”; see METHODS for details). Subjects then relaxed
and visually fixated between trials (“Relax”). (C) The environmental load applied to the
hand varied from trial-to-trial. For the purpose of this study, the sampling interval of
behavioral data sets is 1 trial.
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Figure 2.
Description of functional imaging analyses. (A) Two models were investigated using a
sequential regression analysis comprised of three levels. Image preprocessing removed from
the raw BOLD signal those signal components correlated with nuisance variables of no
interest. Level-1 analysis identified and removed from the baseline-corrected BOLD signal
the general task-related activity. Level-2 analysis identified and removed from the Level-1
residual those signal components related to current-trial performance variables of interest.
Separate Level-3 analyses identified BOLD signal components related to memory
processing and load prediction. (B) Schematic representation of the statistical model
comprising our “Memory Model” analysis. Individual behavioral regressors (mean
removed) were convolved with a gamma-variate function approximating the canonical
hemodynamic response. These time series were scaled and summed to best fit the raw
BOLD signal using multi-linear regression. The gray band (left) illustrates the expanded
region (right) with “GO” cue timings shown by vertical dashed lines.
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Figure 3.
Time profiles of wrist displacements (top), velocities (middle) and torques (bottom)
obtained during testing of a representative subject. Individual trial profiles are presented in
gray whereas the average profiles over the entire testing session are presented in black.
Wrist displacement target tolerance is shown by the horizontal bar.
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Figure 4.
Group behavioral results. (A) Time series of average movement error (black) and the line of
best fit (red). Gray band indicates target tolerance. Inset shows target (black) and cursor
(red) corresponding to the average subject performance at steady-state (i.e. within the last
100 trials of the experiment). (B) Average movement error plotted as a function of load
stiffness on a trial-by-trial basis. The best fit linear regression is shown in red. The
intersection of the regression line with the lower bound of the target tolerance indicates the
mean perturbation strength that subjects had adapted to, K̂i. (C) Comparison of performance
(data variance not accounted for) for models of increasing structural complexity (number of
model terms, or parameters). Unexplained variance decreases dramatically with the
inclusion of additional model terms up until the MDL choice model (blue) after which
improvement is incremental, if at all.
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Figure 5.
Voxel-wise t-tests compared fit coefficient values versus 0.0, identifying regions that
showed a statistically significant correlation between the hemodynamic response and the
“GO” cue regressor. Lateral, medial and dorsal surface plots (top) and axial views (bottom)
indicate cortical regions with BOLD signal components generally correlated with task
execution. Here and elsewhere, left hemispheric activities are shown to the left of each
panel. Abbreviations: aIPS anterior intraparietal sulcus; CgC cingulate cortex; FG fusiform
gyrus; HIP hippocampus; INS insula; IPG inferior parietal gyrus; LG lingual gyrus; M1
primary motor cortex; MOG middle occipital gyrus; MTG middle temporal gyrus; PMd
dorsal premotor cortex; PMv ventral premotor cortex; PostCG post central gyrus; PUT
putamen; RN red nucleus; S1 primary sensory cortex; TH thalamus; V cerebellar lobule V;
V1 cerebellar lobule V1.
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Figure 6.
FMRI results: current state regressors. (A) Ki, current trial perturbation amplitude and (B) |
εi| current absolute value of trial error. See Table 2. Abbreviations: aCgC anterior cingulate
cortex; aPUT anterior putamen; CS central sulcus, pre/post central gyrus; FG fusiform
gyrus; GP globus pallidus; MFG middle frontal gyrus; pCgC posterior cingulate cortex;
PMv ventral premotor cortex; SMG supramarginal gyrus; SN substantia nigra; SPL superior
parietal lobule; V–VI cerebellar lobule V, VI.
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Figure 7.
FMRI results: regions with BOLD signal changes correlated with memory model terms: (A)
Ki-1 and (B) Ki-2. Abbreviations: aCgC anterior cingulate cortex; FG fusiform gyrus; IFG
inferior frontal gyrus; MTG middle temporal gyrus; pCgC posterior cingulate cortex; PMd
dorsal premotor cortex; SP septal area.
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Figure 8.
FMRI results: regions with BOLD signal changes correlated with prediction model term K̂ i.
Abbreviations: GP globus pallidus; HIP hippocampus; IPS intraparietal sulcus; MTG middle
temporal gyrus; PMd dorsal premotor cortex; RN red nucleus; VI cerebellar lobule VI.
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Figure 9.
BOLD activity versus binned parameter magnitude, averaged across subjects. Vertical error
bars: ±1 SEM.
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Table 1

Model coefficients of behavioral time series

Subject b0 b1 b2 r2

1 −42.7 24.1 3.5 35.2%

2 −28.4 3.9 −0.1 31.4

3 −33.0 27.1 4.4 23.0

4 −43.0 7.8 −1.6 30.5

5 −43.4 14.3 1.7 34.2

6 −32.8 4.0 9.5 28.9

7 −25.7 8.9 −1.8 16.6

8 −27.0 17.0 6.8 28.4

9 −47.5 21.2 2.4 54.6

10 −46.7 15.3 8.6 41.2

11 −28.0 5.1 10.3 14.4

12 −40.2 10.3 6.7 44.6

13* −69.0 −0.4 −4.2 47.3

14 −45.7 25.5 12.2 44.6

15 −38.8 8.1 14.6 34.6

16 −39.9 1.4 9.9 35.9

17 −26.0 5.5 8.5 14.2

18 −38.2 14.6 13.1 20.7

19* −33.7 17.7 14.7 38.2

20 −44.1 −5.8 −4.4 29.0

mean±SE −39±2.3 11±2.0 5.7±1.4 32±2.5

*
Subjects excluded from image analysis due to spurious correlation between |εi| and Ki
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Table 4

Single-subject analysis of predictive BOLD activity. Significance of linear term (slope)

Subject GP HIP CER

1 *** *** ***

2 *

3 **

4

5 **

6

7 * *** ***

8 ** ** **

9 ***

10 * *** *

11 * *** **

12 **

14 ** *** ***

15

16 *** ***

17 * ***

18 *** *** *

20 **

***
p ≤ 0.05;

**
p ≤ 0.10;

*
p ≤ 0.15
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