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Background. Disability in multiple sclerosis (MS) is related to neuroaxonal degeneration. A reliable blood biomarker for
neuroaxonal degeneration is needed. Objectives. To explore the relationship between cerebrospinal fluid (CSF) and serum
concentrations of a protein biomarker for neuroaxonal degeneration, the neurofilaments heavy chain (NfH). Methods. An
exploratory cross-sectional (n = 51) and longitudinal (n = 34) study on cerebrospinal fluid (CSF) and serum NfH phosphoform
levels in patients with MS. The expanded disability status scale (EDSS), CSE, and serum levels of NfH-SMI34 and NfH-SMI35 were
quantified at baseline. Disability progression was assessed at 3-year followup. Results. At baseline, patients with primary progressive
MS (PPMS, EDSS 6) and secondary progressive MS (SPMS, EDSS 6) were more disabled compared to patients with relapsing
remitting MS (RRMS, EDSS 2, P < .0001). Serum and CSF NfH phosphoform levels were not correlated. Baseline serum levels
of the NfH-SMI34 were significantly (P < .05) higher in patients with PPMS (2.05 ng/mL) compared to SPMS (0.03 ng/mL) and
RRMS (1.56 ng/mL). In SPMS higher serum than CSF NfH-SMI34 levels predicted disability progression from baseline (AEDSS
2, P <.05). In RRMS higher CSF than serum NfH-SMI35 levels predicted disability progression (AEDSS 2, P < .05). Conclusion.
Serum and CSF NfH-SMI34 and NfH-SMI35 levels did not correlate with each other in MS. The quantitative relationship of
CSF and serum NfH levels suggests that neuroaxonal degeneration of the central nervous system is the likely cause for disability
progression in RRMS. In more severely disabled patients with PP/SPMS, subtle pathology of the peripheral nervous system cannot
be excluded as an alternative source for blood NfH levels. Therefore, the interpretation of blood protein biomarker data in diseases
of the central nervous system (CNS) should consider the possibility that pathology of the peripheral nervous system (PNS) may
influence the results.

1. Introduction

In multiple sclerosis, irreversible disability progression is
anatomically associated with neuroaxonal degeneration [1-
3]. Using cerebral microdialysis, it was shown that as a
result of neuroaxonal degeneration, protein biomarkers were
released into the extracellular fluid (ECF) [4, 5]. Once
released into the ECF of the brain, these brain-specific
proteins diffuse into the cerebrospinal fluid (CSF) [6]. A
protein biomarker specific for neuroaxonal degeneration
are neurofilaments [7, 8]. Of the various neurofilament
proteins (Nf), the light (NfL) and heavy (NfH) chains were
successfully quantified from the CSF and found to be of

prognostic value in patients with MS (reviewed in [7, 8]
and newer references [9-12]). The Nf proteins diffuse from
the CSF into the blood stream from where different NfH
phosphoforms have been quantified by different groups [13—
15]. Because of the relative ease of blood sampling compared
to a spinal tap, it is highly desirable to have a reliable blood
biomarker for neuroaxonal degeneration.

There is a need to better understand the relationship
between CSF and serum protein biomarkers for neuroax-
onal degeneration. The situation in the CSF is relatively
straightforward, because any increase can with a considerable
degree of confidence be associated with damage to the
brain. Interpretation of serum data is more complex. One
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potentially confounding issue is that Nf are also expressed
in the peripheral nervous system [7].

The relationship between CSF and serum NfH levels
in MS is not known. In this study, we hypothesized that
the well-recognized neuroaxonal degeneration of the central
nervous system would lead to a higher concentration in the
CSF compared to the serum. To test this hypothesis, we
quantified NfH heavy chain phosphoforms from the serum
and CSF in a cohort of MS patients we have been published
on before [16].

2. Methods

2.1. Patients. This study was approved by the local ethics
committee, and informed written consent was obtained from
the patients. All patients with MS were from a previously
published Dutch cohort [17] and were classified into having
relapsing remitting MS (RRMS, n = 21), secondary
progressive MS (SPMS, n = 22), or primary progressive MS
(PPMS, n = 9) according to published criteria [18]. Blood
and CSF samples were taken at the same time. Matched
aliquots of CSF and serum samples were coded and stored
in polypropylene tubes as described [19].

2.2. Clinical Assessment. Disability was recorded on the
expanded disability status scale score (EDSS) [20]. Progres-
sion of disability was calculated over the 3-year interval
as AEDSS = followup EDSS — baseline-EDSS. Significant
disability progression was defined as worsening on the EDSS
scale by at least 1 point for an EDSS < 5.5 or at least 0.5 point
for an EDSS > 5.5.

2.3. Neurofilament Analysis. CSF and serum Nf levels were
measured using a sensitive sandwich ELISA which allows
to quantify various NfH phosphoforms by exchanging
the capturing monoclonal antibodies [21]. This ELISA
gives the best analytical performance for the monoclonal
antibodies SMI34 and SMI35 (originally from Sternberger
Monoclonals, now sold through Covance). Adhering to a
previously proposed nomenclature NfH captured by SMI134
is indicated as NfHSMB34 and NfH captured by SMI35 as
NfHSMB5 | The precise binding epitopes of these antibodies
are not known. Binding of SMI34 is phosphate dependent
which is correlated with but not identical to the degree
of NfH phosphorylation. SMI35 binds more specifically to
phosphorylated NfH. Nonmeasurable samples were reported
as 0 ng/mL.

2.4. Data Analysis. Because of non-Gaussian data dis-
tribution the median and interquartile range (IQR) are
shown. Nonparametric statistics were used for comparison
throughout. We used general linear models for comparison
of three variables. The concentration of NfH was compared
between CSF and serum for each patient individually. If the
concentration of NfH was higher in the CSF compared to
the matched serum sample, this was indicated as “C > S’
otherwise as “S = C”. The relationship between higher CSF or
serum NfH levels with clinical progression on the EDSS was

Multiple Sclerosis International

analyzed using the Kruskall-Wallis test. Correlation analyzes
were performed using Spearman’s R. The Bonferroni method
was used to correct for multiple correlations. All statistical
analyzes were performed in SAS (version 9.1).

3. Results

3.1. Baseline. The demographic data of the MS patients is
summarized in Table 1. At baseline, the groups differed in
their demographic data for age (F,4s = 4.87, P < .05), EDSS
(Fp48 = 19,26, P < .0001), and disease duration (F, 45 = 7.33,
P < .01). None of the biomarkers was correlated with age,
age at onset, disease duration, or the EDSS in the MS groups
(data not shown).

The only biomarker distinguishing the MS groups were
serum NfHSMB* Jevels (F,45 = 3.63, P < .05). Significance
was missed for CSF NfHSMI34 (p = 62), CSF NfHSMI3> (p =
.59), and serum NfHSMB5 (p = 83).

There was no correlation between either the CSF and
serum NfHSMB> or NfHSMB3* concentration in any of the
MS groups (data not shown). The post hoc analysis showed
that serum NfHSMB* Jevels were higher in PPMS patients
compared to SPMS patients (P = .0128).

The concentration for NfHM® was higher in the CSF
compared to the serum in 8/9 (89%) of PPMS, 18/22 (82%)
of SPMS, and 14/20 (70%) of RRMS patients. Surprisingly,
for NfHSMI3* the CSF concentration was higher in 2/9 (22%)
of PPMS, 11/22 (50%) of SPMS, and 5/20 (25%) of RRMS
patients.

3.2. 3-Year Followup. The dropout rate for the followup
clinical assessment was 4/9 (44%) for PPMS, 4/22 (18%) for
SPMS, and 9/20 (45%) for RRMS patients.

At 3-year followup most of the MS patients had pro-
gressed clinically on the EDSS scale (Table 2). At followup,
there was a difference between the MS groups for the
EDSS (Fy31 = 9.63, P < .001) and also for the individual
progression on the EDSS (F, 31 = 3.69, P < .05).

Tables 3-5 summarizes the demographic data of the
MS patients according to their individual CSF and serum
NfHSMBS and NfHSMP evels.

The low number of patients with PPMS at followup (n =
5) precluded any meaningful statistical analyzes. Disability
progression (AEDSS) appeared to be associated with higher
CSF than serum levels for NfHM> and higher serum than
CSF levels for NfHSM34 (Table 3).

In patients with SPMS, NfHMB* predicted disability
progression (AEDSS) from baseline if higher in the serum
compared to the CSF (P = .0358, Table 4, Figure 2).

In patients with RRMS, NfHSM3 predicted disability
progression (AEDSS) from baseline if higher in the CSF
compared to the serum (P = .0298, Table 5, Figure 1).

4. Discussion

The main finding at baseline was that the concentration
of NfH phosphoforms was not correlated between matched
CSF and serum samples. Unexpectedly, a proportion of
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TaBLE 1: Patient characteristics at baseline. The median (range) is shown.
Characteristic PPMS SPMS RRMS
Number 9 22 20
Age 52 (46-55) 46 (29-65) 40 (27-55)
Gender (female : male) 6:3 11:11 11:9
Disease duration (years) 16 (6-27) 18 (6-35) 8 (4-13)
EDSS 6 (2-8) 6 (4-7) 2(1-8)
CSF NfHSMIB34 (ng/mL) 0.01 (0-0.05) 0.11 (0-0.04) 0.01 (0-0.04)
CSF NfHSMI35 (ng/mL) 0.10 (0.01-0.15) 0.04 (0.01-0.24) 0.08 (0-1.39)
Serum NfHSM34 (ng/mL) 2.05 (0-3.08) 0.03 (0.19-2.44) 1.56 (0-2.05)
Serum NfHSM55 (ng/mL) 0 (0-0.49) 0 (0-0.16) 0 (0-0.27)
TaBLE 2: Patient characteristics at 3-year followup. The median (range) are shown.
Characteristic PPMS SPMS RRMS
Number 5 18 11
Gender (female : male) 2:3 9:9 4:7
EDSS 7 (4-8) 6 (3-8) 4 (0-5)
AEDSS 0 (~1-1.0) 0 (—2-3) 2 (—1-4)
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FiGure 1: Disability progression in patients with RRMS is associ-
ated with higher CSF NfHM!* levels compared to the correspond-
ing serum concentrations (P = .0298) likely indicating neuroaxonal
degeneration of the central nervous system. The median (thick
horizontal bar), IQR (boxes), and range (whiskers) are shown.

patients with MS had higher concentration of NfH phos-
phoforms in the serum compared to the CSF which was
considerable for NfHSM34 (50-88%). Furthermore the abso-
lute concentration of serum NfHM34 was highest in patients
with PPMS (Table 1). This is consistent with the notion that
neurodegeneration may be more severe and predominating
over inflammation in PPMS [22].

At baseline, there were also demographic differences
between patients with RRMS, SPMS and PPMS. Patients

Nﬂ_ISMBS

F1GURE 2: Disability progression in patients with SPMS is associated
with higher serum NfH™P* levels compared to CSF data (P =
.0358) suggesting that some degree of damage to the peripheral
nervous system may exist in these patients.

with PPMS, and SPMS tended to be older and have a longer
disease duration compared to patients with RRMS. These
demographic differences did not appear to be related to CSF
or blood NfH phosphoform levels, because no correlations
were found. This is consistent with other NfH studies on
CSF [23] and blood samples [13, 24] based on the same
ELISA technique. The present study is underpowered to
reveal weak correlations which remain statistical possible.
Examining a larger cohort with aid of a newer and more
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TaBLE 3: Primary progressive MS. The patients were classified according to the relationship of CSF and blood NfH levels. If the concentration
was higher in the CSF compared to the blood, this was indicated by “C > S” and “S > C” otherwise. The data is presented for each of the two

NfH phosphoforms quantified (NfHSM4 and NfHSM%),

o NfHSMI3S NfHSMI34
Characteristic

C>S S=C C>S S=C
Number 4 1 2 3
Age 51 (46-55) 52 48 (46-49) 54 (52-54)
Gender (female : male) 1:3 1:0 0:2 2:1
Disease duration (years) 13 (8-20) 17 14 (8-20) 16 (10-17)
EDSS 5(3-8) 7 7 (7-8) 3(3-7)
AEDSS 1(=1-1) 0 0 (—1-0) 1(0-1)

TABLE 4: Secondary progressive MS. The patients were classified according to the relationship of CSF and blood NfH levels. If the
concentration was higher in the CSF compared to the blood, this was indicated by “C > S” and “S = C” otherwise. The data is presented for
each of the two NfH phosphoforms quantified (NfHM* and NfHM3%), * P < .05.

o NfHSMI35 NfHSMB4
Characteristic

C>S S>C C>S S>C
Number 15 3 11 7
Age 45 (29-55) 57 (32-65) 49 (32-65) 44 (29-50)
Gender (female : male) 6:9 3:0 7:4 2:5
Disease duration (years) 16 (6-28) 22 (15-24) 19 (6-28) 16 (7-22)
EDSS 5(1-8) 7 (6-8) 6 (3-8) 3 (1-7)
AEDSS 0(—1-3) 0 (—2-0) 0(-1.5-1.5) 2 (—1-3)*"

sensitive ECL-based technique compared to our ELISA, age
was found to correlated with NfHSMB> [evels [12].

Another weakness of this study was the high dropout of
patients from baseline to followup. This was likely due to
the requirement of a second spinal tap from this community
rather than hospital-based cohort of MS patients [16, 25].

At 3-year followup, most patients had progressed on
the EDSS, but some did improve (Table 2). Sustained
progression on the EDSS was highest for patients with
RRMS. Consistent with previous data on this [16] and other
cohorts [9-12] of patients with MS, high CSF NfHMI3>
levels were of prognostic value (Figure 1). Because in these
patients the concentration of CSF NfHSM13> Jevels was higher
compared to the matched serum (Table 5), it is suggested that
the NfHSM*> measured was of central origin.

The followup data on patients with PPMS and SPMS
showed a prognostic value for higher concentration of
NfHSMB4 in the serum compared to the CSE. This was
significant for patients with SPMS (Figure 2). Among the
number of different explanations, we tentatively suggest that
it may be possible that the source for serum NfHSMI34
could at least in part originate from the peripheral ner-
vous system. There is some clinical literature supporting
this idea. Subtle alterations on routine electrophysiological
measurements in patients with MS are found by some [26]
but not by others [27]. More sophisticated measurements
using nerve excitability measures [28] show changes in the
motor nerve recovery cycle, providing indirect evidence for
Na*/K* ATPase pump dysfunction [29-31], a feature of MS
pathology [32]. In addition, teased fibre studies from sural
nerve biopsies in MS patients showed more disorganized

axonal cytoskeleton (Figure 6 in [33]) similar to what is seen
in the brain [34, 35]. In view of this data, we speculate that
subtle neuroaxonal degeneration of the peripheral nervous
system may be present in more severely disabled PPMS and
SPMS patients.

An important limitation of our study is that in absence of
specific tests [26-28], there is no direct evidence for damage
to the peripheral nervous system. Therefore, this hypothesis
will need to be investigated prospectively to be substantiated
or defeated. We think this is important in order to ensure
that attempts to find a blood-based biomarker for central
neuroaxonal degeneration in MS are not contaminated by
possible pathology of the peripheral nervous system.

It is noted that the results for NfHM3* are different
to NfHSMI3, For NfHSMB4 serum levels were frequently
higher than CSF levels compared to NfHMB>, Trapp et
al. reported changes of NfH phosphorylation, particularly
dephosphorylation of demyelinated axons in the MS brain
[1]. As MS progresses from RR to SP disease, the burden
of altered NfH phosphorylation increases [34-36]. Because
NfHSMB4 binds to a wider range of NfH phosphoforms
than NfHMB5 it may be that serum NfHSMP* evels are
more sensitive in detecting axonal damage in MS than serum
NfHSMB3> Jevels. This argumentation would be consistent
with the finding that a higher concentration of NfHMP* in
the serum compared to the CSF was predictive of disease
progression in SPMS.

Could inflammation-related impairment of the blood
brain barrier (BBB) function in MS explain higher blood
than CSF NfH levels? We do not think so. Historically, the
concept of the BBB originated from the observation that
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TaBLE 5: Relapsing remitting MS. The patients were classified according to the relationship of CSF and blood NfH levels. If the concentration
was higher in the CSF compared to the blood this was indicated by “C > S” and “S > C” otherwise. The data is presented for each of the two

NfH phosphoforms quantified (NfHM™* and NfHSM%), * P < ,05.

o NfHSMIS NfHSMI34
Characteristic

C>S S=C C>S S=C
Number 8 3 5 6
Age 41 (34-53) 38 (29-40) 40 (34-53) 39 (29-48)
Gender (female : male) 4:4 0:3 2:3 2:4
Disease duration (years) 10 (4-19) 3 (1-10) 8 (4-13) 9 (1-19)
EDSS 2 (0-4) 2 (1-2) 1(1-4) 2 (0-2)
AEDSS 2 (0-4)* 0(=1-1) 2 (0-3) 1(=1-4)

certain compounds did not diffuse freely into the central
nervous system (CNS), but they would lead to dramatic
symptoms if injected intracerebrally, intraventricularly, or
intrathecally [37]. For over a century, research on the BBB
has focused on diffusion of compounds into the brain. It
is now well established that assessment of BBB integrity
requires quantification of compounds on both sides of
the barrier (reviewed in [38]). In fact, two barriers need
to be considered: the morphologically defined BBB and
the functionally defined blood CSF barrier (BCB) [6, 38,
39]. Large molecules (e.g., IgM with a molecular weight
of 800kD) can pass the barriers in very small quantities
(e.g., IgM serum:IgM CSF = 3000:1). Smaller molecules
pass through the barriers more easily because of molecular
size-dependent diffusion (QAIb = 1:200; QIgG = 1:500).
Starling’s principle applies, and an increase of QAIb can
be caused by a reduced CSF flow rate without any leakage
in the morphological structures [6, 38]. The concept of
using a biomarker for parenchymal brain damage (e.g.,
NfH) for a “BBB leakage” model is incompatible with
Starling’s principle and the well-established physiology of
the BBB/BCB function. Brain-derived proteins in blood
can indicate brain damage, as consistently reported by a
number of groups, but “leakage” of the BBB/BCB is not a
precondition of increased blood concentrations.

Could the localization of MS lesion formation in the CNS
influence whether products of damage are predominantly
released into CSF or blood? This certainly is a possibility. The
CSF flow dynamics are such that biomarkers released from
cortical pathology are likely to diffuse through the cortical
arachnoid villi into the blood stream and only a fraction
may reach the lumbar CSF [40]. In contrast, pathology of
the spinal cord is more likely to be reflected in lumbar CSE
Neurofilaments are one of the few CNS protein biomarkers
with a higher lumbar spinal CSF concentration compared to
ventricular CSF [41]. The likely reason for this anatomical:
there is a rostrocaudal gradient of the parenchymal Nf
protein concentration with the lowest concentration in
cortical neurons and the highest concentration in spinal cord
axons [34, 42, 43]. It could, therefore, be that a small amount
of spinal cord damage may mask more extensive cortical
damage if investigated from lumbar CSF alone. Conversely,
one may hypothesize that blood NfH levels may be better
suited for investigating cortical pathology. This hypothesis is
tempting, because of the relative ease to obtain serial blood

samples as opposed to CSF samples. Precisely for testing, this
hypothesis it will be important to ensure that there is no
data contamination by pathology of the PNS as tentatively
suggested by the present study.
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