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Abstract
Diffusion tensor imaging (DTI) is a powerful and noninvasive imaging method for characterizing
tissue microstructure and white matter organization in the brain. While it has been applied
extensively in research studies of the human brain, DTI studies of non-human primates have been
performed only recently. The growing application of DTI in rhesus monkey studies would
significantly benefit from a standardized framework to compare findings across different studies.
A very common strategy for image analysis is to spatially normalize (co-register) the individual
scans to a representative template space. This paper presents the development of a DTI brain
template, UWRMAC-DTI271, for adolescent Rhesus Macaque (Macaca mulatta) monkeys. The
template was generated from 271 rhesus monkeys, collected as part of a unique brain imaging
genetics study. It is the largest number of animals ever used to generate a computational brain
template, which enables the generation of a template that has high image quality and accounts for
variability in the species. The quality of the template is further ensured with the use of DTI-TK, a
well-tested and high-performance DTI spatial normalization method in human studies. We
demonstrated its efficacy in monkey studies for the first time by comparing it to other commonly
used scalar-methods for DTI normalization. It is anticipated that this template will play an
important role in facilitating cross-site voxelwise DTI analyses in rhesus macaques. Such analyses
are crucial in investigating the role of white matter structure in brain function, development, and
other psychopathological disorders for which there are well-validated non-human primate models.

1. Introduction
The Rhesus Macaque (Macaca mulatta) is one of the most widely studied non-human
primate species. This species has strong similarities to humans in terms of physiology and
anatomy. It is the second non-human primate species to have its full genome sequenced
(Gibbs et al., 2007), making it attractive for genetic studies. The rhesus has been widely
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used to study neuroanatomy, neurobiology, neurological and psychiatric illnesses, behavior
and social interactions. In particular, the well-developed prefrontal cortex of the rhesus
monkey makes it a unique model to study the brain systems implicated in psychopathology
(Kalin and Shelton, 2003; Nelson and Winslow, 2009). Moreover, humans and rhesus
monkeys share a prolonged period of brain development during childhood and adolescence,
which is a critical period for the study of developmental psychopathology. For these reasons,
the rhesus monkey is an ideal candidate for studies of brain and behavior relationships
across development. Accordingly, noninvasive measurements of the rhesus monkey brain
using magnetic resonance imaging (MRI) have been used for nearly 25 years (Chiro et al.,
1985). Monkey brain atlases based upon post-mortem histological slices have been
developed and made available to the research community (Martin and Bowden, 1996;
Paxinos et al., 2009). Only recently has a computational rhesus brain template based upon
T1-weighted structural MRI scans been described and made available (McLaren et al.,
2009). However, T1-weighted templates alone do not provide accurate localization of white
matter regions.

Diffusion tensor imaging (DTI) (Basser et al., 1994) is an exquisitely sensitive method to
non-invasively map and characterize the microstructural properties and macroscopic
organization of brain white matter (WM) tissues (Jones et al., 1999; Mori et al., 2002).
Measurements of water diffusion are highly sensitive to and modulated by changes in brain
tissue microstructural elements such as myelin, cellular density, cellular membranes, the
cytoskeleton and mitochondria. In WM, which consists of packed axon fibers, the diffusion
of water is anisotropic i.e. directionally dependent because the movement of water
molecules perpendicular to the axon fibers is more hindered than in the parallel direction.
The diffusion tensor is a positive-definite, rank-2 tensor matrix that describes the covariance
of water diffusion in the three orthogonal Cartesian directions. From the diffusion tensor one
can obtain maps of the diffusion tensor trace, eigenvalues, anisotropy and orientation
(Basser and Pierpaoli, 1996). The fractional anisotropy (FA), the most commonly used
measure of diffusion anisotropy, is a normalized standard deviation of the eigenvalues that
ranges between 0 and 1. The higher the value the more organized (in a primary direction) the
WM in that voxel. The trace of the diffusion tensor (TR) is the sum of the three eigenvalues
and indicates the total amount of diffusivity in that voxel. It is inversely related to the
microstructural density. The axial diffusivity (also known as longitudinal or parallel
diffusivity) is the first eigenvalue of the tensor. This measure indicates the amount of
diffusion in the primary direction of the WM organization. The radial diffusivity (also
known as the transverse or perpendicular diffusivity) is the mean of the second and third
eigenvalues. The diffusivities are indicative of the restrictedness of the tissue. These DTI
measures have been used to characterize differences in brain microstructure for a broad
spectrum of disease processes (e.g., demyelination, edema, inflammation, neoplasia), injury,
disorders, brain development and aging, and response to therapy (see Alexander et al., 2007
for a review). The directional diffusion information has been used to estimate and
reconstruct the trajectories of WM fiber bundles using tractography (Conturo et al., 1999;
Mori et al., 1999; Hofer et al., 2008).

The application of DTI in rhesus monkey research is rapidly growing. DTI has been used in
rhesus populations to study brain changes associated with aging (Makris et al., 2007;
Bendlin et al., 2010), lesions (Shamy et al., 2010) and neuro-degeneration (Guo et al., 2011).
Tractography methods have also been used to reconstruct estimates of white matter
pathways (Schmahmann et al., 2007; Hofer et al., 2008; Liu et al., 2009). While several of
these DTI studies in monkeys used voxel-based methods (Makris et al., 2007; Bendlin et al.,
2010), to our best knowledge, DTI templates for rhesus monkeys are not publicly available.
The creation of a standard space DTI template would facilitate the comparison and
integration of research studies (Salimi-Khorshidia et al., 2009). To date, most published DTI

Adluru et al. Page 2

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



studies in monkeys with voxel-based analysis have used intensity-based normalization with
low to moderate dimensional registration methods (Guo et al., 2011; Makris et al., 2007;
Bendlin et al., 2010; Willette et al., 2010; Shamy et al., 2010).

Voxel-based DTI studies in monkeys would benefit from the development of standardized
DTI templates similar to human DTI templates (Mori et al., 2008; Zhang et al., 2011). A
standardized DTI template may allow for use of tensor-based spatial normalization of the
study subjects, which can improve the detection of WM differences in studying WM related
pathology (Zhang et al., 2007b; Wang et al. 2011; Van Hecke et al. 2011). Tensor-based
spatial normalization benefits from the rich information and heterogeneity of the DTI
measurements with anatomy; however, the process of registering full tensor images is
technically more complex than with scalar images. Full tensor spatial normalization requires
reorientation of the diffusion tensor with the local deformation, while preserving the tensor
shapes (Alexander et al., 2001). It has also been shown in human studies that the full
diffusion tensor yields the most consistent spatial normalization across subjects (Park et al.,
2003).

The purpose of this work was to develop, evaluate and optimize an approach for generating
a population-averaged DTI brain template in nonhuman primates. These techniques were
used to construct a high quality DTI brain template from 271 young Rhesus Macaques. We
also present experimental evidence for using a high-dimensional, tensor-based, image
registration technique in the population specific DTI template generation for non-human
primates. Such a template can represent an unbiased mean of the large sample to describe
the average structural shape, organization and diffusion properties of white matter in young
rhesus population (Joshi et al. 2004; Zhang et al. 2007a). The DTI brain template may be
used to facilitate whole brain (Smith et al., 2006) and tract-specific analyses (Yushkevich et
al., 2008; Zhang et al., 2010). The development of a representative DTI template is also
important for the generation of a detailed brain atlas. The template and tractography based
reconstructions of five representative WM pathways are made publicly available at
http://www.nitrc.org/projects/rmdtitemplate/.

The remainder of the paper is organized as follows: In section 2 we describe the image
acquisition, pre-processing, and framework for DTI template construction using DTI-TK.
Evaluation measures for comparison of normalization strategies are also described to
demonstrate the efficacy of DTI-TK for non-human primates. Section 3 describes results of
the comparison of normalization strategies and the details of the final DTI template. In
section 4 the potential applications and limitations of our template are discussed.

2. Material and Methods
2.1 Subjects, Data Acquisition and Image Pre-processing

The data were acquired as part of a unique brain imaging genetics study of young nonhuman
primates. 271 young rhesus macaques in the age-range of 0.7370 to 4.2027 years with mean
age of 2.4011±0.8795 years were scanned. All studies were performed using protocols
approved by the University of Wisconsin Institutional Animal Care and Use Committee
(IACUC). Before undergoing MRI acquisition, the monkeys were anesthetized with an
intramuscular injection of ketamine (15 mg/kg). MRI scanning was performed using a GE
SIGNA 3T scanner with a 16 cm diameter quadrature birdcage coil and the head was fixed
in the sphinx position using a custom stereotaxic frame that fit inside the coil. DTI scanning
was performed using a two-dimensional, echo-planar, diffusion-weighted, spin-echo
sequence with the following parameters: repetition time=10s; echo time=77.2 ms; field of
view=14 cm; matrix=128×128 (interpolated to 256×256 on the scanner); 2.5 mm thick
contiguous slices; echo-planar echo spacing=800 μs. Diffusion-weighted imaging (b=1000s/
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mm2) was performed in 12 non-collinear directions with one non-diffusion weighted image
and the acquisition was repeated six times and averaged. Images were acquired in the
coronal plane through the entire monkey brain. A co-planar field map was also obtained
using a gradient echo with images at two echo times: TE1=7 ms, TE2=10 ms.

The DWI volumes were eddy-current corrected using FSL (Smith et al., 2004). Echo-planar
distortions were corrected using a field mapping procedure (Jezzard et al., 2005), which was
based upon the fugue and prelude functions in FSL before performing a non-linear tensor
estimation (Alexander and Barker, 2005). The brain tissue was carefully extracted for each
subject using a rigorous semi-automatic protocol. We first evaluated two popular brain
extraction methods (AFNI’s 3DSkullStrip, FSL’s BET) on a randomly selected subset of 40
volumes (Smith et al., 2002; Smith et al., 2004). 3DSkullStrip performed better according to
dice similarity coefficient (Bartosic et al., 2010) and hence it was used for all the 271
subjects. The final masks were then carefully checked and manually adjusted.

2.2 Template construction
A primary challenge in generating a population specific template is spatial normalization,
which involves registering (aligning) each individual subject’s image to the others. Spatial
normalization of groups of DTI data acquired from different subjects enables accurate
mapping of characteristics of the diffusion tensor, such as the diffusivities, anisotropy and
orientation within these images.

In this study, the template is constructed using DTI-TK, an advanced DTI spatial
normalization and atlas construction tool (http://www.nitrc.org/projects/dtitk). It constructs a
template in an unbiased way that captures both the average diffusion features (e.g.
diffusivities and FA) and anatomical shape features (tract size) in the population (Zhang et
al., 2007a). It performs white matter alignment using a non-parametric, highly deformable,
diffeomorphic (topology preserving) registration method (Zhang et al., 2007b) that
incrementally estimates its displacement field using a tensor-based registration formulation
(Zhang et al., 2006). The tensor-based formulation perform alignment of white matter by
taking advantage of similarity measures comparing whole tensors via explicit optimization
of tensor reorientation (Alexander et al, 2001, Alexander and Gee, 2000a, Alexander and
Gee, 2000b). By computing image similarity on the basis of full tensor images rather than
scalar features, the algorithm incorporates local fiber orientations as features to drive the
alignment of individual WM tracts. Using full-tensor information as a similarity metric for
non-linear warping has been shown to be effective in spatially normalizing tract morphology
and tensor orientation (Park et al., 2003, Zhang et al. 2007b).

These combined steps are used to generate a representative rhesus monkey DTI brain
template, which can facilitate accurate comparisons of white matter microstructure and brain
connectivity across populations. The initial average template is computed as a Log-
Euclidean mean of the input DT images (Arsigny et al., 2006). The Log-Euclidean tensor
averaging preserves white matter orientation with minimal blurring. The average DTI
template is then iteratively optimized by registering the subject images to the current
average, and computing a refined average as the mean of the normalized images for the next
iteration. This procedure is repeated until the average image converges. The resulting
template is unbiased towards any single subject and captures the average diffusion
properties of the population at each voxel with a diffusion tensor. Subsequently, the template
is “shape-corrected” to ensure that it also represents the average shape of the population
(Guimond et al., 2000). This is achieved by first computing an average of the deformation
fields that warp each subject into alignment with the template, then warping the template
with the inverse of the average deformation field. The overall schematic of the processing
pipeline is shown in Fig. 1. Since the brain size of NHP is significantly smaller than that of
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humans, the scaling parameters in the optimization were adjusted to match the size of the
macaque brain. The length scale for humans in computing the piecewise affine deformation
field is 1.0 mm while that for monkeys is 0.4 mm. Our DTI template, UWRMAC-DTI271,
was generated using the set of DTI data from n=271 monkeys.

2.3 Efficacy of DTI-TK for non-human primates
The quality of a template is dependent on the anatomical consistency of the normalized
images used to generate the template which in turn depends on efficacy of the registration
method used. DTI-TK has previously generated very high quality DTI templates in human
studies, both for adults (Zhang et al., 2007b; Zhang et al., 2011) and infants (Wang et al.,
2011). But its efficacy was not examined in the context of NHP. Hence we demonstrate the
effectiveness of DTI-TK, a high-dimensional tensor-based normalization method in
comparison to three other commonly used intensity-based normalization strategies for
monkey data. We believe such comparisons for non-human primate data can serve a
valuable purpose for DTI studies in monkeys. The three other approaches use FA, co-
registered FA and T1-weighted images, and co-registered b=0 (T2-weighted) and T1-
weighted images from the DTI study. We will refer to as (1) FA-ANTS, (2) FA-T1 and (3)
B0-T1, respectively. All the three intensity-based registration methods use a publicly
available state-of-the-art intensity-based normalization software suite called Advanced
Normalization Tools (ANTS) (Avants et al., 2008, Avants et al., 2006, Avants et al., 2004),
which uses diffeomorphic transformations similar to DTI-TK. For both DTI-TK and ANTS
we use the default setup of parameters for the diffeomorphic transformations recommened in
the online documentation. For ANTS we use the recommended symmetric diffeomorphic
mapping (SyN).

FA-ANTS refers to FA-based normalization using ANTS. In this method the individual FA
maps are first aligned to the FA of the template (obtained from DTI-TK). ANTS has been
demonstrated to be among the most accurate intensity-based normalization method among
fourteen different methods (Klein et al., 2009). The estimated transformations are then
applied to the individual DTI data. Finally, tensors are reoriented to obtain the tensors in the
template space.

FA-T1 and B0-T1 are both T1-based normalization approaches but use different intra-
subject registration techniques to map the diffusion data onto T1 space (i.e. FA to T1, B0 to
T1). First, the individual FA or B0 maps are aligned to their corresponding T1-weighted
images using affine registration. The T1-weighted images are then aligned to a population
specific T1 template (Oler et al., 2010) again using ANTS. These transformations are then
applied to the individual DTI data by reorienting the tensors as in FA-ANTS.

Although the tensors were reoriented in all the above approaches using an identical state-of-
the-art preservation of principle directions (PPD) scheme (Alexander et al., 2001), the key
difference between those approaches and DTI-TK is that the tensor reorientation also plays
an integral part in estimating the transformations in DTI-TK (Zhang et al., 2006), using a
computationally efficient “finite-strain” strategy (Alexander et al., 2001).

2.3.1 Evaluation metrics—The efficacy of a DTI registration method may be measured
by the accuracy of the WM alignment. The four registration methods were compared using
several metrics (Zhang et al., 2007b, Zhang et al., 2011) that are described below. The brain
alignment performance was first evaluated using a subset of n=30 monkeys (called DTI30)
for higher computational efficiency relative to the full sample. The following metrics are
used to investigate the spatial variance and consistency of the scalar, directional and entire
matrix information in the diffusion tensor.
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Normalized standard deviation and dyadic coherence: The diffusion anisotropy and the
dominant direction of diffusion are two features that account for much of the variations in
WM structures (Pierpaoli et al., 1996). Misalignment of WM structures yields large
voxelwise variations in either one or both of these features. Therefore, the normalized
standard deviation of the FA and the dyadic coherence (Jones et al., 2002) were selected as
voxelwise statistics to gauge the normalization quality. The normalized standard deviation
of FA, σ ̄FA, is defined as the ratio of the standard deviation over the mean of the FA values.
The Dyadic coherence, κ, which ranges from 0 to 1 (0 for randomly oriented directions and
1 for identically oriented directions), captures the variability in the dominant direction of
diffusion. We calculated σ ̄FA and κ at each voxel within the WM regions of the DTI30
templates for all the four methods. We also computed normalized standard deviation of the
tensor trace (TR), similar to σ ̄FA.

Cross correlations of diffusion measures: Cross correlation between two scalar maps X1
and X2 is computed as

where υ indexes over all the voxels. This value ranges between 0 and 1. The higher the cross
correlation, the higher the similarity between two maps. We computed the cross correlations
of the WM voxels between the DTI30 subjects and the corresponding template for each of
the four normalization methods using both fractional anisotropy (FA) and trace (TR) of the
tensors.

Overlap of eigenvalue-eigenvector pairs (OVL): Eigenvalues and eigenvectors contain
complementary information, which together specify the size, shape, and orientation of the
diffusion tensor ellipsoid that characterizes diffusion (Basser and Pajevic, 2000). The OVL
between two tensors is computed as:

where λ, ε and λ′, ε′ are the eigenvalue-eigenvector pairs of the two tensors respectively. A
higher average OVL indicates that the method generates more consistently normalized
subjects. The OVL of the WM voxels between DTI30 subjects and the corresponding
templates for each of the four normalization methods was computed.

Distances between diffusion tensors: The two distances between diffusion tensors (Zhang
et al., 2006) are (a) the Euclidean distance (ED) defined as:

and (b) the deviatoric distance (DD) which is the Euclidean distance between the
corresponding deviatoric tensors that takes into account the anisotropic component of the
tensors defined as:
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Lower tensor distances suggest better accuracy in WM alignment. We computed the above
two distances between WM voxels of the DTI30 subjects and the corresponding templates of
the four normalization methods.

Statistical comparisons of the four methods were performed with the same white matter
mask for all the registration methods. DTI-TK and FA-ANTS already share a same white
matter mask. The template FAs of FA-T1, B0-T1 are mapped on to the DTI-TK space, using
FSL’s linear image registration tool (FLIRT) (Smith et al., 2004). This removes the size of
the white matter mask as a confounding factor in the performance comparison. The set of
white matter voxels was defined as those having FA >= 0.2. Histograms (distributions) for
all four normalization methods were then generated for each metric. Many of these
histograms are skewed and thus violate normality. So paired t-tests would be inappropriate.
Hence the distributions were evaluated using the respective empirical cumulative
distribution functions (CDF). A CDF is the probability that a variable has a value equal to or
higher than a specific value. For each metric we perform Kolmogorov-Smirnov (KS) two-
sample tests (Massey, 1951) to estimate statistical significance of the differences between
the CDFs. The KS statistic measures the largest possible distance between two CDFs.

3. Results
3.1 Evaluation results

Qualitative comparisons of the FA of the templates using DTI30 for all of the spatial
normalization methods are presented in Fig. 2. Visually, it is evident that the full-tensor
based (DTI-TK) and FA based (FA-ANTS) templates are the sharpest, while the FA-T1 and
B0-T1 templates are much more blurry. Compared to FA-ANTS, some of the finer WM
structural details, such as the separation between the internal and external capsule, are better
delineated using DTI-TK (see arrows in Fig. 2). In all the quantitative evaluation figures
DTI-TK is represented using blue, FA-ANTS using red, FA-T1 using green and B0-T1
using cyan colors.

Normalized standard deviation and dyadic coherence maps—Good spatial
normalization will ideally maximize the anatomical consistency in the imaging measures,
which decreases measurement variance, while preserving individual differences. The
empirical CDFs and histograms (insets) of the above variables for all four methods are
shown in Fig. 3. DTI-TK has the smallest standard deviation in FA and the highest
eigenvector coherence. According to this criteria, B0-T1 and FA-T1 perform poorly, as
indicated by the right shift in σ ̄FA and left shift in κ, compared to DTI-TK and FA-ANTS.
Although FA-ANTS is performs similarly in terms of σ ̄FA, DTI-TK yields more consistent
tensor orientations as demonstrated by higher κ of the tensors.

The spatial maps of σ ̄FA, σ ̄TR and κ are shown in Figs. 4 and 5, which visually demonstrate
reduced σ ̄FA and σ ̄TR and increased κ for the DTI-TK and FA-ANTS. σ ̄TR is significantly
lower than that of FA. This is expected since the contrast between white and gray matter is
quite less in TR maps. As can be seen both qualitatively and quantitatively, DTI-TK yielded
the lowest inter-subject variance in the scalar measures and higher eigenvector coherence,
which we believe is desirable in a DTI spatial normalization method.

Adluru et al. Page 7

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cross correlations and overlaps—The empirical CDFs and histograms (insets) of the
cross-correlations for FA, TR and eigenvalue-eigenvector overlap (OVL) for the four
methods are shown in Fig. 6. The plots DTI-TK are shifted furthest to the right, though FA-
ANTS has similar performance. These results suggest that DTI-TK yields more consistent
tensor information at the voxel level.

Tensor distances—The histograms and CDFs of the tensor distance metrics (ED and
DD) are shown in Fig. 7. The plots of DTI-TK are significantly shifted to the left. These
results support that DTI-TK yields higher between-subject consistency of the full diffusion
tensors.

3.2 Features of the UWRMAC-DTI271
In this section example maps of different measures extracted from UWRMAC-DTI271, the
template generated from all 271 animals using DTI-TK, are presented. Maps of the average
fractional anisotropy, trace, axial diffusivity and radial diffusivity of are shown in Fig. 8.
Axial slices (every 5th slice) of our DTI template are shown in Fig. 9 as RGB-encoded fiber
orientation maps (Pajevic and Pierpaoli, 1999). The intensities of the colors are modulated
by the corresponding FA map. The bottom row of Fig. 9 shows a subset of slices
(corresponding to second row) from a registered T1 template (McLaren et al., 2009). The
UWRMAC-DTI271 was aligned to the Saleem Logothetis (SL) (McLaren et al., 2009) and
Paxinos (Paxinos et al., 2009) space by affine registration (as used in the FA-T1) of our
template FA to the corresponding T1 weighted templates. This registration approach (FA-
T1), as can be seen, from the evaluation experiments was the next best performing method,
in the absence of diffusion tensor data. The tensors in the corresponding T1 spaces were
resampled and reoriented using the Log-Euclidean and PPD framework respectively using
the implementations in DTI-TK.

Tractography on the DTI template can be used to estimate the trajectories of white matter
pathways (Jones et al., 2002, Park et al., 2003) in the macaque brain. To demonstrate the
potential of tractography applications, the UWRMAC-DTI271 was used to reconstruct five
major white matter pathways – the corpus callosum, the inferior fronto-occipital fasciculus,
the cingulum bundles, the fornix and the uncinate fasciculus. Tracts were generated and
selected based on strategies described by Catani et al. (2008) and Mori et al. (2002). These
major WM pathways share similar topology with those in humans. Several additional 3D
renderings of these tracts are available online as supplementary material.

Finally Fig. 11 shows corresponding axial slices of FA maps of six different subjects and the
corresponding slices from the template. It can be seen that the major white matter structures
are consistently aligned. Additional movies showing the accurate alignment for an axial and
a coronal slice are available as supplementary material. Such consistent alignment is highly
desirable for voxel-based analyses.

4. Discussion
In this paper we described the construction of a population-specific DTI template, the
UWRMAC-DTI271, for young rhesus macaques. The DTI template was resampled and
aligned using affine registration of our template FA to the corresponding T1 weighted
templates in both the Paxinos atlas (Paxinos et al., 2009), (241×320×190, 0.25×0.25×0.25
mm3) and the Saleem and Logothetis atlas (McLaren et al., 2009) (256×256×240,
0.5×0.5×0.5 mm3) and is currently available as a free, image-based resource in the standard
image NIFTI (.nii) format for researchers worldwide. We believe that it will be of
significant interest to investigators in the fields of brain imaging, systems neuroscience,
developmental neurobiology, comparative neurobiology, primatology and psychiatry. This
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template, along with the WM pathways, may be downloaded at
http://www.nitrc.org/projects/rmdtitemplate/. It may be loaded and viewed with many
publicly available image analyses software packages such as FSL
(http://www.fmrib.ox.ac.uk/fsl/), ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php)
and AFNI (http://afni.nimh.nih.gov/afni). The WM tracts may be loaded and viewed in
TrackVis (http://www.trackvis.org/). The contributing factors to the high image quality of
our template are (1) the extremely large sample from which the template was created and (2)
the high performance of the spatial normalization across animals.

Consistent with recent DTI template creation studies in humans (Zhang et al., 2007b; Zhang
et al., 2011; Wang et al., 2011), this study showed that DTI-TK generated a DTI template of
the rhesus macaques with the least inter-subject variability and high anatomical consistency.
Although evaluating all possible registration methods is beyond the scope of the current
paper, we can conclude that the tensor-based registration with DTI-TK yielded more
consistent mapping of the scalar DTI measures, and the tensor orientation (e.g.,
eigenvectors, full tensor) in particular, compared to intensity based methods. The latter is
not too surprising as previous works such as Park et. al. 2003 demonstrated that under
common transformation model, using full tensor information performs better than using
rotation invariant indices of the tensor. Hence although the improvement of DTI-TK may be
due to different implementation of the diffeomorphic transformations the primary reason
may be attributed to the use of tensor-based similarity. We also note that FA-ANTS had
similar performance for registration of FA (and TR) maps, and that this approach would
likely generate similar results when evaluating just scalar DTI measures. The apparently
worse performance of the T1 normalization approaches (FA-T1 and B0-T1) is likely caused
by poor registration of the DTI to the T1-weighted images, but might also be caused by
overall worse performance of normalization using T1-weighted images. We believe that the
presented comparisons can help primatologists make informed decisions when choosing a
registration method and provide useful guidance in spatial normalization of monkey DTI
data.

Although UWMRAC-DTI271 is obtained from a very large number of subjects using a well-
tested normalization method there are several limitations that need to be considered. First,
the spatial resolution of the original DTI acquisition was not isotropic and was relatively
coarse in the slice (anterior/posterior) dimension (2.5 mm). However, both the template and
the spatially normalized DTI data of each individual animal (Fig. 8) appear much sharper
than the original data, including the slice dimension. Clearly the DTI template benefits from
averaging across such a large number of images, resulting in minimal apparent blurring.
Second, the field-map based distortion correction prior to spatial normalization (see
Methods section for details) cannot completely compensate for highly distorted anatomical
areas in the ventral prefrontal areas and temporal lobe regions around the inner ear. This is a
limitation with nearly all DTI studies in both monkeys and humans. In the future, an
improved DTI template may be constructed with true isotropic resolution and parallel
imaging, using the spatial normalization strategies described here. Third, the DTI template
was generated using DTI data from monkeys over an age range of 0.7370 to 4.2027 years,
which may be suboptimal for use in studies of animals at ages outside the range. Future
work is needed to generate either DTI templates at other ages or a DTI template with a
temporal dimension to accommodate for age-related changes (Hart et al., 2010; Fonov et al.
2011). Finally, it is well known that the diffusion tensor model has some limitations with
regard to describing both the diffusion and geometric properties of the tissue in regions of
fiber crossing (Wedeen et al., 2008). Despite this limitation, there is a huge potential for
DTI, and it is widely used for most clinical and scientific imaging research studies of white
matter.
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We would also like to note that, although population averaged computation templates
represent anatomical variation in the species with high SNR and low bias (McLaren et al.,
2009, Joshi et al., 2004, Zhang et al., 2007a), single-subject post-mortem templates (Martin
and Bowden, 1996; Paxinos et al., 2009) are very valuable in cases where DTI/MRI cannot
match the histological specificity and precision. Single-subject computational atlases with
high SNR have also been developed by averaging repeated acquisitions of a single subject
for accurate segmentation and atlas based analyses (Mazziotta et al. 2001; Oishi et al. 2011).
Some voxel based analyses (like TBSS), although recommend using population-specific
template, provide an option to choose “most representative” single-subject as a template that
is then transformed to MNI152 (Smith et al. 2006). Finally, there are more recent Bayesian
and multi-atlas approaches that may ultimately result in better representation of population
properties (Ma et al. 2008; Natasha et al. 2009; Wu et al. 2011; Koikkalainen et al. 2011).

There are many potential avenues to apply the UWRMAC-DTI271. First, it is an average
representation of brain neuroanatomy and diffusion measurements in the monkey, which
will be valuable for education, atlasing, anatomic localization, and comparative
neuroanatomy (Stephan et al., 2001; Ramnani et al., 2006). Future work will include
detailed anatomic labeling of the template similar to the human DTI atlas created by Mori et
al. (2008). The UWRMAC-DTI271 template may be useful as a reference template for
spatial normalization of other DTI data sets, with matching age-range, for voxel-based
analyses. Depending on the age-range and anatomical status of the sample, some monkey
DTI studies may still need to use a study-specific template. In such cases, researchers can
build upon the thorough evaluations and registration framework presented in this paper and
can subsequently map the results onto this template for standardized reporting. By mapping
regions-of-interest (ROIs) and/or tract reconstructions onto this template, automated region-
and structure- specific analyses may be efficiently performed. Further, since the template is
in standardized spaces (Paxinos et al., 2009; McLaren et al., 2009), it is now possible to
integrate other brain templates and regional atlases to create multimodal maps of the
monkey brain.

Another unique attribute of the UWRMAC-DTI271 template is that the major directional
components of the diffusion tensor orientations are preserved. This facilitates the application
of tractography in the average template as can be seen by the example reconstructions of
five major white matter pathways shown in Fig. 10. We will use this template to reconstruct
more of the fiber pathways and create a more complete tractography atlas of the rhesus
monkey brain. Importantly, identifying WM pathways may facilitate efficient tract specific
analyses (TSA) in nonhuman primates (Yushkevich et al., 2008; Zhang et al., 2010). One
clear advantage of DTI studies in the monkey is that tract reconstructions may be compared
with tracer studies that are not possible in humans. Spatial standardization will also enable
the mapping and comparison of prior tract tracing studies in the CoCoMac database
(Croxson et al., 2005), which describes cortical connections in the rhesus macaque. Our
template, in conjunction with a reference label atlas (Wisco et al., 2008), can be used for
developing in vivo brain connectome models for the rhesus monkey using tractography
(Hagmann et al., 2010). This will be a critical step in understanding the influence of
connectivity of the primate brain.

In addition to its application in the study of development per se, we believe that the
developing rhesus monkey DTI brain template presented here is an important step in
furthering the study of psychopathology. In particular, studies demonstrate that several
forms of psychopathology often begin during childhood or adolescence (Paus et al., 2008).
Moreover, evidence suggests that many adolescent and adult anxiety and affective disorders
are chronic developmental illnesses that have their genesis in early childhood (Pine et al.,
1998). Thus, early childhood and adolescence are a period of increased risk, and since
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anxiety disorders are among the most common forms of psychopathology (Kessler et al.,
2005), a focus on developmental non-human primate models of brain white matter will be
increasingly important to understand the neural bases of anxiety-related psychopathology
(Kalin and Shelton, 2003; Nelson and Winslow, 2009).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Research highlights

1. Important first of its kind DTI template for Rhesus Macaques.

2. Largest number of animals ever used in generating a DTI template.

3. Demonstrated efficacy of tensor-based spatial normalization for Rhesus
Macaques.

4. Five major white matter tracts reconstructed on the template.

5. The template is aligned to Paxinos as well as Saleem-Logothetis atlas spaces.
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Figure 1.
The pipeline for generating the template: After the data are acquired, the DWI images are
corrected for eddy current distortions and field in-homogeneities. Then, brain tissue is
extracted from the images so further processing is done only on the relevant regions of the
images. Tensors are estimated by non-linear optimization. An initial bootstrap template is
then computed using the Log-Euclidean mean approach. Finally, the bootstrap template is
iteratively improved using three layers: rigid registration, then affine registration and lastly
by diffeomorphic registration.
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Figure 2.
Qualitative comparisons of the mean FA templates for each of the four spatial normalization
strategies applied to DTI from 30 monkeys (DTI30). Spatial normalization using T1-
weighted images co-registered to FA and B0 (FA-T1 and BO-T1, respectively) generated
considerably more blurry FA templates. The full-tensor (DTI-TK) and FA-ANTS yielded
similar and sharper FA templates; however, some of the WM structures are better delineated
on the DTI-TK map, such as the separation between the internal and external capsule as
indicated by the red arrow. The color bar indicates the FA intensity scale (unitless).
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Figure 3.
Comparisons of the overall performance of the four spatial normalization methods in terms
of the empirical CDF of both normalized standard deviation of FA, σ ̄FA (left), and the dyadic
coherence, κ (right), computed for the voxels within the WM. The corresponding histograms
are shown as insets in each plot. In both cases, the CDFs and histograms for DTI-TK
demonstrated greatest intersubject consistency. The σ ̄FA shows similarity of the performance
(left shift) of FA-ANTS and DTI-TK while dyadic coherence shows the better performance
(right shift) of DTI-TK in preserving white matter orientations. The improvement in
performance is statistically significant (p < 1e-10) as per the two sample KS tests.
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Figure 4.
Qualitative comparisons of the normalized standard deviation of FA (left) and TR (right)
maps in the white matter for each of the normalization methods. Both lower σ ̄FA and lower
σ ̄TR are desirable and clearly better for both DTI-TK and FA-ANTS relative to the other
approaches.
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Figure 5.
Qualitative comparisons of the dyadic coherence, κ, maps for the whole brain for each of the
normalization methods. Highest κ was observed for DTI-TK, followed by FA-ANTS, which
suggests that the tensor-based normalization best preserves the orientation information.
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Figure 6.
From left to right, empirical CDFs and histograms (insets) of cross correlations with respect
to number of subjects: cross correlation of WM FA, cross correlation of WM TR and
eigenvalue-eigenvector pair overlap with the template. DTI-TK performs better (indicated
by right shift in the plots) with statistical significance of p < 1e-09 according to KS tests.
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Figure 7.
Empirical CDFs of tensor distances with respect to WM voxels. Left: Euclidean distance
(ED) of the tensors to the template. Right: Deviatoric distance (DD) of the tensors to the
template. The corresponding histograms are shown in inset plots. DTI-TK has lowest
distances indicated by the left-shift of the curves. Euclidean distances (ED) are shown on the
left and deviatoric distances (DD) are shown on the right for all the four registration
methods. DTI-TK shows better performance as can be seen from the left shift. The two
sample KS tests reveal that the shifts are statistically significant with p < 1e-10.
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Figure 8.
Population averaged, 3D fractional anisotropy (FA), trace, axial diffusivity and radial
diffusivity maps of corresponding slices in sagittal (slice 125: position −1.0 mm), coronal
(slice 106: position 11.5 mm) and axial (slice 156: position 20.0 mm) planes of the
UWRMAC-DTI271 in Saleem and Logothetis (McLaren et al., 2009) atlas space. Each of
these represents different average properties of the diffusion tensor and are useful in
voxelwise analyses to localize individual differences. The units for trace, axial diffusivity
and radial diffusivity are mm2/sec and indicate the rate of water diffusion, while the FA
ranges between 0 and 1 and is unitless.
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Figure 9.
Axial slices (every 5th slice from slice 123 through 183) of eigenvector color maps from
UWRMAC-DTI271 in Saleem and Logothetis atlas space (McLaren et al., 2009). The last
row shows corresponding (to the second row: slices from 143 through 163) axial slices of a
T1-weighted template (McLaren et al., 2009). The top left frame shows the color mapping of
the WM orientation: medial/lateral (right/left) is mapped to red, inferior/superior to blue and
anterior/posterior (right/left) to green. The scale of the image is shown on bottom left. The
positions of the slices relative to the origin in mm are shown on the bottom right of each
slice.
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Figure 10.
White matter tracts reconstructed on the UWRMAC-DTI271 template by adapting strategies
described in Catani et al. (2008) and Mori et al. (2002) for human white matter tracts. The
tracts were obtained using the tensor deflection (TEND) tractography algorithm (Lazar et
al., 2003) with a step size of 0.025 mm, stopping criteria of FA < 0.1–0.15 and a curvature
threshold > 45°–60°. The tracts are overlaid on the slices of the Paxinos T1 atlas (Paxinos et
al., 2009). Several additional 3D renderings of the tracts are available online as
supplementary material.
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Figure 11.
Five corresponding slices (every second one from slice 28 through 36) for six different
subjects (one subject per row) and the corresponding slices in the template (bottom most
row). The normalized images show high anatomical consistency across subjects.
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