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skeletal muscles sustain a significant loss of maximal contractile force after injury, but terminally damaged fibers can eventually be
replaced by the growth of new muscle (regeneration), with full restoration of contractile force over time. After a second injury, limb
muscles exhibit a smaller reduction in maximal force and reduced inflammation compared with that after the initial injury (i.e.,
repeated bout effect). In contrast, masticatory muscles exhibit diminished regeneration and persistent fibrosis, after a single injury;
following a second injury, plasma extravasation is greater than after a single injury and maximal force is decreased more than after
the initial injury. Thus, masticatory muscles do not exhibit a repeated bout effect and are instead increasingly damaged by repeated
injury. We propose that the impaired ability of masticatory muscles to regenerate contributes to chronic muscle pain by leading
to an accumulation of tissue damage, fibrosis, and a persistent elevation and prolonged membrane translocation of nociceptive
channels such as P2X3 as well as enhanced expression of neuropeptides including CGRP within primary afferent neurons. These
transformations prime primary afferent neurons for enhanced responsiveness upon subsequent injury thus triggering and/or
exacerbating chronic muscle pain.

1. Introduction

Musculoskeletal pain is estimated to afflict 15% of the pop-
ulation, is one of the most frequent symptoms encountered
by primary care providers [1, 2], and comprises a substantial
portion of the total cost of illness [1–3]. Muscle pain is a
prominent component in many musculoskeletal disorders,
including low-back pain, tension-type headache, fibromyal-
gia and whiplash [4–6]. In the craniofacial region, temporo-
mandibular disorders (TMD) affect 4–12% of the population
(∼35 million in the United States), with masticatory muscle
pain being the most frequent (66%) patient complaint [7].
TMDs are often not restricted to the temporomandibular
joint, but frequently include pain and tenderness of the
masticatory muscles [4–6] designated as Group I in the
Research Diagnostic Criteria for TMD [8]. It is estimated that
one-half of TMD cases are these masticatory myalgias [9].
Patients with TMD frequently also have fibromyalgia [10–
12], a musculoskeletal disorder characterized by widespread

musculoskeletal pain and diffuse muscle tenderness [11].
Approximately 2–5% of the population meet the diagnostic
criteria for fibromyalgia [13, 14]. The similarities of TMD
and fibromyalgia have lead to speculation that these condi-
tions may involve common mechanisms of muscle pain with
different durations [15, 16]. While little is known about the
mechanisms underlying muscle pain, available data indicate
that the mechanisms underlying muscle pain differ from
those underlying cutaneous or visceral pain (for review see
[17, 18]).

In spite of the prevalence of muscle pain, current
therapies for muscle pain are often ineffective and can even
be dangerous [19]. For instance, NSAIDS and COX-2 drugs
are no more effective than placebo in treating some types of
muscle pain and have substantial risks [20–25]. Weak opioids
(e.g., codeine, tramadol) do not alleviate pain produced
by muscle injury [23, 26]. More powerful opioids such as
hydrocodone, morphine, and oxycodone can reduce chronic
pain, but have many deleterious effects [27–29]. Thus it is
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important to understand the mechanisms of muscle pain
in order to develop new, effective therapeutic strategies for
muscle pain.

Pain resulting from muscle disorders can be persistent,
although the mechanisms by which this chronic pain
becomes established are not understood. Patients with
TMD and fibromyalgia exhibit altered central nociceptive
processing [30–33], which is hypothesized to be generated
by a peripheral trigger [34]. Nociceptive input from muscle
afferents is particularly potent at generating CNS wind-up
[35]. Recent muscle pain studies support the involvement of
peripheral stimuli in chronic muscle pain by demonstrating
that enhanced central pain processing in fibromyalgia is
maintained by muscle afferent input [36, 37]. We predict that
comparable processes exist in muscle-based TMDs, given
the similar characteristics of fibromyalgia and muscle-based
TMDs [15, 16]. In this communication, we explore the
potential for muscle injury to contribute to the triggering
and/or maintenance of chronic pain.

2. Typical Experimental Methods of
Producing Muscle Pain Do Not Accurately
Model Muscle Pain

In spite of its prevalence, currently there are no widely
accepted models of muscle pain, and most methods used
to investigate muscle pain do not accurately reproduce the
features of pain reported in humans suffering from muscle
pain. For instance, injection of exogenous substances such
as complete Freund’s adjuvant (CFA) [38–40] has been used
to evoke inflammatory muscle pain. However, CFA produces
a massive inflammatory response with large intramuscular
vacuoles and enormous inflammatory cell infiltration [38],
characteristics that differ so dramatically from those reported
in muscle pain patients [41] that adjuvant injection has
only very limited relevance for studies of muscle pain.
While injection of hypertonic saline produces sensations that
mimic muscle pain [42, 43], hypertonic saline activates both
muscle nociceptors [44, 45] and nonnociceptors [46, 47] and
does not alter muscle lactate or PGE2 as reported in muscle
pain [45]. Acidic saline injected into limb muscles activates
some muscle afferents [47] and produces hyperalgesia [48–
50]. Although ASIC3 (acid-sensing ion channels) are present
on craniofacial muscle afferents [51, 52], injection of acidic
saline into the masseter does not produce hyperalgesia or
alter calcitonin gene-related peptide (CGRP) and substance
P expression [51]. Acid saline, therefore, is a valuable model
for limb, but not craniofacial muscle pain. Injection of the
polysaccharide carrageenan activates fine muscle afferents
and produces hyperalgesia [53–55], but does not elevate
intramuscular TNF-α [23]. Since TNF-α is elevated in TMD
and fibromyalgia [56–58], carrageenan is not an accurate
model for TMD and fibromyalgia. Mustard oil and capsaicin
both inflame tissue including muscle [59–64]. Mustard oil
acts via TRP (transient receptor potential channel) A1
channels on a subset of unmyelinated fibers [65] while
capsaicin acts via TRPV1 channels on a subset of unmyeli-
nated muscle afferents [66]. Since algogens do not activate

thinly myelinated muscle afferents, they do not activate the
spectrum of afferent types that participate in muscle pain
[67–69]. Endogenous substances have also been injected
into muscles. Serotonin, bradykinin, ATP, TNF-α, and NGF
activate a subpopulation of muscle afferents and produce
pain [47, 52, 70–77]. Single substances (5-HT, bradykinin,
etc.) interact with subsets of nociceptors providing insight
into specific aspects of nociception; however, they cannot
simulate muscle pain that involves multiple nociceptive
channels and afferent types. Even if multiple algogens
are used [73, 78], the environment at nerve terminals
during pain cannot be reproduced due to differences in
spatial application of the algogen, diffusion, and the fact
that different mediators do not appear simultaneously in
inflammation. For these reasons, we concentrate in this com-
munication on data derived from eccentric (lengthening)
muscle contractions, a noninvasive, physiologically relevant
in vivo model of producing muscle pain and inflammation.
This model of muscle strain injury incorporates movement
and contraction, fundamental properties of muscle [79, 80].

When an activated muscle is forced to lengthen because
the external load exceeds the tension generated by the muscle
contraction, this is termed a lengthening ‘eccentric’ contrac-
tion. Although eccentric contractions require less energy, the
force generated during a maximal eccentric contraction is
about double the force developed during a maximal isomet-
ric contraction; therefore eccentric contractions are more
likely to produce damage than either isometric or concentric
(shortening) contractions. Using an animal model, forceful
eccentric muscle contraction uniquely disrupts selected
myofibers [79, 81], comparable to the selective myofiber
damage in humans after eccentric exercise [82]. As few as
12 unaccustomed voluntary eccentric muscle contractions
can produce muscle pain often referred to as delayed onset
muscle soreness (DOMS) [83]. Furthermore, inflammation
evoked by muscle contraction typically develops more slowly
than the pulsatile inflammation produced by injection of
algogens such as CFA, which evoke changes in neuropeptide
mRNA within 30 min [38]. Eccentric muscle contractions
can be produced in the laboratory setting by manually
lengthening a muscle during electrical stimulation [84,
85]. Only a few contractions are needed to induce readily
detectable muscle inflammation [84, 86]. Both voluntary
and stimulus-induced eccentric muscle contraction as well
as rapid muscle stretching damage a subpopulation of
myofibers [81, 82, 87, 88], produce muscle pain and soreness
[45, 85], evoke myonecrosis, induce inflammatory infiltra-
tion, elevate inflammatory proteins [81, 84, 89, 90], decrease
muscle force and range of motion (for review [91]), and
activate genes associated with muscle repair and apoptosis
[92]. Intramuscular calcitonin gene related peptide (CGRP)
and vascular endothelial growth factor (VEGF), a proangio-
genic cytokine which increases after exercise [93–95], also
increase after eccentric muscle contraction [81]. While in
this paper we present data derived from eccentric contraction
produced by muscle lengthening following supramaximal
muscle contraction, comparable, but smaller effects are
observed following submaximal eccentric contractions and
behaviors such as downhill running [90, 96].
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3. Injury Evokes Differential Effects in
Muscles from Various Body Regions

Repair and regeneration in hindlimb muscle following injury
involves activation of satellite cells within 24–48 hours
[97]. These mononuclear cells are situated outside the
sarcolemma, but inside the basement membrane of each
muscle fiber. They are normally quiescent, however they are
thought to become active with stimulation (e.g., injury).
Under appropriate conditions, satellite cells develop into
myoblasts, which fuse to form myotubes [98]. Myotubes can
then repair, or even replace, damaged muscle fibers. It is
generally hypothesized that satellite cells, after several rounds
of proliferation, are a determinant factor in the functional
recovery of muscle. Within 7–14 days following injury,
myofibers are approaching normal size [99] and myofibers
return to normal by 24 days [100]. Evidence indicates
that the response to eccentric contraction differs between
hindlimb and forelimb muscles. Blood creatine kinase levels
and muscle soreness are reported to be greater following
muscle damage to forelimb compared to hindlimb muscles
[101]. Recovery of function after injury is also reported to
be slower in forelimb versus hindlimb muscles [101]. In
fact, when direct comparisons are made using similar indices
of muscle damage, creatine kinase levels are greater after
forelimb eccentric contraction and muscle recovery is longer
for forelimb muscles [102].

Masticatory muscle responds very differently to injury
than hindlimb muscle. Twelve days following muscle injury
produced by a single crush or freezing injury, large areas
of muscle exhibit minimal evidence of muscle regeneration
[98]. Following a similar injury, hindlimb muscle shows
centrally nucleated fibers (CNFs), indicative of regenerating
muscle. At 19–21 days following injury, masseter muscle
regeneration is still impaired and the masseter muscle
exhibits extensive interstitial connective tissue. Even 45 days
following a single injury, regeneration of the masseter muscle
is less extensive than observed in hindlimb muscle 12 days
after injury [98].

We have observed comparable findings after muscle
injury produced by a single bout of eccentric muscle
contractions [81]. Adult, male Sprague Dawley rats were
used for all experiments. Animals received humane care
in compliance with the Guide for the Care and Use of
Laboratory Animals (NIH publication no. 86–23, revised
1985) and the Use Committee and the Committee for
Research and Ethical Issues of the IASP. All laboratory
procedures were reviewed and approved by the University of
Maryland Animal Care and Use Committee and every effort
was made to minimize any suffering. We first anesthetized
the skin overlying the masseter muscle by applying a
topical anesthetic (2.5% lidocaine, 2.5% prilocaine). We
used a combination of lidocaine and procaine because this
eutectic mixture has been shown to produce more effective
cutaneous anesthesia in humans than either substance alone
[103]. After two hours, when topical anesthesia was well
established, rats were anesthetized with isoflurane. We have
previously shown that lidocaine/prilocaine cream produces
cutaneous anesthesia in the rat facial skin at this time

[104]. A rod coupled to a stepping motor and potentiometer
was then positioned in the diastema of the mandible. To
produce eccentric contraction of the masseter muscle, we
used an established in vivo model previously described for
the hindlimb [79, 80, 105]. The masseter was contracted
by electrical stimulation (1 s trains, 100 Hz, 0.3 ms pulse at
0.3 Hz) using surface electrodes. Stimulation current was
adjusted (5–12 mA) to produce a supramaximal muscle
contraction. Neurogenic plasma extravasation was prevented
by anesthetising the skin overlying the muscle [81] and
using a high-frequency stimulation regime, which does
not activate group III and IV masseter muscle afferent
axons [106]. Eccentric muscle contraction was produced
by displacing the mandible 25 degrees of jaw opening at
a rate of 0.6◦/ms 150 milliseconds into a maximal muscle
contraction. Mandibular displacement was produced using
a stepping motor (1.8◦/step NMB Technologies, Chatsworth,
CA) controlled by a custom LabVIEW program (LabVIEW,
version 8.5 National Instruments, Austin, TX). Muscle
torque was measured using a torque sensor (model QWLC-
8 M Sensotec, Columbus OH) and amplifier (model DV-
05, Sensotec). Angular displacement of the mandible was
monitored with a potentiometer. Displacement, angular
position, and torque were synchronized using a custom
LabVIEW program. Signals were sampled at 2 KHz using
a 16-bit analog-to-digital converter (PCI-6221, National
Instruments). The eccentric muscle contraction regime
consisted of 5 sets of 15 eccentric muscle contractions (75
total contractions) with a five-minute rest between sets.

Muscle regeneration was not evident 32 days after one
bout of eccentric contraction of the masseter muscle [107]
and considerable fibrosis was present (Figure 1). These
characteristics correspond to the impaired regeneration and
extensive fibrosis evident for at least 45 days after crush or
freeze injury to the masseter muscle [98]. In contrast to
the masseter muscle, hindlimb muscles such as the tibialis
anterior regenerate in 7–12 days after crush or freeze injury
[98] and 5–14 days after eccentric muscle contraction [105,
108].

We operationally defined muscle injury as a loss in the
ability of the muscle to produce force. Torque of a muscle
is represented by the equation T = F ∗ d, where T is
torque, F is muscle force, and d is the moment arm of the
muscle. Because we use a maximal tetanic contraction and
we measured torque at a fixed position, our measure of
torque ultimately reflects muscle force. Maximal contractile
force is a strong indicator of the overall status of a muscle
[109] and a reliable indicator of injury [110, 111]. Therefore,
we investigated loss of maximal torque following injury in
masticatory and hindlimb muscles. A variety of contraction
schemes were tested, and we found that 60 masseter eccentric
contractions (0.6◦/ms) produce a 43% reduction in maximal
torque measured at resting length (L0) 10 minutes after
contraction (Figure 2, arrow n = 6 rats). For the tibialis
anterior muscle (n = 25), 150 eccentric contractions
produced in an analogous manner resulted in a 41% deficit in
maximal torque (Figure 2, asterisk [105]). Thus, to produce
a comparable loss of isometric force following a single bout
of eccentric muscle contraction, less than one-half as many
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(a) (b)

Figure 1: Photomicrograph of the masseter muscle stained with H&E. (a) Naive masseter muscle. (b) Masseter muscle 12 days after eccentric
muscle contraction. Arrows indicate regions of fibrosis. Scale bar = 100 μm.
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Figure 2: Maximal isometric torque produced before and at various
times after eccentric muscle contraction. Solid line is masseter
muscle and dashed line is tibialis anterior muscle. Note equivalent
loss of force for Masseter and tibialis anterior at day 0 after
eccentric contraction. Asterisks denote significant reductions from
initial maximal torque. masseter = 60 eccentric contractions, tibialis
anterior = 150 eccentric contractions, masseter n = 6, and tibialis
anterior n = 25.

eccentric contractions of the masseter muscle were needed
than for the tibialis anterior muscle (Figure 2). These data
suggest that the loss of contractile force in the masseter
after injury evoked by a single bout of eccentric muscle
contractions is greater than in hindlimb muscles. Much less
information is available on the effects of injury on muscles
from other parts of the body such as the back and neck
which may have profound significance for musculoskeletal
pain disorders. It will be particularly important for future
studies to determine the effects and functional significance
of injury on muscles from other regions of the body, such as
the back and neck, which may have profound significance for
musculoskeletal pain disorders.

4. Masticatory Muscles Do Not Exhibit a
Repeated Bout Effect

In limb muscles, lengthening contractions are associated
with injury, but they can also provide significant protection
against future injury. Compared to the first bout, a second
bout of lengthening contractions in hindlimb and forelimb
muscles is associated with a decreased loss of contractile
force, less soreness, and a reduction in the amount of muscle
proteins in the blood. However, little is known about the
conditions that result in the protective adaptation [108, 112–
117]. This adaptive effect is often referred to as the repeated
bout effect (RBE) and has been demonstrated in both
animals and humans (for review see [118]). While a number
of mechanisms have been proposed to underlie the RBE
including neuronal, cellular, and mechanical adaptations, the
processes involved in the RBE are still not well established.
Neuronal mechanisms, such as changes in motor unit
recruitment, have been proposed. Although there is some
evidence for changes in motor unit recruitment following
injury, the RBE can be evoked by electrical stimulation [113],
indicating that changes in motor unit recruitment alone are
not sufficient to account for the repeated bout effect.

The RBE has also been attributed to cellular mechanisms,
including change in the number of sarcomeres, excitation-
contraction coupling, and/or inflammation. An increase in
the number of sarcomeres has been reported following
eccentric exercise [119–121]. However, the RBE can also
be demonstrated following a minimal stimulus, such as a
few eccentric contractions, or passive stretching, a stimulus
that may be insufficient to evoke sarcomere remodeling
[118]. While excitation-contraction coupling can be dis-
rupted immediately following eccentric contraction [122],
it does not correspond to the timing of loss of strength in
humans several days following a repeated bout of eccentric
contraction [112]. Inflammation typically occurs following
eccentric muscle contraction [86, 90], and this inflammatory
response is reduced following a subsequent bout of eccentric
hindlimb or forelimb muscle contraction [114, 123]. It has
been proposed that inflammation may help to provide a
protective function from damage after subsequent bouts of
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Figure 3: Plasma extravasation after one and two bouts of eccentric
contraction of the masseter muscle. Note the increased plasma
extravasation after two bouts of eccentric contraction. Asterisk
denotes significant difference from naı̈ve and number sign denotes
significant difference from 1 bout.

eccentric muscle contraction [123, 124]. Myofiber damage
produced by a bout of eccentric muscle contractions is
reduced after subsequent bouts [125]. Thus, it is difficult to
determine if the reduced inflammation that occurs following
a repeated bout of contractions is a primary process, or
reduced due to diminished tissue injury. However, it has
been shown that passive stretching and concentric muscle
contraction, processes that do not produce overt tissue
damage evident at the light microscopical level, can evoke a
small repeated bout effect [126]. Alteration in the mechanical
properties of muscle including muscle stiffness and altered
expression of cytoskeletal proteins have also been postulated
to contribute to the RBE. While passive muscle stiffness
increases following eccentric exercise [127], it is unclear that
this increases the susceptibility of the muscle to injury [128].
Thus while several of these mechanisms may contribute to
the RBE, the precise mechanisms of the repeated bout effect
remain elusive.

Little is known about the effects of repeated injury on
craniofacial muscle, therefore we have begun to examine
repeated injury of the masseter muscle. Craniofacial muscle
has distinct origins and developmental regulatory mecha-
nisms from that of limb muscle. The masseter is derived from
the first pharyngeal (branchial) arch and has been shown
to respond differently to muscle injury [98]. The effect of
impaired regeneration and fibrosis of the masseter muscle
after repeated injury was initially investigated by examining
plasma extravasation defined here as (wet muscle weight −
dry muscle weight/wet muscle weight) × 100, as an index
of muscle edema [81]. Muscle edema significantly increased
not only after one bout of eccentric contraction compared
to naive (Figure 3 asterisk) but also after two bouts of
contraction spaced 12 days apart (Figure 3 number sign).
Note that muscle edema increased significantly after two
bout compared to one bout of contraction indicating a lack
of repeated bout effect (naive n = 4, 1 bout n = 4, 2 bouts
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Figure 4: Effect of repeated masseter muscle injury on maximal
isometric torque. Asterisk denotes significant difference from
maximal torque after a single bout of eccentric contraction (day 0
initial bout).

n = 6, P < .025 for 2 bouts versus 1 bout and .049 for 1
bout versus naive, ANOVA followed by Holm-Sidak method,
Figure 3). Mechanical hyperalgesia was also measured by
determining the threshold for a head withdrawal reflex
[81]. Animals were initially habituated to stand unrestrained
on their hindpaws and lean on the tester’s hand covered
with a leather glove. Mechanical thresholds were then
determined by probing the masseter muscle through the
facial skin using a rigid von Frey filament coupled with a
force transducer with a fixed contact area (Electrovonfrey,
model no 2290, IITC Inc). The force needed to produce a
withdrawal of the head was recorded following five stimulus
presentations at one minute intervals. The mean values of
the five readings was used for analysis. Using this method,
mechanical hyperalgesia was found to be more profound and
persisted for at least 7–14 days longer after multiple bouts
of eccentric contraction of the masseter muscle than one
bout (ANOVA, P < .05, n = 7). Taken together, these data
contrast strongly with data derived from hindlimb muscles,
which show a RBE in regards to inflammation and muscle
soreness [112, 113, 129]. We also examined the effects of
two bouts of eccentric muscle contraction spaced 12 days
apart on masseter contractile function by measuring torque
in 7 male rats. After a second bout of eccentric contraction,
masseter maximal torque decreased by 79% compared to
the initial maximal torque at day 0, and decreased by an
additional 60% compared to maximal torque immediately
prior to the second bout of eccentric contractions (Figure 4).
These data show that a second bout of eccentric contractions
of the masseter muscle further reduces muscle force (Mann-
Whitney rank sum test, n = 7 animals per group, P=.026)
in contrast to the tibialis anterior muscle in which a second
bout of eccentric muscle contraction results in very little
or no further reduction in muscle force (i.e., repeated bout
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Figure 5: Diagrammatic representation of the response of masticatory versus limb muscle to repeated injury.

effect) [108, 113]. Thus, the masseter muscle not only lacks
a repeated bout effect, but instead sustains increased damage
upon repeated bouts of muscle injury (Figure 5). We propose
this difference evokes mechanisms that contribute to chronic
craniofacial muscle pain.

5. Synthesis of the Role of Muscle Injury in
Chronic Muscle Pain Including Potential
Therapeutic Targets

In this communication we show that repeated bouts of
injury to masticatory muscles do not evoke the adaptive RBE
present in limb muscles, but rather compound muscle injury.
Patients with TMD and fibromyalgia exhibit altered central
nociceptive processing [30–33, 37], which is most likely
initially triggered from a peripheral source [34]. Nociceptive
input from muscle afferent neurons is particularly potent at
generating central nervous system wind-up [35]. One poten-
tial source for muscle injury is oral parafunctional behaviors.
Evidence shows that oral parafunctional behaviors that
increase muscle tension are good predictors of orofacial pain
levels in patients with TMD [130, 131]. It is also known that
experimental bruxism produces muscle soreness, described
as moderate muscle pain that is exacerbated by movement
[132, 133]. Horizontal jaw movement at 50% maximum
voluntary contraction for 5 min, or jaw protrusion and
retrusion under load, also produces delayed jaw muscle pain
[134]. Finally, eccentric, but not concentric, contraction
of the masseter muscle lowers the masseter pressure pain
threshold [135, 136], which is consistent with the greater
myofiber damage produced by eccentric contractions [137].
Since parafunctional behaviors can occur for prolonged
periods, we propose that the impaired ability of masticatory
muscles to regenerate results in neuronal transformations.
This in turn chronically enhances the responsiveness of
muscle primary afferent neurons to subsequent injury and
thus serves as a source to initiate and/or exacerbate chronic
muscle pain.

Nerve growth factor (NGF) is a homodimeric protein
that binds to TrkA and p75 receptors [138, 139] and is
implicated in mechanical and heat hyperalgesia [140–143].
Several findings establish a role for NGF in peripheral muscle

pain mechanisms. First, NGF levels in the masseter muscle
of patients with TMD are negatively correlated with pressure
pain threshold and positively correlated with descriptors of
pain [144]. Levels of NGF are also elevated in inflamed
muscle following injury including injury evoked by eccentric
muscle contraction [145–147]. While other studies implicate
NGF in muscle pain [77, 148, 149], high concentrations
of NGF were used. Several sources for intramuscular NGF
exist. Adult myofibers do not produce NGF [150], although
developing and dystrophic myofibers can [150, 151]. Other
potential sources for NGF include keratinocytes [152],
fibroblasts [153], and mast cells [154–156]. NGF is known
to upregulate many nociceptive channels and neuropeptides
implicated in muscle pain [157–161], and, therefore, we
propose that NGF is not only involved in acute muscle
pain, but plays an instrumental role in chronic muscle
pain by sustained modulation of nociceptive channel and
neuropeptide expression. Among these, we expect that
P2X3 and CGRP are particularly important for deep tissue
craniofacial pain.

P2X receptors comprise a family of ionotropic receptors
which are activated by ATP (for review [162, 163]). In
muscle, injection of ATP elicits pain [73] and activates
muscle nociceptors [164]. Nonspecific P2X antagonists also
reduce nocifensive behavior following muscle pain [165].
One member of the P2X family, the P2X3 receptor, is
specifically implicated in nociception [166]. Since a much
higher percentage of craniofacial muscle afferent neurons
express P2X3 than limb muscle afferent neurons [167], P2X3

is particularly implicated in craniofacial deep tissue pain.
P2X3 receptors are present on masseter muscle afferent
neurons [168] and rapidly desensitizing currents character-
istic of P2X3 receptors can be activated in a subpopulation
of masseter muscle afferents by applying ATP [52]. P2X3

immunopositive muscle afferent neurons are increased 15
days following repetitive muscle contraction and rapid
stretching [81]. Thus, physiologically relevant stimuli upreg-
ulate P2X3 in primary muscle afferent neurons for prolonged
periods of time. One potential source of ATP to activate P2X3

receptors is ATP released from the cytosol of damaged cells.
In coculture systems, action potentials and inward currents
are evoked in nociceptors when nearby cells are mechanically
damaged, and these responses are demonstrated to be
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mediated by ATP [169]. In muscle, the concentration of
ATP within myofibers is approximately 10 mM [170], a
concentration that readily activates muscle primary afferent
neurons in vivo [164], demonstrating that sufficient ATP is
present within myofibers to activate muscle afferent neurons.
Since eccentric muscle contraction mechanically damages
myofibers and disrupts their membrane [81], we propose
that ATP is released from damaged myofibers following
muscle injury and activates P2X3 receptors on muscle
nociceptors.

Considerable evidence implicates the neuropeptide, cal-
citonin gene-related peptide (CGRP) in nociception and
inflammation [171–175]. CGRP is a 37 amino acid neu-
ropeptide synthesized in primary afferent neurons. CGRP is a
potent vasodilator of blood vessels [171, 176] including those
in muscles [176], and mediates neurogenic inflammation
[177]. CGRP has been implicated specifically in nociceptive
mechanisms from deep tissues [178], including muscle [54]
and intramuscular CGRP is significantly increased following
muscle injury evoked by eccentric muscle contractions [94].
Seventy-five percent of masseter P2X3 muscle afferents colo-
calize CGRP [168]. We predict that this extensive colocaliza-
tion indicates greater interaction between CGRP and P2X3

in trigeminal, compared to dorsal root ganglion neurons,
where neuropeptides and P2X3 are segregated [179, 180].
NGF not only upregulates CGRP [181], but also P2X3 [157,
159, 182]. We propose that increased intramuscular NGF
following myofiber injury and muscle inflammation not only
upregulates CGRP, but also increases P2X3 expression in
muscle primary afferent neurons priming the responsiveness
of these neurons upon subsequent injury.

Additional factors to consider are that stress and auto-
nomic dysfunction are correlated with some muscle pain
disorders [183–187]. When stress is combined with eccentric
contractions of hindlimb muscles, allodynia persists for up
to 35 days and becomes bilateral [188]. This finding demon-
strates that muscle injury can evoke long-lasting neuronal
plasticity. Thus, we predict that acute muscle injury, partic-
ularly when combined with stress, can evoke central nervous
system changes after which pain can become independent
of peripheral drive, and that intermittent muscle injury
exacerbates pain even after central pain transformations
have occurred. Little is known about potential interactions
between muscle injury, autonomic dysfunction, and the
development of chronic muscle pain, making it an important
area for future research.

We hypothesize that peripheral mechanisms involving
primary afferent neurons from deep tissues are instrumental
in the development of central nervous system transforma-
tions, such as central sensitization that occurs in muscle-
based TMDs and fibromyalgia [30–32, 189]. Thus, agents
capable of reducing primary afferent drive evoked by muscle
inflammation have potential as acute therapeutics and
as modulators of long-term nociceptive phenomena. We
propose that increased intramuscular NGF after muscle
injury plays a critical role in chronic pain by persistently
upregulating P2X3 and CGRP in muscle primary afferent
neurons. Although selective P2X3 antagonists exist [190],
rather than directly targeting P2X3, a potentially more

powerful approach is to concentrate on CGRP antagonists
and NGF biologics (for review [191, 192]), because these
agents have the potential to decrease both neurogenic
inflammation and P2X3 upregulation. We predict that CGRP
antagonists will not only reduce vasodilatation and CGRP
synthesis and release, but that they will also attenuate the
upregulation of P2X3 receptors, reducing the activation of
muscle nociceptors by ATP. We also anticipate that anti-NGF
antibodies will have multiple antinociceptive actions. These
include, but are not limited to, blocking NGF-mediated
upregulation of CGRP and reducing the upregulation of
P2X3 due to CGRP.

6. Conclusions

In this communication we have described differences in the
response to injury of masticatory muscle versus hindlimb
muscle. We also included new evidence that masticatory
muscles do not adapt to repeated injury as occurs in
hindlimb muscle (i.e., masticatory muscles do not exhibit the
repeated bout effect). We propose that acute bouts of injury,
as occurs during oral parafunctions, increase intramuscular
nerve growth factor evoking a persistent upregulation of
nociceptive receptors and neuropeptides. This mechanism
primes primary afferent neurons for enhanced responsive-
ness upon subsequent injury and serves to trigger and/or
exacerbate chronic muscle pain.
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Nilsson, and D. D. Metcalfe, “Human mast cells express
functional TrkA and are a source of nerve growth factor,”
European Journal of Immunology, vol. 27, no. 9, pp. 2295–
2301, 1997.

[156] R. D. P. Stanzel, S. Lourenssen, and M. G. Blennerhassett,
“Inflammation causes expression of NGF in epithelial cells
of the rat colon,” Experimental Neurology, vol. 211, no. 1, pp.
203–213, 2008.

[157] M. D’Arco, R. Giniatullin, M. Simonetti et al., “Neutraliza-
tion of nerve growth factor induces plasticity of ATP-sensitive
P2X3 receptors of nociceptive trigeminal ganglion neurons,”
Journal of Neuroscience, vol. 27, no. 31, pp. 8190–8201, 2007.

[158] S. C. Supowit, H. Zhao, and D. J. DiPette, “Nerve growth
factor enhances calcitonin gene-related peptide expression in
the spontaneously hypertensive rat,” Hypertension, vol. 37,
no. 2, pp. 728–732, 2001.

[159] M. S. Ramer, E. J. Bradbury, and S. B. McMahon, “Nerve
growth factor induces P2X3 expression in sensory neurons,”
Journal of Neurochemistry, vol. 77, no. 3, pp. 864–875, 2001.

[160] J. Xing, J. Lu, and J. Li, “Contribution of nerve growth factor
to augmented TRPV1 responses of muscle sensory neurons
by femoral artery occlusion,” American Journal of Physiology,
vol. 296, no. 5, pp. H1380–H1387, 2009.

[161] S. Orita, S. Ohtori, M. Nagata et al., “Inhibiting nerve
growth factor or its receptors downregulates calcitonin
gene-related peptide expression in rat lumbar dorsal root
ganglia innervating injured intervertebral discs,” Journal of
Orthopaedic Research, vol. 28, no. 12, pp. 1614–1620, 2010.

[162] P. M. Dunn, Y. U. Zhong, and G. Burnstock, “P2X receptors
in peripheral neurons,” Progress in Neurobiology, vol. 65, no.
2, pp. 107–134, 2001.

[163] B. S. Khakh and R. A. North, “P2X receptors as cell-surface
ATP sensors in health and disease,” Nature, vol. 442, no. 7102,
pp. 527–532, 2006.



Pain Research and Treatment 13
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