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Abstract
Labels that identify specific anatomical and functional structures within medical images are
essential to the characterization of the relationship between structure and function in many
scientific and clinical studies. Automated methods that allow for high throughput have not yet
been developed for all anatomical targets or validated for exceptional anatomies, and manual
labeling remains the gold standard in many cases. However, manual placement of labels within a
large image volume such as that obtained using magnetic resonance imaging is exceptionally
challenging, resource intensive, and fraught with intra- and inter-rater variability. The use of
statistical methods to combine labels produced by multiple raters has grown significantly in
popularity, in part, because it is thought that by estimating and accounting for rater reliability
estimates of the true labels will be more accurate. This paper demonstrates the performance of a
class of these statistical label combination methodologies using real-world data contributed by
minimally trained human raters. The consistency of the statistical estimates, the accuracy
compared to the individual observations, and the variability of both the estimates and the
individual observations with respect to the number of labels are presented. It is demonstrated that
statistical fusion successfully combines label information using data from online (Internet-based)
collaborations among minimally trained raters. This first successful demonstration of a statistically
based approach using minimally trained raters opens numerous possibilities for very large scale
efforts in collaboration. Extension and generalization of these technologies for new applications
will certainly present fascinating areas for continuing research.
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INTRODUCTION
As we explore ever more subtle anatomical correlations in health and disease through
medical imaging, we must look towards efficiently acquiring increasing amounts of data and
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making best use of this information. The long-established gold standard for delineation of
brain MRI is manual voxel-by-voxel labeling by a neuroanatomist (Crespo-Facorro et al.,
1999; Tsang et al., 2008). This process can be extremely time consuming, resource
intensive, and fraught with variability both within the labeling of one rater and between
raters (Fiez et al., 2000; Filippi et al., 1995). Human experts may disagree about pixels
labels, leading to individualized interpretations of image content — e.g., multiple raters
yielded 5–15% coefficient of variation for multiple sclerosis lesions (Ashton et al., 2003)
and 10–17% by volume for tumor volumes (Joe et al., 1999). Given these difficulties, the
scope of manual approaches is typically limited to (1) validating automated or semi-
automated methods or (2) the study of structures for which no automated method exists.
While extensive training is clearly necessary for accurate and precise labeling of anatomical
structures on medical images, we posit — perhaps controversially — that there exists a class
of relevant problems in medical imaging for which humans can reasonably identify
structures based on visually obvious patterns that can be identified with minimal training.

The process of defining a labeling protocol typically begins with the premise that the
objective in manual labeling is that each rater should produce the most accurate and
reproducible labels possible. However, this is not the only technique for achieving high
accuracy. Kearns and Valiant suggested that a collection of “weak learners” (raters that are
just better than chance) could be boosted (“combined”) to form a “strong learner” (a rater
with arbitrarily high accuracy) (Kearns and Valiant, 1988). The first affirmative response to
this suggestion was proven a year later (Shapire, 1990), and, with the presentation of
AdaBoost (Freund and Schapire, 1997), boosting became practical and widely accepted. The
Simultaneous Truth And Performance Level Estimation (STAPLE) framework (Rohlfing et
al., 2004; Warfield et al., 2004), which provides a framework to combine minimally trained
human raters in order to find an accurate label estimate in medical images, can be thought of
as a boosting approach to labeling.

In this paper, we specifically identify minimally trained human raters within the Kearns and
Valiant weak learner model and seek to achieve arbitrarily high accuracy by recruiting large
numbers of raters. For this approach to be valid, the individual raters must be independent
and collectively unbiased. We present and demonstrate the use of statistical methodologies
using real-world data contributed by minimally trained human raters using a purpose-
constructed system known as the Web-based Medical Image Labeling Language
(WebMILL). The algorithm is demonstrated to work in situations where the foibles and
follies of real human raters — e.g., their inability to follow directions, their insistence on
taking short cuts, and their lack of understanding of a given task — are often present. The
consistency of label fusion estimates, the rate of convergence of label fusion estimates with
increasing data, the accuracy compared to the individual observations and the variability of
both the estimates and the individual observations with respect to the number of labels are
discussed. Additionally, the accuracy disparity between the training and testing data sets and
the viability of outlier removal as an improvement technique are considered. In all cases, the
results consistently show that label fusion with robust extensions provide a consistent and
accurate model of the “ground truth” from a wide range of online (Internet-based)
collaborations among minimally trained human raters.

This manuscript is organized in four parts. First, we discuss our proposed approach to
medical image labeling and the informatics infrastructure developed to achieve these ends.
Second, we characterize the ability of minimally trained raters to accomplish fundamental
labeling tasks. Third, we demonstrate successful statistical fusion of labels in a toy example
where ground truth is known. Finally, we analyze a clinically relevant labeling challenge
involving labeling anatomical parts of the cerebellum.
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Labeling Strategy
Our objective is to develop an alternative to expert raters for medical image labeling through
statistical analysis of the collaborative efforts of many, minimally-trained raters as
illustrated in Figure 1. In this section, we specifically study how to 1) provide a means to
efficiently collaborate on the labeling of medical images and 2) perform statistical fusion of
the resulting label sets. To address the primary hypothesis of this effort (many, minimally
trained raters can be relatively unbiased for relevant brain structures), we develop the
informatics infrastructure to allow many raters to participate. Without such a system, it
would be impractical to invite 1,000 (or even 50) raters to label images. All resources
described in the following sections are available in open source and as a virtual appliance
via the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC, project ID
“webmill”, http://www.nitrc.org/projects/webmill) under the GNU Lesser General Public
License (LGPL) version 2.1 or higher (http://www.gnu.org/licenses/lgpl-2.1.html). This
license provides permission to use the software for any purpose, access and modify source
code, link with proprietary software, and redistribute modified or original versions under the
same (or compatible) license, while disclaiming the authors' liability.

Problem Definition—Given a set of three-dimensional volumetric images (i.e., volumes),
our objective is to identify integer-valued classifications (i.e., labels) for all voxels in all
volumes. We partition the set of volumes into a known set which has a priori true labels
exogenously provided for all voxels and a testing set for which we desire labels. We further
divide the known set into a training set which will be used to provide instruction for the user
(e.g., creation of documentation, illustrative examples, and practice) and a catch trial set
which will be presented to the user as if the data were from the testing set. For validation
purposes in this manuscript, the testing set data also has exogenously provided true labels,
but these are not revealed to the labeling and statistical estimation processes.

We consider a volume as composed of a set of two-dimensional sections (i.e., images),
which, when combined, form an ordered set indexed by position within the volume. Each
image is associated with a slice position within a specific volume and is, in turn, associated
with a volume in a set (i.e., training, testing, catch trial sets). Images from catch trial and
testing sets are randomly interspersed and presented to the user during a testing phase.
Images from the training set are used to create documentation and presented to the user in a
dedicated training phase, interactive training mode which mirrors the testing mode but with
the true answer revealed.

During the labeling process, images are presented as tasks in which the user is asked to
accomplish a unit of work. Each task results in labels for one slice of data. A set of labels
that provides exactly one label for all voxels in the dataset is referred to as a coverage. A
coverage may be provided by one or more individual raters. If a set of labels contains
information on less than the entire set of imaging data, it is referred to as a partial coverage.
A set of labels representing multiple coverages means that each voxel in the complete
dataset has more than one label observation. A task is a unit of work that links rater
instructions with exactly one image and, optionally, a pre-label image. The pre-label image
consists of a set of image labels which may guide the user and/or be altered by the user to
form the final labeled image. The approach provides flexibility in structuring independent,
sequential, or hierarchical labeling paradigms by organizing the tasks into groups of related
intent. These diverse efforts can be implemented using a single web-interface system which
is described in the following sections.

Label Fusion—In the seminal presentations of STAPLE image label fusion theory
(Rohlfing et al., 2004; Warfield et al., 2004), all raters were assumed to label all voxels
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precisely once. While this approach functions well in a traditional context, the framework
must be generalized to account for situations in which not every rater has labeled every
voxel and/or raters may label the same voxel more than once (Bogovic et al., 2010;
Landman et al., 2010). Collectively referred to herein as Simultaneous Truth And
Performance Level Estimation with Robust extensions (STAPLER), these extensions
additionally allow for inclusion of training data and/or catch trials in the analysis to improve
estimation accuracy. In particular, this additional data substantially improves STAPLER
accuracy with limited data and/or numerous raters, and can be considered a non-parametric
analogy to the recently presented parametric priors to regularize traditional STAPLE
(Commowick and Warfield, 2010).

System Architecture—Efficient remote collaboration hinges upon creation of a scalable,
robust informatics platform for distributing data and collecting results. Rather than explicitly
describing the process of labeling a specific region (as is done with traditional protocols), we
develop a hierarchical, programmatic approach for describing labeling objectives. In effect,
this is a meta-language that captures training, validation, and implementation of the labeling
process. To add a new labeling objective to the system, a traditional labeling protocol is
divided into a series of tasks which can be modeled as a series of “make the image look like
‘this’” steps.

A key design limitation of the language is that all three-dimensional structures must be
measured on a slice-by-slice basis. We find that extensive training is necessary for novice
raters to accurately perceive three-dimensional structure when viewing images on two-
dimensional computer screens. Since this system is designed to minimize training, the
protocols must be feasible without such insight. However, even two-dimensional labeling
can be challenging since not all aspects of structures are readily identified on a particular
slice orientation. To increase the likelihood of success, we limit consideration to labeling of
two-dimensional images. WebMILL allows labels to be specified on multiple slice
orientations and later fused to ensure consistency with three dimensional structures.

Application Server: Apache Wicket (http://wicket.apache.org/) provides the framework for
managing user authentication, session state, programmatic webpage design, and database
interactions.

Database: All remote-labeler experiences are controlled by information in a MySQL
database (http://www.mysql.com/). The experience is logically divided into projects (a
category of related labeling objectives), regions (a type of task with common instructions),
and slice data (a single two-dimensional image). Units of work are represented as tasks,
which form a triple of project-region-slice. Tasks exist in one of two modes, “training” or
“testing.” Training tasks must have a true result, while testing tasks may have an associated
true result (to represent a hidden catch trial). Both categories of tasks may have an initial
label mask which the rater may edit rather than starting de novo. To begin work, the user
must select a project, a region, and a mode (“training” versus “testing”). Regions may
require that a user perform a number of training tasks prior to beginning testing or complete
a certain number of tasks (or performance level) on one region before progressing to the
next. Once work has begun, the task to be presented to the user is selected at random
according to a discrete probability distribution (encoded in the database over all tasks
belonging to unique sets of project-region-mode triples). When a user performs a labeling
task, the result is an indexed color image with the same extents and resolution as the
prescribed slice. Additionally, all user interactions (time spent, number of mouse clicks,
time spent dragging the mouse, time spent reviewing correct results, etc.) are logged.
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Submission Logic: A submission logic process monitors the table of results in the database
and rebalances the probability of task presentation to ensure that all tasks within a project-
region-mode triple are labeled the same number of times (e.g., sampling according to a
uniform distribution without replacement). The separate process enables rapid prototyping
of adaptive control strategies using slice presentation, pre-labeling of initial masks, and real-
time feedback without Wicket programming.

Administrative Backend: A server-side tool loads medical image formatted data into the
database, configures experimental protocols, retrieves data, accesses result images, removes
tasks, and performs backups of the database.

User Experience—Users interact with the WebMILL system using a modern web
browser supporting Java 1.6 (e.g., Internet Explorer 7+, Google Chrome, Apple Safari on
OS X, Mozilla Firefox 3.5+) (Figure 2A). General introductory and tutorial content is
available without registration. If the user decides to participate, the user must agree to a
consent form and verify an e-mail address. To register for the system, the users must agree
to abstain from attempting to extract any identifiable information, perform three-
dimensional reconstruction, or to identify individuals and/or populations in addition to any
project specific Institutional Review Board (IRB) language. After logging in, the user may
browse the material available for projects, tutorials, system configuration, and statistics on
past performance. Administrative users see an additional section in which they can view and
modify details on raters (e.g., reset passwords, assess tasks performed, summarize time
spent, send contact e-mails, etc.).

Once a user selects a project, region, and mode, a separate window with a graphical user
interface provides a platform independent image annotation tool (Figure 2B). The image to
be delineated appears in a main window. Users can preview adjacent slices to assist with
potentially ambiguous choices; however, labeling is performed on a single image at a time to
encourage rapid processing. A basic position localizer provides context for the task, while
text instructions appear below. Links to tutorial content are present at the lower section of
the window. The system is designed so that the user may have both a labeling and other web
windows open at once. To delineate a region, the user selects from a list of available label
colors and tools (e.g., paint brush, eraser, line tool, fill, etc.). When done, the user may skip
the image (not save), report a problem via e-mail with an anonymous (but specific) identifier
to the problematic task, reset the current slice, or accept the progress and continue. When the
user moves onto the next slice, results are sent back to the server and a new set of images is
loaded in the browser.

Foibles and Follies: Rater Reproducibility
As we consider the feasibility of collaborative image labeling, we must consider the
potential sources of error if we are to be able to estimate achievable levels of accuracy. We
partition the sources of error into two classes: errors of interface and errors of interpretation.
For errors of interface, the user intends to specify particular information, but the system
misinterprets the actions. Such errors can arise with resolution limits or human factors, such
as fatigue, function confusion, or incentive factors with regards to the interface design.
Alternatively, we can consider errors of interpretation in which the user lacks relevant
knowledge of target structure or misinterprets the visual information.

To assess these potential errors, we present results from two pilot studies. First, we validate
the WebMILL distributed labeling interface. Second, we explore feasible level of achievable
accuracy on empirical challenges using data resulting from the WebMILL system.
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Interface Validation
In the first study, all anatomical knowledge was abstracted away and we focused solely on
evaluating the input devices. The user was shown a gray-scale image on the left and asked to
color it as shown in the right. Imaging data was artificially created to test the minimally
trained humans’ ability to perform various common labeling tasks. Each labeling task
(402×402 pixels) had four components each located in one quadrant of the image: (1) Label
the five corner points of a star: Tested the raters’ ability to label individual points; (2) Fill in
an elliptical region: Tested the raters’ ability to quickly and efficiently fill a region of
interest; (3) Trace the contour of a triangle: Tested the raters’ ability to trace straight lines;
(4) Trace the contour of a spiral: Tested the raters’ ability to trace curves. For each labeling
task, the position of a task in a quadrant and the orientation (rotation of 0°, 90°, 180°, or
270°) was randomized, but the brush size, color, and object size remained unchanged.

After informed written consent, 19 healthy individuals were asked to spend approximately
ten minutes per task on different labeling techniques. Raters were undergraduate students,
graduate students, and university staff members who responded to poster advertisements for
a one hour labeling session. Raters were compensated for participation, but compensation
was not based on performance. Two input methods were evaluated. First, a standard mouse
interface was used where the user was responsible for setting the correct pen tool size, color
and shape for each task. Second, the mouse interface was augmented with a gesture tracking
system in which “hot spots” located at the corners of the screen automatically set pen tool
size, color and shape. We note that a third set of tasks using an infrared pointing device were
also performed, but these are not considered herein. Tasks were performed in random order
for each participant.

For each labeling technique, the user was responsible for drawing various shapes using a
variety of colors and tools. This is quite consistent with neuroimaging WebMILL tasks in
which users frequently switch tools and colors to label different biological structures in an
image in order for the label data to be easily parsed by a computer. In this experiment, the
user was responsible for drawing straight lines following a path (a triangle), drawing curved
lines following a path (a spiral), marking points (the 5 points on a star), and filling in a shape
(an ellipse). For each drawing task the user was instructed to use a particular color, brush
size, and brush shape. For the triangle and spiral, the distance between the true curve and the
user-specified curve was the symmetrized average distance between the two sets of labels.
This was computed by averaging the minimum point-wise distance between each point on
one label set and all points on the other label set. For the points of a star, the distance
between the true points and the user-specified points was defined as the average (over 5
points) root mean squared distance between the true point and the centroid of the discrete
label mass within the neighborhood of the true point (20 pixels). For the ellipse, error was
defined as the Jaccard distance (i.e., 1 minus the area of intersection between the true and
specified labels divided by the area of the union of the two labels).

For the standard mouse technique, users were given the standard WebMILL instructions.
For the trials augmented with gesture tracking, users were told briefly how to change tools
by moving the mouse (or pen) into hot spots in the corners of the screen. It is important to
note these changes have an effect both on the workflow of the labeler as well as the
complexity of the task.

Interface Validation Results
Even in this straightforward experiment a variety of rater performance is observed, as
illustrated in Figure 3. Table 1 presents a detailed summary of performance measures. All
raters were given the same instructions, but some individuals spent the entire time period on
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one set of four tasks (maximum of 700 seconds) while other individuals performed the tasks
in under 20 seconds. On average, about two minutes were spent per set of four challenges
for the mouse. Point clicking error is approximately two pixels while mean error for curve
and line tracing was closer to one pixel. Tracing the ellipse yields approximately six percent
difference by area.

Notably, the use of the rapid task switching tool (gesture tracking) both improved speed
performance and reduced error compared to the mouse interface without the gesture
tracking. Overall, error was reduced by approximately 33% compared to the mouse, while
also reducing the time spent on each image by approximately 27%. These findings are
significant for time reduction as well as point picking. Interestingly, there are no significant
correlations between time spent and rater performance.

Empirical Statistical Fusion
Two sets of empirical datasets were studied. First, we developed a simulated dataset
consisting of noisy images of a cylinder with spheres of different sizes in which the exact
placement of all objects was known by construction. Second, we studied labeling the lobules
of cerebellum relative to the labels produced by an experienced cerebellar anatomist. Note
that some raters left the labeling application open on a single task for exceptionally long
periods of time (more than a week). In order to not unduly effect labeling results due to
ignored browsers, dropped connections, or other network session anomalies, all results from
single tasks lasting more than 30 minutes were excluded from the following analyses.

For both datasets, raters were recruited to participate in an IRB approved research study (of
rater behavior) via campus mailing lists. Participation was open to all students who were
authorized to work. After verification of work eligibility and informed consent, raters used
the WebMILL system at a self-paced rate using their own computer equipment and their
own Internet connection. Raters were paid hourly (monitored by the web system) for up to
10 hours of work.

Error was assessed in terms of fraction correct. Including a large collection of background
voxels in the calculation can lead to misleadingly high results, thus we defined the fraction
correct as the ratio of number of correctly labeled voxels to the total number of voxels
within a specified target area. For all experiments presented, the specified target area was
defined as the collection of voxels for which a single rater observed any label other than
background. As a result, the target labeling area for the simulated cylinders consisted of
nearly the whole volume. For the cerebellum tasks, the target labeling area consisted mainly
of the posterior fossa (i.e., the intracranial cavity containing the brainstem and cerebellum).
We note that Kappa statistics, Dice similarity measures, and Jaccard distances are widely
used in validation research to assess inter-observer variability and shape agreement. Each
metric has particular advantages for detecting specific shape differences, particularly for
assessment of single label accuracy. For our purposes we chose fraction correct as a simple
measure of overall accuracy that is relatively unbiased by relative label size and anatomical
structure. Note that quantitative performance cannot be predicted across different kinds of
labeling tasks using this measure.

Simulated Cylinder: Spheres of various radii randomly distributed
A simulated data set was created to model a cylinder containing randomly placed spheres of
varying radii. Both a training data set and a testing data set were created using the simulation
data. Each data set contained 64 slices and each image was 64×64 pixels comprising a
64×64×64 three-dimensional coverage of two simulated cylinders with randomly placed
spheres of varying radii (see Figure 4A). All of the raters in this experiment were minimally
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trained undergraduate students. For the training set, a total of 54 raters were used with each
rater labeling between 5 and 386 slices each. Each slice was labeled between 19 and 36
times (yielding a total of 1820 training observations). For the testing set, 45 raters each rated
between 2 and 748 slices. There was a loss of 9 raters between the training and testing
phases due to attrition. Each slice was labeled between 77 and 52 times (yielding a total of
2395 observations). In the training phase, raters were shown a pre-label segmentation mask
and asked to correct it; in the testing phase no mask was provided. All of the data from all of
the individual raters were fused.

Simulated Cylinder Analysis
Comparing the training and testing phases revealed dramatic differences in both time spent
and performance as summarized in Table 2 and Table 3 We present these measures with
both Gaussian and non-parametric statistics because variations in performance were rather
extreme. In the training phase, time spent per slice is significantly lower (mean 3.6 s versus
15.9 s, p<0.001), but accuracy was higher (0.985 fraction correct versus 0.769 fraction
correct, p<0.001). In the training phase, less than 2% of the results fall below 0.9 fraction
correct, but in the testing phase, 27% of the results are less than 0.9 fraction correct. Most of
these outliers are less than 0.3 fraction correct and correspond to systematic mislabeling of
the data (as illustrated in the “ugly” column of Figure 4A).

Statistical fusion was evaluated by randomly selecting integer numbers of coverages
(between 3 and 15) without replacement from the testing dataset and performing STAPLER
fusion. For each coverage level (e.g., 3 coverages is equivalent to 64×3=192 unique slices
out of 2395), 10 Monte Carlo iterations were performed and shown in Figure 5A, solid black
line. It is observed that three coverages increases average performance from 0.769 fraction
correct (Table 3) to nearly 0.97 fraction correct, while 10 coverages increased performance
to nearly 0.985 fraction correct.

As observed in Table 3, the performance of raters on training data is not representative of
the performance of raters on the testing data, so training data were not included in the
STAPLER fusion framework. To examine improvement by having raters label datasets with
known labels, full coverages were simulated as above with additional slices designated as
catch trials. In these catch trials, the true label is made available to STAPLER, but these
labels were designated as having come from a separate volume so they did not directly
inform the present label estimation task. A series of 10 Monte Carlo simulations for between
3 and 15 coverages with catch trials was generated where for every N slices from a rater,
one catch trial slice was included where N = 10, 4, 2, or 1 which resulted in one eleventh,
one fifth, one third, or one half of the total rater effort devoted to catch trials. Increasing the
frequency of catch trial led to improved accuracy and rate of convergence of statistical
fusion as shown in Figure 5A.

Empirical Labeling: Cerebellar Lobules
To demonstrate collaborative labeling with an exceptionally challenging task, labeling of the
cerebellar lobules on a high resolution MPRAGE (magnetization prepared rapid acquired
gradient echo) data set was studied. Whole-brain scans of two healthy individuals (after
informed written consent prior) were acquired (182×218×182 voxels), and each slice was
cropped to isolate the posterior fossa (110×114×70 voxels, see Figure 4B). Both datasets
were manually labeled by a neuroanatomical expert in a labor intensive process
(approximately 20 hours for each cerebellum). One dataset was designated for training and
one for testing. Sagittal, axial, and coronal cross sections were created and presented for
labeling for both data sets. Thirty-eight undergraduate students with no special knowledge of
neuroanatomy were recruited. For the sagittal set, raters labeled between 0 and 119 slices
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(583 total) in the training phase and between 0 and 161 slices (1650 total) in the testing
phase. For the axial set, raters labeled between 0 and 91 slices (540 total) in the training
phase and between 0 and 175 (1066 total) in the testing phase. For the coronal set, raters
labeled between 0 and 64 slices (301 total) in the training phase and between 0 and 363
slices (1532 total) in the testing phase. The total time dedicated to all testing datasets was 25
hours (axial), 27.4 hours (coronal), and 37.2 hours (sagittal), with an average time per rater
of 2.3 hours for all tasks.

Cerebellar Labeling Analysis
As with the cylinder analysis, evaluated rater performance during the training phase is
unrepresentative of rater performance during the testing phase (see Table 2 and Table 3).
Across individual raters, performance is observed to be lower in the training phase than in
the testing phase (which was the reverse of the situation with the cylinders), but the time per
task is more varied. In the axial and sagittal examples, raters spent about half the amount of
time during training, but with the coronal example, raters spent nearly twice as much time
on training. Regardless, users self-selected a pace of approximately one to two minutes per
slice for the cerebellum labeling tasks.

Performance and interpretation of the tasks again vary widely, as illustrated in the slices
shown in Figure 4B. In the training phase, 15%–29% of labeled slices exhibited systematic
problems resulting in less than 0.5 fraction correct, but in the testing phase only 4.9%–
10.5% of labeled slices show such significant problems. In the testing tasks, overall time
spent is negatively correlated with performance, but partial correlations adjusting for slice
number (to compensate for varying difficulty of labeling task) do not result in significant
linear correlations.

For each labeling task, statistical fusion was evaluated by randomly selecting integer
numbers of coverages (between 3 and 15) without replacement from the testing dataset and
performing STAPLER fusion. For each coverage level, 10 Monte Carlo iterations were
performed and shown in Figure 5B–D, solid black lines. Use of three coverages increased
average performance from 0.842/0.785/0.758 fraction correct (Table 3) to approximately
0.9/0.82/0.84 fraction correct, while use of ten coverages increases performance to nearly
0.91/0.84/0.86 fraction correct, sagittal/coronal/axial, respectively. Note that one coverage
for each plane corresponds to an average time of 1.6 hours (axial), 2 hours (coronal), and 2.6
hours (sagittal) when compared to a total of 20 hours for one expertly labeled volume.

As in the experiments described above, rater performance on the cerebellum training data
was not representative of rater performance on the cerebellum testing data. Therefore, it
would be inappropriate to use the training data to inform the prior distribution on rater
performance for use in the STAPLER label fusion framework. Instead, the use of catch trials
was evaluated using the same paradigm as in the cylinder study above (see Figures 5B–D).
The impact of the additional information contained in the catch trials was especially
beneficial with these empirical datasets. In all three orientations of these data, increasing
levels of catch trials leads to substantial improvement in the accuracy and rate of
convergence of statistical fusion as shown in Figure 5B-D.

We noticed that raters largely ignored the "pixelated" structure that is sometimes evident in
the images (particularly on the outer cerebellar boundaries) and drew somewhat smoother
boundaries than did our expert. This practice led to relatively smooth lobule boundaries in
the fusion estimates (Figure 5F, Figure 6). Furthermore, on superior-middle cerebellar
lobule divisions, the fissure between minor divisions of the superior lobule was larger than
the fissure that defines anatomical division between the lobules (as illustrated in Figure 6).
In this area, most of the raters were mistaken.
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Interestingly, outliers and “ugly” results had nominal impact on STAPLER fused results
when there were more than 5 coverages. For example, “perfect” outlier rejection does not
substantially improve the performance of STAPLER when considering all data. To illustrate
this phenomenon, we used an omniscient perspective to remove substantially incorrect
outliers (<10% correct versus the known truth), but we found less than 3% improvement for
any of the presented experiments — data not shown.

Discussion
In this manuscript, we demonstrate a collaborative image-label fusion framework and show
empirical results for a variety of contexts using data from online (Internet-based)
collaborations among minimally trained raters. This first successful demonstration of a
member of the STAPLE family of statistical method using minimally trained raters opens
numerous possibilities for very large scale efforts in collaboration. It also highlights
practical challenges and reveals opportunities for innovation in the exploration of the
nascent field. Extension and generalization of these technologies for new applications will
certainly present fascinating areas for continuing research.

Most notably, both individual and statistical fusion approaches varied widely between the
interface validation, simulated cylinder, and cerebellum experiments. The interface
validation demonstrated that absolute accuracy with the labeling tools was on the order of
several voxels (Table 1), while the simulated cylinder experiment demonstrated that raters
could perform a realistic task with reasonable accuracy (Table 3) and the results of these
results could be fused to near perfect accuracy (Figure 5A) despite the presence of illogical
and extreme outliers (Figure 4A). However, in the most challenging task — cerebellar
labeling — individual rater accuracy was much lower and statistical fusion results in
borderline tolerable accuracy (0.85 - 0.9 fraction correct, Figure 5A).

Examining the types of errors made in the cerebellum dataset is revealing. With the
prescribed instructions, raters systematically did not attempt to trace the voxel-wise
boundaries of the cerebellar folia (see Figure 4, “good” results). Rather, raters targeted the
inter-lobule divisions. These resulted in generally much smoother segmentations than the
ground truth. One could encourage greater attention to detail surrounding the boundaries of
regions by presenting enlargements of the images or more emphatically highlighting these
details during training. Yet minimally trained raters would likely have great difficulty
distinguishing the most subtle boundaries without a better understanding of the three-
dimensional structures to which they correspond.

The rule of thumb that we use for manual labeling protocols is that inter-rater reproducibility
should be approximately 5% (either fraction correct or Dice overlap similarity). This
criterion was easily met for the simulated cylinders, but not for the cerebellar labeling tasks.
The empirically observed errors (Figures 3, 4, and 6) highlight the systematic differences
between the human foibles and the traditional confusion matrix representation of label error
(i.e., label i is confused with label j with probability θi,j). Notably, rater performance is
visually spatially varying and content dependent. Errors are concentrated largely on
boundaries, yet due to the extreme variation in the data, almost all pixels have at least one
rater with disagreement. Incorporating more realism in the rater model via emerging
statistical methods appears to be a promising approach to improve the information gleaned
from label data. Recently proposed methods have included estimation of spatially varying
performance through Spatial STAPLE (Asman and Landman, 2011), estimation of
consensus to characterize local task difficulty through Consensus Level, Labeler Accuracy
and Truth Estimation (COLLATE) (Asman and Landman, In press 2011), modeling rater
performance with parametric priors within STAPLE (Commowick and Warfield, 2010), and
using training data / catch trials as non-parametric priors on rater performance within
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STAPLER (Bogovic et al., 2010; Landman et al., 2010). These new statistical concepts
promise to improve the accuracy of fused labels, but further validation and algorithmic
extensions are necessary to ensure that these methods are robust with limited and variable
quality data. Generalization of these concepts with large-scale dataset with outliers, multiple
coverages, and missing data remains a challenge and an opportunity.

Rater behavior in the training phase was uniformly unrepresentative of the behavior in the
testing phase (Table 2 and Table 3). Some raters instantly accepted null results so that they
could see the results. Other raters sketched a quick result, while still others exercised
extraordinary care. Given this fundamentally different level of performance, it is critical to
rely on catch trials to evaluate performance. In psychology, changes in behavior during
known monitoring are well known as the observer effect. The results seen in Table 2 and
Table 3 serve as a reminder for caution when protocol stability is defined based upon data
collected when raters know that they are being specifically evaluated for performance — the
knowledge that the evaluation data are special may alter rater performance from what it
might otherwise be.

As an alternate approach to selecting appropriate tasks or subtly encouraging performance,
one could envision providing classical image-labeling training. While specifically developed
to encourage large scale collaboration of minimally trained raters, there are no specific
impediments to using the WebMILL system with experienced and/or well-trained raters.
With WebMILL, for example, experienced raters could be more easily retained on a part-
time, limited, or periodic basis. Alternatively, more raters could be recruited than could
otherwise be supported by lab-provided space and computational resources. Here, we have
largely considered voxelwise labeling of three-dimensional structures. However, WebMILL
could also be used to collect point-wise, surface, and other landmark information which
might be more appropriately statistically fused with emerging continuous STAPLE
approaches (Commowick and Warfield, 2009).

The traditional distinctions between general purpose manual techniques and application-
specific automated segmentation techniques have begun to blur with the widespread and
increasingly successful application of deformable registration to map labels from one
individual to another (Avants et al., 2011; Heckemann et al., 2010; Klein et al., 2009; Klein
and Hirsch, 2005). With these approaches, it is possible to label a relatively small number of
atlas datasets and acquire labels of a large number of individuals. Efforts are ongoing to
make available neuroimaging labels on hundreds of subjects based on standardized labeling
protocols (e.g., brainCOLOR (Klein et al., 2010)). These studies are relying on traditional
expert-based approaches and optimized labeling workstation software. The distributed
labeling framework of WebMILL could contribute to these efforts by enabling labeling
participation of a wider group of experts. Alternatively, collaborative labeling could be used
to provide just enough supervision and correction of otherwise fully-automated approaches.
Careful consideration and evaluation of the most effective practices for using human
intervention in the labeling process provides a fascinating area of continuing exploration.

In one such hybrid approach, one could accelerate the labeling process by providing a pre-
label mask to the user which can be corrected. We have seen that shown a plausible labeling,
individuals will rarely update it so that such semi-automated approaches result in a different
kind of final result than one that would have been created de novo. As it is possible to update
the pre-label masks in real-time with WebMILL, it would seem to be a promising idea to
continuously perform statistical fusion on results and generate pre-label for any voxels that
are estimated with sufficiently high confidence. Dynamic adjustment of the pre-label mask
could potentially reduce rater-bias associated with using fixed masks. Furthermore, this
approach could be used to drive slice selection so that raters are asked to rate only slices
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which have insufficiently well-known labels after fusion of current results. Exploration of
these feedback mechanisms is ongoing and could provide a framework for “just-enough”
intervention in an otherwise automated pipeline.

In summary, collaborative image labeling has been shown to be feasible in situations in
which individuals can identify image content. Statistical approaches have matured to the
point where minimally trained raters producing data of widely varying quality can be
successfully fused without human intervention or ad hoc outlier rejection. There are ample
opportunities for continued advancement in the statistical and labeling frameworks and
through applications of the collaborative labeling paradigm to large-scale labeling of
medical images.
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Figure 1.
Comparison of existing and proposed labeling approaches. In a traditional context, either an
expert rater with extensive anatomical knowledge evaluates each dataset (A) or a small set
of well-training domain experts who have been instructed by an anatomical expert (B) label
each image. Intra- and inter-rater reproducibility analyses are typically performed a per-
protocol basis rather than on all datasets. In the proposed WebMILL approach (C), a
computer system divides the set of images to be labeled into simple puzzles consisting of a
piece of a larger volume and distributes these challenges to a distributed collection of
minimally training individuals. Each piece is labeled multiple times by multiple raters. A
statistical fusion process simultaneously estimates the true label for each pixel and
performance characteristics of each rater.
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Figure 2.
Labeling system user interface. The WebMILL website (A) provides the ability to select
regions (1), navigate training versus testing modes (2), read tutorial and reference material
(3), optimize computer setup (4), participate in multiple projects (5), and track progress (6).
A light weight applet (B) provides for interaction with imaging data (7) with multiple
drawing tools (including brush sizes, advanced zoom, undo/redo, and coloring options) (8),
and provide a localizer/hint image (9), an area for detailed instructions (10), and ability to
navigate tasks (11).
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Figure 3.
Representative labeling results for the interface study. For illustrative purposes, we show the
range of observations divided into visually good classification (generally precise), bad
classification (rules were followed but the labeled images are not visually close to the truth),
and ugly classification (inconsistent with the expected ground truth).
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Figure 4.
Representative labeling results for empirical studies. All results were generated by raters
during the testing phase of the cylinder simulation (A) and cerebellum labeling (B)
experiments. For illustrative purposes, we classify the range of observations into visually
good classification (generally precise), bad classification (rules were followed but the
labeled images are not visually close to the truth), and ugly classification (inconsistent with
the expected ground truth).
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Figure 5.
Demonstration of statistical fusion. Fusion of multiple complete coverages (shown for
randomized subset of the total data) resulted in improved performance and reduced
variability (A–D) when compared to individual raters (Table 2 and Table 3). Representative
slices illustrate the visual quality that corresponds to the highlighted coverages without
training data (E corresponds to A and F corresponds to D).
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Figure 6.
Illustration of rater confusion. The expertly labeled truth dataset (A) has much greater detail
in the cerebellar structures than is typical of a minimally trained rater, which tent to produce
much smoother fused results (B). The errors (C) are largely concentrated around boundaries
and result in smoothing and omission of fine division of minor sulci. However, there is a
notable exception where the raters selected a different division between the superior (blue)
and middle (green) lobules. Note that disagreements among raters (D) also occurred
primarily along boundaries and in the region of error.
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Table 3

Statistical Fusion Summary

Individual Rater Accuracy*

Region Mode Median 25th-75th Percentile µ ± σ

Simulated Cylinder† Training 0.989 0.985 – 0.993 0.985 ± 0.033

Testing 0.964 0.348–0.975 0.769 ± 0.335

Axial Cerebellum Training 0.670 0.394 – 0.823 0.608 ± 0.282

Testing 0.792 0.686 – 0.888 0.758 ± 0.195

Coronal Cerebellum Training 0.691 0.686 – 0.888 0.599 ± 0.266

Testing 0.789 0.708 – 0.899 0.785 ± 0.170

Sagittal Cerebellum Training 0.684 0.304 – 0.800 0.583 ± 0.272

Testing 0.876 0.829 – 0.913 0.842 ± 0.140

*
Reported as fraction correct.

†
The training phase of the simulated cylinder used a pre–label mask. No other experiments used a pre-label mask
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