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Abstract
The neuropathological hallmark of the majority of amyotrophic lateral sclerosis (ALS) and a class
of frontotemporal lobar degeneration is ubiquitinated cytoplasmic aggregates composed of
transactive response DNA binding protein 43 kDa (TDP-43). Genetic manipulation of TDP-43 in
animal models has been used to study the protein's role in pathogenesis. Transgenic rodents for
TDP-43 have recapitulated key aspects of ALS such as paralysis, loss of spinal motor neurons and
muscle atrophy. Viral vectors are an alternate approach to express pathological proteins in
animals. Use of the recombinant adeno-associated virus vector serotype 9 has permitted
widespread transgene expression throughout the central nervous system after intravenous
administration. Expressing TDP-43 in rats with this method produced a phenotype that was
consistent with and similar to TDP-43 transgenic lines. Increased levels of TDP-43 in the nucleus
are toxic to neurons and sufficient to produce ALS-like symptoms. Animal models based on
TDP-43 will address the relationships between TDP-43 expression levels, pathology, neuronal
loss, muscle atrophy, motor function and causative mechanisms of disease. New targets that
modify TDP-43 function, or targets from previous ALS models and other models of spinal cord
diseases, could be tested for efficacy in the recent rodent models of ALS based on TDP-43. The
vector approach could be an important therapeutic channel because the entire spinal cord can be
affected from a one-time peripheral administration.
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Introduction
Advances in the development of animal models expressing neuropathological proteins have
led to increased understanding of neurodegenerative disease mechanisms. Rodents are a
gateway for drug development to man because of their similar anatomy and well-
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characterized models. Rodent models are also faster than larger animals such as cats, dogs,
pigs and monkeys. Transgenic and knockout manipulation of the germ-line is a gold-
standard approach to study disease hallmark pathologies because of the permanent and
consistent effect on gene expression levels. Complementary expression systems can offer
higher throughput and more rapid and thus cost-effective means to address key questions
about pathogenesis. Research on amyotrophic lateral sclerosis (ALS) has historically been
focused on familial forms of the disease involving mutations in superoxide dismutase 1
(SOD1). Following the discovery of the role of transactive response DNA binding protein
43 kDa (TDP-43) in ALS and other neurodegenerative diseases, a number of model systems
have been used, which were developed during the course of studying other hallmark
neuropathological proteins such as amyloid precursor protein, microtubule-associated
protein tau, alpha-synuclein, huntingtin and SOD1. Based on the knowledge gained from the
earlier research on these proteins, advances on animal models of TDP-43 and the underlying
disease mechanisms have evolved quickly. As most neurodegenerative diseases have limited
therapeutic options, it is naturally hoped that the rapid advancements in model development
will drive towards clinical translation.

TDP-43 is a predominantly nuclear protein with functions related to transcription and RNA
processing and transport (Buratti & Baralle, 2008). In 2006, it was discovered that TDP-43
is a major component of the cytoplasmic ubiquitinated inclusions in the neurodegenerative
diseases frontotemporal lobar degeneration with ubiquitin-positive inclusions and ALS (Arai
et al., 2006; Neumann et al., 2006). The branch of frontotemporal lobar degeneration with
TDP-43 pathology has since been renamed FTLD–TDP (Mackenzie et al., 2010). The
neuropathological pattern in these diseases involves TDP-43 mislocalization to the
cytoplasm, a clearing of nuclear TDP-43, and ubiquitinated and hyperphosphorylated
inclusions found throughout the central nervous system (CNS) (Neumann et al., 2006; Geser
et al., 2008), although pathological markers may vary depending on the CNS region affected
(Igaz et al., 2008; Neumann, 2009; Mackenzie et al., 2010). A recent study implicates
deficient nuclear import of TDP-43 leading to its cytoplasmic deposition (Nishimura et al.,
2010). TDP-43 can form inclusions within neuronal nuclei, dystrophic neurites and glia in
FTLD–TDP subtypes (Neumann et al., 2007; Mackenzie et al., 2010). FTLD–TDP and ALS
may share similar mechanisms of pathogenesis involving TDP-43, and both diseases lack
efficacious medicine to slow disease progression. ALS is a neuromuscular disease involving
the loss of motor neurons and atrophy of the muscles that they innervate, with differential
onset of symptoms that can be tied to early degeneration of either brainstem or spinal motor
neurons (Eisen, 2009). Familial mutations account for 10% of the ALS population (Van
Damme & Robberecht, 2009). The vast majority of ALS research is focused on SOD1
(Rosen et al., 1993; Boillée et al., 2006), although it has been estimated that only 2% of ALS
involves mutations in SOD1 (Mackenzie et al., 2007). However, TDP-43 neuropathology is
found in both sporadic and familial ALS, estimated to be as much as 98% of ALS
(Mackenzie et al., 2007). An enormous wealth of resources and knowledge has accrued from
studying familial SOD1 mutations (Boillée et al., 2006), although there remains much
frustration in terms of translational value. Because the vast majority of ALS is now known
to involve some degree of TDP-43 pathology, research on this protein may be more broadly
relevant to ALS.

Familial mutations in TDP-43 associated with ALS (Gitcho et al., 2008; Sreedharan et al.,
2008) suggest either loss of function or toxic gain of function as possible pathogenic
mechansims. Yeast (Johnson et al., 2008), Caenorhabditis elegans (Ash et al., 2010; Liachko
et al., 2010), Drosophila (Li et al., 2010), zebrafish (Kabashi et al., 2010) and chick embryo
(Sreedharan et al., 2008) models have recapitulated the molecular and cellular aspects of
FTLD–TDP and ALS in order to address the key question of TDP-43 function/dysfunction
in disease (Gendron et al., 2010). These animal models, complemented by cell culture
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models (e.g. Caccamo et al., 2009; Nonaka et al., 2009; Zhang et al., 2009; Barmada et al.,
2010), offer rapid screening of drugs and gene targets to address the mechanisms. The
logical next step from any of these high-throughput systems is translation to a mammalian
system, usually in a rodent or a non-human primate model. Due to their relevant
neuroanatomy and myoanatomy, and well-characterized behavioral and toxicological
paradigms, mice and rats are essential for proof of concept discoveries on TDP-43 function
as they relate to disease.

TDP-43 overexpression in rodents via germ-line manipulation
The breakthrough study by Neumann et al. (2006) established TDP-43 as a
neuropathological substrate protein in FTLD–TDP and ALS, and sparked efforts to generate
transgenic mice based on this protein (Wegorzewska et al., 2009; Shan et al., 2010; Stallings
et al., 2010; Tsai et al., 2010; Wils et al., 2010; Xu et al., 2010; Zhou et al., 2010; Igaz et al.,
2011). Different promoter strategies have been used to drive expression, e.g. ubiquitous
expression with the prion promoter (Wegorzewska et al., 2009; Stallings et al., 2010; Xu et
al., 2010), specific neuronal expression with the thymus cell antigen 1 promoter (Shan et al.,
2010; Wils et al., 2010) or conditional expression with the forebrain specific calcium–
calmodulin-dependent kinase II (CaMKII) promoter (Tsai et al., 2010; Igaz et al., 2011). A
consensus of motor effects and morbidity and mortality has generally resulted from TDP-43
overexpression despite the different promoter strategies, form of TDP-43 used and the
degree of TDP-43 pathology, underscoring great sensitivity to changes in TDP-43 levels and
functionality (Table 1). ALS and FTLD–TDP are separated in Table 1, which is an
oversimplification because there are both spinal cord and brain effects in the animal models
and in disease (Geser et al., 2008).

The first transgenic TDP-43 mice reported in the literature utilized the A315T mutant form
of human TDP-43 linked to familial ALS, whereas wild-type TDP-43 mice were embryonic
lethal in that study (Wegorzewska et al., 2009). The mutant TDP-43 mice displayed several
salient features of ALS, such as limb paralysis and muscle wasting over 3–9 months, and
electromyographic traces from the hindlimb consistent with denervation. There was
selective ubiquitination in layer V of the cortex and in the spinal cord, which could have
included upper and lower motor neurons, although disease-like cytoplasmic
hyperphosphorylated aggregates of TDP-43 were not detected. However, there was evidence
of disease-relevant TDP-43 protein fragments. The mice used by Wegorzewska et al. (2009)
are a milestone in the progress on TDP-43′s role in ALS, and many of their features have
been reproduced in other TDP-43 mice and rats. Wils et al. (2010) were able to generate
wild-type TDP-43 mice, with several lines with different levels of overexpression. This
yielded time- and gene-dosage-dependent effects of TDP-43 to induce functional motor
disease states, with more rapid, similar or slower time courses relative to the A315T mice
(Wegorzewska et al., 2009) depending on the TDP-43 level. The two studies shared many
similar outcomes of paralysis, morbidity, mortality, motor neuron loss, gliosis and, notably,
similar ubiquitination in the cortex and spinal cord. The study of Wils et al. (2010) showed
evidence of apparent proteolytic cleavage of TDP-43 that corresponded with the severity of
the disease state, and disease-relevant cytoplasmic and nuclear inclusions of
hyperphosphorylated TDP-43 (Arai et al., 2006, 2010; Neumann et al., 2006), which were
not found in the mice used by Wegorzewska et al. (2009). TDP-43 phosphorylation was
determined with phospho-specific antibody, and cytoplasmic aggregates have been detected
in several studies by this method (Stallings et al., 2010; Xu et al., 2010; Zhou et al., 2010;
Igaz et al., 2011). Regarding the relevant recapitulation of TDP-43 proteinopathy in glial
cells (Nishihira et al., 2008; Zhang et al., 2008), several transgenic models have used
neuron-specific promoters, such as thymus cell antigen 1 and CaMKII (Tsai et al., 2010;
Wils et al., 2010; Igaz et al., 2011), whereas one study using the ubiquitous prion protein
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promoter reported an increase in nuclear, but not cytoplasmic, TDP-43 within glia
(Wegorzewska et al., 2009).

Two studies modeled FTLD–TDP by overexpressing TDP-43 with the CaMKII promoter,
which is active in the hippocampus, striatum and cortex but not in other brain regions such
as the cerebellum and spinal cord (Tsai et al., 2010; Igaz et al., 2011). The CaMKII
promoter is also developmentally regulated, which is advantageous to avoid embryonic
lethality. In the study of Tsai et al. (2010), TDP-43 mice were deficient in multiple memory
tasks by 2 months, concomitant with electrophysiological changes in long-term potentiation
and miniature excitatory postsynaptic currents, and neuronal loss in the hippocampus.
Surprisingly, motor impairments developed in these mice by 6 months of age, similar to
other TDP-43 transgenic mice using different promoters, suggesting that damage to upper
motor neurons and the corticospinal tract contributes to the motor pheno-types, as no spinal
motor neuron loss or spinal TDP-43 expression was observed. The study of cognitive
dysfunction is relevant to frontotemporal lobar degeneration (Chen-Plotkin et al., 2010;
Geser et al., 2010) as well as ALS (Abe et al., 1997). However, in TDP-43 transgenic mice
with spinal expression, damage to the motor system renders memory-related tasks
unfeasible. Furthermore, the sensitivity of the assays of cognitive function may not be able
to detect subtle changes, although memory-related performance was impaired when TDP-43
expression was limited to the forebrain (Tsai et al., 2010). Another way of studying the
effects of TDP-43 on memory-related behaviors would be to target expression to specific
brain regions such as the hippocampus with vector gene transfer, which we have been
attempting.

The study of Igaz et al. (2011) utilized a CaMKII/tetracycline operator promoter system,
whereby forebrain expression of TDP-43 was induced when mice were withdrawn from the
drug doxycycline. The authors used this to compare the effects of human TDP-43 with a
defective nuclear localization signal (resulting in cytoplasmic expression) or wild-type
TDP-43 (nuclear expression) without developmental effects. Both forms of TDP-43 induced
relevant FTLD–TDP neuropathology and degeneration. However, the mutated TDP-43 that
forced cytoplasmic expression was surprisingly unable to potentiate disease-relevant
pathology in terms of increased cytoplasmic inclusions. Furthermore, the cytoplasmic
TDP-43 expression exacerbated the depletion of endogenous mouse TDP-43, which
correlated with neuron loss and motor dysfunction. Simultaneous and consistent with the
loss of endogenous mouse TDP-43, there were gene expression changes in chromatin
assembly pathways. The mice used by Igaz et al. (2011) are unique for the conditional
TDP-43 expression pattern, and offer two distinct mechanisms of TDP-43 toxicity, in either
the nucleus or cytoplasm, that can be studied.

Mitochondrial dysfunction has been implicated in the neurodegenerative mechanism of
TDP-43 (Shan et al., 2010; Xu et al., 2010), based on research on ALS and transgenic SOD1
mice (Boillée et al., 2006). The TDP-43 mice in Xu et al. (2010) showed abnormal
clustering of degenerating mitochondria that formed aggregates in the spinal motor neurons,
concomitant with changes in expression of specific mitochondrial gene products. These
mice also had an overall motor phenotype similar to the TDP-43 mice used by
Wegorzewska et al. (2009) and Wils et al. (2010). Utilizing a double transgenic strategy to
visualize mitochondria, TDP-43 mice in Shan et al. (2010) also demonstrated mitochondrial
clustering in neuron cell bodies coinciding with depletion of mitochondria in neuromuscular
junction nerve terminals, which could have been related to their motor dysfunction. This
study reported an increase in and altered localization of Gemini coiled bodies, which are
nuclear structures involved in premessenger RNA splicing. There were also specific changes
in gene expression, such as decreases in neurofilament proteins that could have been related
to the axonopathy that was found in the ventral roots of the spinal cord. It is of note that
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knockdown of TDP-43 expression within this study blocked the formation of Gemini bodies
in the nucleus. The onset and severity of motor deficits were more rapid and pronounced in
the males of this TDP-43 transgenic line, coinciding with increased TDP-43 accumulation in
their spinal cords.

Another emerging theme is the loss of endogenous mouse TDP-43 expression when human
TDP-43 is overexpressed. The TDP-43 mice from Xu et al. (2010) and those from Igaz et al.
(2011) showed loss of endogenous mouse TDP-43 mRNA and protein, respectively, which
could have relevance in terms of the loss of TDP-43 staining in the nucleus in disease
samples (Neumann et al., 2006, 2007) and transgenic models (Wegorzewska et al., 2009;
Wils et al., 2010). The mice may be downregulating their own TDP-43 levels (Ayala et al.,
2011) in the face of overexpression, or cytoplasmic TDP-43 aggregates could be recruiting
nuclear TDP-43 to the cytoplasm (Caccamo et al., 2009; Nonaka et al., 2009).

The functional impact of inherited familial mutations in TDP-43 has been studied using
transgenic mice. Results from yeast (Johnson et al., 2008), C. elegans (Liachko et al., 2010),
zebrafish (Kabashi et al., 2010), chick embryos (Sreedharan et al., 2008) and cell culture
(Barmada et al., 2010) have implicated the specific pathogenicity of familial mutations such
as the M337V and A315T TDP-43 mutations. Similar conclusions have been reached in
TDP-43 transgenic mice with either the A315T or M337V TDP-43 mutations (Stallings et
al., 2010) and in TDP-43 transgenic rats using the M337V TDP-43 mutation (Zhou et al.,
2010). However, both wild-type (Wils et al., 2010; Xu et al., 2010) and mutant TDP-43
(Wegorzewska et al., 2009; Zhou et al., 2010) have led to comparably robust ALS-relevant
phenotypes.

Transgenic rats for mutant TDP-43 manifest an ALS-relevant motor phenotype with
paralysis, motor neuron loss and muscle atrophy (Zhou et al., 2010), so the consequence of
overexpressing TDP-43 is shared in mice and rats. A `tet-off' promoter system was used to
avoid overexpression during embryogenesis. This model yielded unique evidence for the
direct ubiquitination of TDP-43 by co-immunoprecipitation, not reported in TDP-43 mice.
Rat models are particularly advantageous for fine anatomical manipulations, and specific
behavioral and toxicological assays designed for rats, such as food-reward paradigms.

A variety of germ-line strategies have been employed to express mutant and wild-type
TDP-43 in rodents involving different regulatable or conditional promoters, achieving
TDP-43 expression in select tissues and cell types and at certain ages (Table 1). Despite the
different strategies, increasing TDP-43 levels in the nucleus results in consistent functional
outcomes such as paresis/paralysis and morbidity (Wegorzewska et al., 2009; Shan et al.,
2010; Stallings et al., 2010; Tsai et al., 2010; Wils et al., 2010; Xu et al., 2010; Zhou et al.,
2010; Igaz et al., 2011), with several studies showing modest loss of spinal motor neurons
(Wegorzewska et al., 2009; Wils et al., 2010; Zhou et al., 2010) and muscle wasting
(Wegorzewska et al., 2009; Stallings et al., 2010; Zhou et al., 2010). Despite similar
behavioral outcomes, some of the main differences among the lines involve TDP-43
inclusion formation and apparent proteolytic processing (Wegorzewska et al., 2009; Shan et
al., 2010; Igaz et al., 2011), which suggest that these features are non-essential for the
phenotype of motor paralysis.

TDP-43 knockout mice
Loss of TDP-43 function may play a role in disease pathogenesis due to the clearing of
nuclear TDP-43 that occurs concomitantly with cytoplasmic inclusions. TDP-43 knockout
flies in the study of Feiguin et al. (2009) had motor impairment and defects in motor neuron
synapses, which could be rescued by the expression of human TDP-43. An antisense
oligonucleotide strategy in zebrafish reduced TDP-43 levels and induced a swimming
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impairment, similar to that seen when TDP-43 was overexpressed (Kabashi et al., 2010).
That a similar motor phenotype could be caused in zebrafish by either TDP-43 knockdown
or TDP-43 overexpression suggests that loss of TDP-43 function could underlie both disease
and, paradoxically, the phenotype when TDP-43 is overexpressed in animals. Studying the
loss of TDP-43 function in mice has been challenging due to embryonic lethality, and has
underscored the great sensitivity to altering levels of TDP-43 in rodents. Homozygous
knockouts are consistently embryonic lethal (Kraemer et al., 2010; Sephton et al., 2010; Wu
et al., 2010), which suggests a critical function during embryogenesis that lacks redundancy
with other ribonucleoproteins. However, heterozygous mice do not show any level of
TDP-43 knockdown, consistent with TDP-43 being able to regulate its own levels (Ayala et
al., 2011). The TDP-43 heterozygous knockouts from Kraemer et al. (2010) had muscle
weakness after 1 year, although there was no evidence of neuronal loss or muscle atrophy.
To permit the study of homozygous knockout in mice, Chiang et al. (2010) employed a
loxP/Cre recombinase system to create conditional knockout mice when the drug tamoxifen
was given. Homozygotes had a drastic decrease in TDP-43 expression that led to weight loss
and death, and concomitant dysregulation of genes involved with obesity. Modeling the loss
of TDP-43 function in rodents is limited by the embryonic lethality and tight regulation of
TDP-43 levels, and has yet to produce ALS-related sequelae such as loss of motor neurons
or muscle atrophy.

TDP-43 overexpression in rats via somatic cell gene transfer strategy
The viral vector overexpression of neuropathological proteins is also used to mimic salient
features of neurodegenerative diseases in rodents or non-human primates (e.g. Senut et al.,
2000; Kirik et al., 2002, 2003; Klein et al., 2002, 2004). The injection of a gene vector can
target disease-relevant areas, which was advantageous for overexpression of the Parkinson's
disease-related protein alpha-synuclein (Kirik et al., 2002; Klein et al., 2002; Lo Bianco et
al., 2002) because, overall, the transgenic mice do not exhibit disease-relevant loss of
dopamine neurons in the substantia nigra (Chesselet, 2008). Adeno-associated virus (AAV)
is a single-stranded DNA virus that is not attributed to a specific known disease or pathology
(Daya & Berns, 2008). The recombinant vectors based on AAV express no viral genes and
are therefore considered to be relatively safe. AAV vectors have been administered to
humans in clinical research for Parkinson's disease using several different gene targets
(Kaplitt et al., 2007; Christine et al., 2009; Marks et al., 2010). Because AAV vectors are
efficient for expressing specific genes in neurons without causing nonspecific side effects
due to the vector, they have become a key tool in basic neuroscience research.

Compared with germ-line mice, vector-based models do not produce the same level of
expression and are more subject to variability due to gene transfer efficiency in each
individual subject. However, stable long-term expression levels and reproducible results
have demonstrated sufficient consistency to address hypotheses that would take longer and
cost more in germ-line transgenics to answer similar questions. Gene variants could be
quickly screened and compared in a rodent without having to generate, maintain and
genotype transgenic lines. Improved targeting, facility for gene combinations and the
presence of within-subject non-transduced internal controls are some of the unique
advantages of the vector approach. The ability to turn on expression in specific CNS regions
gives the experimenter control of optimizing the expression and disease relevance, as well as
avoiding embryonic lethality. If the vector technique can be sufficiently consistent in
producing ALS-like symptoms, it could be more cost-effective than transgenic lines, given
the advent of intravenous gene delivery with the AAV type 9 vector, which widely
transduces the spinal cord and brain (Foust et al., 2009).
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Tatom et al. (2009) studied focal injections of an AAV9 human TDP-43 vector to the
substantia nigra of rats, a brain region with TDP-43 pathology and/or neuron loss in several
neurodegenerative diseases with parkinsonian symptomatology (Leverenz et al., 2007; Geser
et al., 2008; Zhang et al., 2008; Wider et al., 2009). The AAV9 TDP-43 produced potent
toxicity to the dopamine neurons that was vector dose-dependent, along with a progressive
effect on rotational behavior over time. The focal vector injections thus produced a highly
potent and consistent assay of TDP-43-induced neurodegeneration and behavioral deficit
with disease relevance in the rat. The human TDP-43 expression was mainly nuclear, and
estimated to be threefold higher than endogenous rat TDP-43 levels, so as in other TDP-43
models, small alterations in TDP-43 levels in the nucleus were toxic to neurons. There were
examples of cytoplasmic TDP-43 deposition and cytoplasmic ubiquitination in the TDP-43
vector group, but they were infrequent and marginal compared with the massive gliosis and
neuronal loss that occurred in the TDP-43 transduced substantia nigra. Although TDP-43 is
relevant in regard to the substantia nigra, the focal vector approach seemed limited for the
transduction of upper and lower motor neurons in relation to ALS. The widespread TDP-43
pathology (Geser et al., 2008) in ALS could be mimicked with the widespread expression in
germ-line transgenics (e.g. Wegorzewska et al., 2009), but results with vectors until now
could not generate similar widespread expression (e.g. Foust et al., 2008b).

That changed when Foust et al. (2009) demonstrated green fluorescent protein expression
throughout the mouse CNS with intravenous AAV9 vector administration. By injecting
neonatal mice, a still-developing blood–brain barrier allows vector entry to the CNS that is
more difficult to achieve in older subjects. Wang et al. (2010) translated this technique to
rats to overexpress TDP-43, which produced paresis and paralysis, an overall functional
phenotype common to the TDP-43 transgenic mice and rats. The spread of green fluorescent
protein expression in the CNS of rats was unprecedented, visualized by biophotonic imaging
in Fig. 1A. The TDP-43 rats had progressive weight loss, morbidity and mortality relative to
green fluorescent protein rats, with modest loss of spinal motor neurons, but remarkably
severe muscle atrophy (Fig. 1B) and hindlimb paralysis. As cytoplasmic TDP-43
neuropathology was not found in these rats, the data again implicate the toxicity of nuclear
TDP-43 overexpression. The hindlimb paralysis was quantified by rotarod and analysis of
rearing behavior, and both readouts were highly consistent, demonstrating that the
behavioral phenotype for TDP-43-induced paralysis is reproducible and comparable to data
from transgenic mice. Although consistent, the onset of the disease state was rapid within a
few weeks, so controlling expression to the adult onset of symptoms will be more relevant to
ALS. Other refinements will be more selective expression in the CNS and motor neurons, as
the intravenous AAV9 injections also caused peripheral expression, which also occurs in
TDP-43 transgenic mice using the prion promoter (e.g. Xu et al., 2010). The corticospinal
tract of rodents and primates varies because, in rodents, it is located in the dorsomedial
spinal cord, whereas in primates it is in the lateral spinal cord (Watson & Harvey, 2008).
Functionally, it is also more of a pure motor pathway in primates compared with rodents
(Watson & Harvey, 2008). A non-human primate model might be essential for greater
relevance, which can be achieved via vector gene transfer. Apart from the utility in
modeling neurodegenerative diseases through the overexpression of neurotoxic proteins,
viral vectors also have therapeutic potential. Vector gene transfer has been the best method
to deliver therapeutic proteins in a stable manner to the CNS, and recent advancements of
widespread CNS transduction using a one-time peripheral injection have broadened the
scope for affecting large portions of the spinal cord, and thus spinal cord diseases.

Preclinical gene therapy in the spinal cord
Amyotrophic lateral sclerosis is a candidate for gene therapy because it is life threatening
and without cure, and because there are forms of the disease with genetic etiology. To

Wang et al. Page 7

Eur J Neurosci. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



counteract the neurodegeneration in ALS, the whole spinal cord may need to be treated on a
long-term basis. Several strategies have been used for AAV gene delivery to the spinal cord
(Fig. 2), with recent efforts succeeding for widespread and long-term spinal transduction.
The discussion is centered on data with AAV, although similar strategies have been used
with lentivirus vectors (Azzouz et al., 2004; Ralph et al., 2005; Raoul et al., 2005) or
adenovirus vectors (Bordet et al., 2001; Acsadi et al., 2002; Manabe et al., 2002; Yamashita
et al., 2002) for gene transfer in mutant SOD1 mice. Peel et al. (1997) used an AAV2 vector
to achieve green fluorescent protein expression in the spinal cord via direct injections into
the cervical spinal cord. Azzouz et al. (2000) used this route of administration and
demonstrated neuroprotection in mutant SOD1 mice using an AAV vector for the
antiapoptotic gene B-cell lymphoma 2. Other studies have shown neuroprotection using the
growth factors insulin-like growth factor 1 (Lepore et al., 2007; Franz et al., 2009) and
granulocyte-colony-stimulating factor (Henriques et al., 2011) via spinal injections. Dodge
et al. (2008) injected an insulin-like growth factor 1 vector into the deep cerebellar nuclei, a
brain region with extensive spinal projections, resulting in insulin-like growth factor 1
expression throughout the spinal cord. Secretable peptidergic factors can spread beyond the
area of the transduced cells to exert more widespread effects.

Different routes of administration that avoid direct injections to the spinal cord parenchyma
have been developed (Fig. 2), because it would be beneficial to affect the entire spinal cord
without having to inject it. Kaspar et al. (2003) successfully delivered a vector for insulin-
like growth factor 1 to muscle, relying on vector uptake in the axons of innervating spinal
neurons, to treat SOD1 mice. The spread of spinal cord neuronal transduction was limited,
but the secretable growth factors could have spread further. The efficiency of transduction of
motor neurons after intramuscular administration has improved with newer types of the
AAV vector (Towne et al., 2010). Intracerebroventricular vector administration leads to
more widespread spinal transduction (Dodge et al., 2010; Passini et al., 2010), and this route
of gene delivery was successful in extending lifespan in a mouse model of spinal muscular
atrophy by expressing and thereby rescuing the deficiency in the survival motor neuron
protein (Passini et al., 2010). An intravenous route of administration could be preferable
because it allows for widespread gene transfer derived from a peripheral administration. An
early study administering AAV intravenously to neonatal mice was effective in correcting a
model of lysosomal storage disease in the brain (Daly et al., 1999), although transgene
expression in the spinal cord was not discussed. Intravenous AAV8 vector delivery to mice
led to limited spinal cord and brain expression previously (Foust et al., 2008b). However,
the AAV9 vector resulted in more widespread spinal cord expression after intravenous
delivery to neonatal mice (Foust et al., 2009), rats (Wang et al., 2010) and macaques (Foust
et al., 2010), and adult cats and mice (Duque et al., 2009; Foust et al., 2009). The recent
consistent success of intravenous gene delivery of survival motor neuron protein to spinal
muscular atrophy mice (Bevan et al., 2010; Foust et al., 2010; Valori et al., 2010;
Dominguez et al., 2011) has provided key preclinical data necessary for human translation.
A neonatal approach would be limited in order to treat a patient with symptoms. However,
some of the data suggest that this approach can efficiently affect the adult spinal cord
(Duque et al., 2009), and transduction in adults can be bolstered by temporary disruption of
the blood–brain barrier with mannitol (McCarty et al., 2009). Further research will
determine if AAV9 is unique in its ability to widely transduce the CNS compared with other
natural vector serotypes. However, engineered versions of the vector could improve the gene
transfer to adults (Gray et al., 2010).

Several transgene targets have been efficacious in the SOD1 model of ALS using a variety
of AAV administration routes in terms of extension of lifespan, phenotypic delay,
preservation of spinal motor neurons and reduction of neuropathology (Table 2). AAV
strategies have also been used for other spinal cord diseases, such as spinal muscular
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atrophy, spinal cord injury and neuropathic pain (Table 2). For example, gene delivery of
survival motor neuron protein increased lifespan and motor function, and decreased muscle
atrophy in an spinal muscular atrophy model (Passini et al., 2010), and gene delivery of
neurotrophic factors increased motor function and motor neuron survival in spinal cord
injury models (Blits et al., 2003, 2004). It is possible that a secreted growth factor that was
efficacious in a mutant SOD1 model could also work in a TDP-43 model if there are shared
mechanisms of spinal neurodegeneration. There could also be a mechanistic overlap of
deficiency of survival motor neuron protein with ALS (Piao et al., 2011), mutant SOD1
models of ALS (Turner et al., 2009) and TDP-43 models of ALS. As the field of research on
TDP-43 develops, the emergence of proteins that can degrade or detoxify pathological
TDP-43 will provide new therapeutic targets. The ability to affect the entire spinal cord from
a peripheral route of administration will enhance the development of therapeutic strategies
in ALS rodent models based on TDP-43, as well as in a variety of other spinal cord disease
paradigms.

Rodent model caveats and outlook
Rodent models for TDP-43 have definitively demonstrated the specific toxicity of this
protein to cause motor neuron symptoms. It will be important to determine how well the
disease states accurately mimic specific human disease subtypes, and to improve upon the
clinical relevance. The diseases now known as TDP-43 proteinopathies include
clinicopathological syndromes ranging from dementia to motor neuron disease, subclassified
as a spectrum of subtypes based on specific types of TDP-43 pathology and genetic
etiologies (recently reviewed in Chen-Plotkin et al., 2010; Geser et al., 2010). The majority
of the TDP-43 transgenic mice showed expression and pathology in both the brain and
spinal cord, which could represent disease forms with overlapping brain and spinal cord
pathology (Chen-Plotkin et al., 2010; Geser et al., 2010). The two studies using the CaMKII
promoter successfully limited TDP-43 expression to the forebrain, which is thus more
relevant to frontotemporal lobar degeneration subtypes and not ALS (Tsai et al., 2010; Igaz
et al., 2011). However, the probability of cytoplasmic TDP-43 inclusions forming in rodent
models may be different to that in human disease as most of the models showed
predominantly nuclear expression, which underscores a potential nuclear mechanism in
disease, at least in these models. The TDP-43 mice used by Wils et al. (2010) may have
demonstrated the most comprehensive relevance, with specific loss of motor neurons,
specific ubiquitination of motor cortex and spinal cord neurons, nuclear and cytoplasmic
TDP-43 aggregates, and other relevant markers such as TDP-43 hyperphosphorylation and
proteolytic cleavage (Arai et al., 2006, 2010). Although relevant, the disease states generated
in rodents based on overexpression cannot mirror human diseases with normal levels of
TDP-43, and thus the disease mechanism may be different. More ideal models would more
closely mimic specific subtypes in terms of targeting expression to the neuronal populations
that are vulnerable in human disease, with more frequent TDP-43 cytoplasmic inclusions,
and with disease state pathogenesis and progression similar to the human time course, e.g.
adult onset of symptoms.

Overexpression is an indispensable way of addressing disease mechanisms, but there is
overall frustration about the extent of clinical translation that has directly developed from
transgenic mouse models. Clinical research derived from beta-amyloid mice regarding
immunotherapy or secretase inhibition has so far not translated successfully (Kokjohn &
Roher, 2009; Extance, 2010). There have been a number of preclinical therapeutic strategies
tested in mutant SOD1 mice for ALS that have also been attempted in clinical trials, such as
lithium (Fornai et al., 2008) and antisense oligonucleotides against mutant SOD1 (Smith et
al., 2006), although they have not yet yielded new approved drugs for ALS (Siciliano et al.,
2010). Although disease models should platform for testing new drugs, some of the biggest
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gains from rodent models are their contributions to understanding disease mechanisms and
determining the most appropriate proteins that could be targeted with a drug (e.g. Ittner et
al., 2010; Oddo et al., 2003; Roberson et al., 2007).

Although AAV vector strategies are promising for gene therapy as well as studying disease
mechanisms, gene therapy clinical trials for hemophilia, for example, have had difficulty in
translation, despite clear-cut efficacy in animal models (Mingozzi & High, 2011). However,
current gene therapy clinical trials with AAV for a type of blindness are more promising
(Simonelli et al., 2010).

Conclusions
Diverse strategies have been used to generate rodents that overexpress TDP-43 and produce
a consensus ALS-like syndrome (Wegorzewska et al., 2009; Wils et al., 2010; Xu et al.,
2010). Improved vector gene transfer efficiency of the spinal cord has permitted a consistent
disease state with paralysis induced by TDP-43 (Wang et al., 2010). The peripheral to
central administration is also an advance that could be used for new gene therapy strategies
in ALS animal models based on TDP-43, and for other spinal cord diseases, like ALS, that
are orphan diseases with respect to efficacious medication.
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Fig. 1.
Peripheral intravenous injections of an AAV9 vector to neonatal rats led to widespread CNS
expression of green fluorescent protein (GFP) or TDP-43. (A) GFP expression viewed by
biophotonic imaging at 12 weeks of age. There is robust expression in the spinal cord of the
GFP rat, but not in an age-matched uninjected control. The level sets of photonic emission
are reflected by the color scheme, i.e. red denotes greater levels of GFP epifluorescence, and
blue denotes lower levels. (B) Hematoxylin and eosin stain from the gastrocnemius muscle
of a GFP rat at 4 weeks (left panel). AAV9 TDP-43 caused uniform shrinkage of myofibers
indicative of widespread denervation (right panel). Bar: 67 μm for both panels in B.
Reprinted from Wang et al. (2010).
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Fig. 2.
Routes of AAV vector administration for spinal cord transduction. CNS administrations
target injections directly to CNS tissues or the cerebrospinal fluid (red). Intraparenchymal
injections can be into spinal cord (PSC) tissue, or in brain tissues that have axonal
projections into the spinal cord (PB). Injections can be into the intrathecal cavity (T) or the
cerebral ventricles (CV), which can enhance vector spread in cerebrospinal fluid. Peripheral
routes of administration lead to transduction of motor neurons: intramuscular (M) or
intravenous (V) injections (black). Intravenous injections efficiently transduce neurons
throughout the brain and spinal cord, although the approach is limited by having to use very
young subjects. Modified vectors that can cross the mature blood–brain barrier (Gray et al.,
2010) or the use of mannitol, which relaxes the blood–brain barrier (McCarty et al., 2009),
could make this route more applicable in adults. Certainly some of these approaches
transduce brain neurons in addition to spinal cord neurons (e.g. Foust et al., 2008a, 2009;
Passini et al., 2010), although the figure highlights strategies to affect spinal cord diseases.
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Table 2

Preclinical strategies in rodent models of ALS and other spinal cord diseases using AAV vector gene transfer

Disease Transgene Route of administration Vector References

ALS (SOD1) Bcl2 Spinal parenchyma AAV Azzouz et al. (2000)

ALS (SOD1) GDNF Forelimb and hindlimb muscles AAV2 Wang et al. (2002)

ALS (SOD1) IGF-1 Hindlimb and intercostal muscles AAV2 Kaspar et al. (2003, 2005)

ALS (SOD1) IGF-1 Spinal parenchyma AAV2 Franz et al. (2009), Lepore et al. (2007)

ALS (SOD1) IGF-1 Deep cerebellar nuclei AAV1,2 Dodge et al. (2008)

ALS (SOD1) IGF-1, VEGF Ventricles AAV4 Dodge et al. (2010)

ALS (SOD1) G-CSF Spinal parenchyma AAV1/2 Henriques et al. (2011)

SMA SMN1 Intravenous AAV9 Bevan et al. (2010), Dominguez et al. (2011),
Foust et al. (2010), Valori et al. (2010)

SMA SMN1 Ventricles and spinal parenchyma AAV8 Passini et al. (2010)

SCI BDNF, NT-3, GDNF Spinal parenchyma AAV2 Blits et al. (2003, 2004)

SCI L1 Spinal parenchyma AAV5 Chen et al. (2007)

SCI VEGF, Ang-1 Spinal parenchyma AAV8 Herrera et al. (2010)

SCI NT-3 Forelimb muscles AAV5 Fortun et al. (2009)

Neuropathic pain BDNF Spinal parenchyma AAV Eaton et al. (2002)

Neuropathic pain IL-10 Intrathecal AAV2 Milligan et al. (2005)

Neuropathic pain ppbetaEP, IL-10 Intrathecal AAV8 Storek et al. (2008)

Various transgenes, delivery methods and AAV serotypes have been used. There are rational targets that are worth testing in the new TDP-43
mouse and rat models of ALS, using either a secretable growth factor or an intraneuronal protein that could directly interact with TDP-43. SMA,
spinal muscular atrophy; SCI, spinal cord injury; Bcl2, B-cell lymphoma 2; GDNF, glial cell-line-derived neurotrophic factor; IGF-1, insulin-like
growth factor 1; VEGF, vascular endothelial growth factor; G-CSF, granulocyte-colony-stimulating factor; SMN1, survival motor neuron 1;
BDNF, brain-derived neurotrophic factor; NT-3, neurotrophin-3; L1, cell adhesion molecule L1; Ang-1, angiopoeitin-1; IL-10, interleukin 10;
ppbetaEP, prepro-beta-endorphin. The AAVs used in Azzouz et al. (2000) and Eaton et al. (2002) were probably AAV2, but could not be
determined.
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