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Abstract
The ways in which epigenetic modifications fix the ef-
fects of early environmental events, ensuring sustained 
responses to transient stimuli, which result in modi-
fied gene expression patterns and phenotypes later 
in life, is a topic of considerable interest. This review 
focuses on recently discovered mechanisms and calls 
into question prevailing views about the dynamics, 
position and functions of epigenetic marks. Most epi-
genetic studies have addressed the long-term effects 
on a small number of epigenetic marks, at the global 
or individual gene level, of environmental stressors 
in humans and animal models. In parallel, increasing 
numbers of studies based on high-throughput technol-
ogies and focusing on humans and mice have revealed 
additional complexity in epigenetic processes, by high-
lighting the importance of crosstalk between the dif-
ferent epigenetic marks. A number of studies focusing 

on the developmental origin of health and disease and 
metabolic programming have identified links between 
early nutrition, epigenetic processes and long-term ill-
ness. The existence of a self-propagating epigenetic 
cycle has been demonstrated. Moreover, recent studies 
demonstrate an obvious sexual dimorphism both for 
programming trajectories and in response to the same 
environmental insult. Despite recent progress, we are 
still far from understanding how, when and where 
environmental stressors disturb key epigenetic mecha-
nisms. Thus, identifying the original key marks and 
their changes throughout development during an indi-
vidual’s lifetime or over several generations remains a 
challenging issue.
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INTRODUCTION
Epigenetic marks are candidate memories of  early life 
events. All the cells in the body have identical genomes. 
However, each cell has one of  many “epigenomes”, 
unique sets of  epigenetic instructions for establishing 
and maintaining lineage-specific expression profiles[1]. 
The genome is programmed to express appropriate sets 
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of  genes, in particular tissues, at specific time points dur-
ing the individual’s life. Epigenetic events create a memo-
ry of  cell identity, maintaining genomic functions such as 
the maintenance of  cell identity after differentiation, the 
propagation of  essential features of  chromosomal archi-
tecture and dosage compensation[2]. 

Unlike genetic information, which is extremely stable, 
epigenetic events are reversible, responding to endog-
enous and exogenous (environmental) signals. There is 
convincing experimental evidence to suggest that epigen-
etic marks serve as a memory of  exposure, in early life, 
to inappropriate environments. These marks induce long-
term changes in gene expression, potentially leading to 
disease in later life, the “developmental origin of  health 
and disease” (DOHaD) hypothesis[3,4]. 

We focus here on the most recently discovered mecha-
nisms. Significant advances in analytical technologies have 
led to epigenome characterization becoming a key ele-
ment in increasing numbers of  investigations[5-10]. These 
recent data challenge prevailing views about the dynam-
ics, relevant position and functions of  many epigenetic 
marks and their complex patterns of  crosstalk. We high-
light improvements in our understanding of  the relation-
ships between epigenetic processes and environmental 
factors, such as maternal nutrition, and discuss the gaps 
in our knowledge that remain to be filled. The revers-
ibility of  the chromatin modification states determining 
gene expression status is essential for interaction between 
the environment and the dynamic epigenome. However, 
some epigenetic marks laid down early in development, 
under the influence of  environmental factors, must re-
main stable, acting as a memory of  the event long after 
exposure has ceased. The basis of  this paradox, the need 
for both reversibility and stability, remains unclear.

RECONSIDERING DNA METHYLATION 
DOGMAS
Cytosine methylation is the only epigenetic modification 
directly affecting the DNA molecule. It is required for 
correct embryonic development in mammals. The DNA 
of  most vertebrates is depleted in CpG dinucleotides, 
the main target for DNA methylation. Furthermore, the 
role of  DNA methylation in genome regulation, other 
than in genomic imprinting and X inactivation, remains 
unclear. CpG islands (CGIs) and promoters have been 
studied in detail because they are easily accessible in 
terms of  the techniques available and sequence specific-
ity. However, other sequences should be taken into con-
sideration (Figure 1).

Mammalian genomes are punctuated by CGIs, DNA 
sequences with an unusually high frequency of  CpG 
sites[11]. There is considerable evidence for a functional 
role of  CGI-promoter methylation in transcription, 
but the correlation between CGI methylation and tran-
scription status is poor for many genes. Recently, “CGI 
shores” were defined as sequences up to 2 kb around 
CGI and their methylation are highly conserved, tissue-

specific and strongly related to gene expression[12,13]. Sev-
eral large-scale methylation studies have called into ques-
tion some of  the prevailing views about the dynamics 
and function of  DNA methylation. Weber and co-work-
ers investigated the function of  DNA methylation in cis-
regulatory regions and its impact on gene expression by 
mapping DNA methylation throughout the genome with 
a methylated DNA immuno precipitation-chip approach 
and defined three classes of  promoters in terms of  CpG 
frequency[14]. They showed that (1) the methylation of  
CpG-poor promoters did not prevent gene expression; (2) 
DNA methylation was not a general mechanism of  gene 
repression, as most CGI promoters remain unmethylated 
even when inactive; and (3) DNA methylation was prin-
cipally involved in regulating key developmental genes.� 
Thus, promoter CpG density and gene function are the 
main predictors of  promoter methylation state. Shen 
and co-workers reported that a subset of  CGIs within 
the promoters of  key developmental genes were sub-
ject to tissue-specific methylation during development. 
Such methylation had previously been reported only for 
imprinted and X-inactivated genes. This observation 
suggests the existence of  a programmed mechanism of  
DNA methylation[15]. Unmethylated regions, recently 
identified as non-promoter CGIs, become methylated 
during development in a tissue-specific manner, poten-
tially modifying gene expression[16]. Thus, the methylation 
of  other regulatory elements may also be important for 
transcriptional regulation. Moreover, as first observed for 
the active X chromosome, gene-body methylation may be 
a hallmark of  active genes in the whole genome[11,17,18].

Most studies have focused on the methylation of  
CpG nucleotides, but a potential role of  non-CpG 
methylation has been demonstrated in embryonic cells 
and adult tissues. In non-CpG contexts, methylation is 
observed principally in gene bodies, being much rarer at 
protein-binding sites and enhancers and entirely absent 
after the induction of  differentiation in embryonic stem 
(ES) cells[19-21]. In a pathological context, Barrès et al[20] 
showed that non-CpG methylation was readily detectable 
in the skeletal muscles of  patients with type 2 diabetes 
(T2D). They found that the peroxisome proliferator-acti-
vated receptor g coactivator-1a (PGC-1a) gene displayed 
hypermethylation in diabetic subjects, which was nega-
tively correlated with PGC-1a mRNA and mitochondrial 
DNA levels. Bisulfite sequencing revealed the proportion 
of  non-CpG methylation to be highest. Exposure to 
tumor necrosis factor α or free fatty acids resulted in a 
short-term increase in non-CpG methylation in human 
myotubes. Thus, non-CpG methylation, previously re-
ported almost exclusively in plants and ES cells, may have 
a physiological role in human skeletal muscle[21,22]. 

Finally, hydroxymethylation of  cytosine was recently 
identified in mouse ES and neuronal cells[23,24]. Altogeth-
er, these new findings highlight the complexity of  DNA 
methylation and the importance of  not focusing solely 
on CGIs and promoters, which should be taken into ac-
count in future studies. 
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EVOLVING WORLD OF HISTONE 

MODIFICATIONS
Recent studies have greatly modified our understanding 
of  histone modifications. Histone modifications lead to 
the recruitment and binding of  critical DNA-regulatory 
proteins controlling transcription, replication, recombina-
tion and repair. Each modification constitutes a signal 
that is read alone or in combination with other marks on 
the same or neighboring histones, constituting a “histone 
code”. Histone protein tails display at least 9 different 
types of  post-translational modifications (e.g., acetylation, 
methylation, ubiquitination, phosphorylation…) with 
many target sites and at least 50 different modifications 
having been identified[25]. Histone-modifying enzymes, 
such as histone methyltransferases or histone demethyl-
ases, histone acetyl transferases or histone deacetylases 
(HDACs) add or remove epigenetic marks on histone 
tails[26]. Their presence on histones may induce a higher-
order chromatin structure and may co-ordinate the or-
dered recruitment of  enzyme complexes for DNA manip-
ulation. For example, acetylation is associated exclusively 
with active chromatin states, whereas lysine and arginine 
methylation may be associated with active transcription 
or repression. Histone modifications may thus influence 

many fundamental biological processes and may be epige-
netically inherited[25].

A complex picture is emerging in which DNA meth-
ylation and histone modifications act in concert in an 
epigenetic program integrating gene-silencing networks 
within the cell[27,28]. Crosstalk occurs between DNA meth-
ylation and histone modifications and is mediated by 
methyl- or histone-binding proteins, which decipher the 
regulatory information encoded by the DNA methylation 
and histone marks[29].

A��������� ���������� ���������� ��� ��� ������mbiguous chromatin structure of ES cells 
After fertilization, the acquisition of  pluripotency involves 
the epigenetic resetting of  the gamete genome to allow 
the activation of  essential genes, such as pluripotency-as-
sociated genes. ES cells have an open chromatin structure 
that is essential for pluripotency and allows the transcrip-
tion of  developmentally regulated genes. The gene expres-
sion program of  ES cells keeps these cells in a pluripotent 
state, but also allows them to differentiate into more spe-
cialized cells in response to appropriate signals. 

One particular group of  transcription factors, “pio-
neer factors”, is essential early in development. Pioneer 
factors binding to promoters and enhancers enable chro-
matin access for other tissue-specific transcription fac-
tors. Such proteins, including members of  the fork head 
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Figure 1  Target sequences for DNA methylation studies. The majority of DNA methylation concerns methylcytosine on CpG dinucleotides but recently hydroxymeth-
ylcytosine and methylation on non-CpG sites were identified. Non-CpG methylation was reported in gene body, promoters and repetitive elements; its expanse needs 
to be further investigated. CpG islands (CGI) and gene promoters are preferred targets in many studies as they correspond to a tractable fraction of the genome with 
obvious regulatory potential. CGIs are defined algorithmically, as sequences with an observed-to-expected ratio of CpG greater than 0.6, a G+C content greater than 
0.5 and, in most cases, a length of more than 500 bp. Three classes of promoters were defined according to their CpG content: LCP have the highest probability to be 
methylated but methylation correlates poorly to transcription, HCP have low probability to be methylated but this correlates with gene expression. However, transcrip-
tional regulation of genes depends also on distal regulatory elements such as enhancers, insulators, locus control regions and silencing elements. In addition, recent 
studies show that gene-bodies in active transcription sites are enriched in DNA methylation. Moreover, non-promoter CGIs unmethylated regions (UMR) were recently 
identified, initially unmethylated they become methylated during development in a tissue-specific manner. “CGI shores” sequences were described around CGI, their 
methylation in normal tissues is highly conserved, tissue-specific and strongly related to gene expression and were highly sensitive to DNA alterations in colon cancer, 
as opposed to promoters or CGIs. Highly methylated repetitive elements and highly conserved non-coding elements can also be interesting targets for DNA methylation 
studies. LCG: Low-CpG promoters; ICG: Intermediate-CpG promoters; HCG: High-CpG promoters; HCNE: Highly conserved non-coding elements.
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family Foxa, have been found to play important roles at 
many stages of  mammalian life, in early development, or-
ganogenesis and, finally, metabolism and homeostasis in 
the adult[30]. 

Bivalent chromatin domains, with overlapping re-
pressive H3K27me3 and activating H3K4me3 histone 
modifications, have recently been shown to mark the 
promoters of  more than 2000 silent regulatory genes in-
volved in developmental processes[7,28,31-36]. Although not 
unique to ES cells, these bivalent marks seem to play a 
special role in differentiating cells, keeping developmen-
tal genes poised for expression during differentiation. 
Moreover, inactive unmethylated CGI promoters have 
high H3K4me2 levels, which may protect DNA from 
methylation[14]. In addition, Guenther et al[37] found that 
nucleosomes with H3K4me3 and H3K9/K14ac modifi-
cations, together with RNA polymeraseII, occupied the 
promoters of  most protein-coding genes in human ES 
cells. Only a subset of  these genes produces detectable 
full-length transcripts and is occupied by nucleosomes 
with H3K36me3 modifications, a hallmark of  elonga-
tion. The others display transcription initiation but not 

elongation, consistent with regulation principally at post-
initiation steps. The genes encoding most developmental 
regulators fall into this group. 

These data suggest a model in which epigenetic marks 
restrict and define differentiation potential during devel-
opment[14,38,39]. Identification of  the markers involved in 
establishing transcriptional competence in pluripotent 
cells should make it possible to explore potential distur-
bance due to environmental factors. If  modulation by 
environmental stressors occurs at these early stages, the 
resulting epigenetic marks should escape the resetting 
process, allowing them to manifest during adulthood[40,41].

How early nutrition sculpts our epigenomes
Throughout evolution, organisms have been faced with 
the challenge of  sensing changes in their environment, 
such as food depletion and stress, and adapting to them, 
to ensure their survival. These responses implicitly in-
volve mechanisms, such as chromatin targeting, for 
adapting the expression of  fundamental genes and ensur-
ing genome integrity. Environmental factors, such as diet, 
nutrients, drugs or the social environment, can be linked 
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Figure 2  Mechanistic pathways for environmental factors involved in epigenetic reprogramming. There are three ways to link environmental factors such as 
nutrients or drugs from the cell membrane to the chromatin structure: (1) Some environmental factors, aging and gender may target chromatin modifying enzymes or 
their substrate availability. Exogenous/endogenous substrates [methyl donors such as folates, histone deacetylase (HDAC) inhibitors such as TSA, etc.], after passive 
or active entry through the cell membrane, undergo cell specific metabolism. Thus, endogenous or exogenous compounds may lead to the alteration of a critical bal-
ance of chromatin remodelling enzymes, at the whole genome level, or to specific regions targeted by specific enzymes, e.g. HDACs; (2) Some other compounds (like 
endocrine disruptors) specifically bind to nuclear receptors, like steroid receptors, may be present in the cytoplasm, bind to their ligand, undergo several modifications 
and be subsequently translocated to the nucleus where they bind to their responsive elements (RE). The binding of other nuclear receptors, like PPARs and retinoid X 
receptor (RXR), with their natural polyunsaturated fatty acids ligands or drugs like fibrates lead to the recruitment of co-activators and chromatin remodelling factors. 
The appropriate modifications of the epigenetic marks at PPAR/RXR RE in target gene promoters modulate the expression of a particular set of genes, in a tissue-
specific manner depending on the presence of appropriate co-factors; and (3) Traditional membrane receptor-signalling cascades may be involved. It is possible, 
depending on the type of ligand, that different pathways could be used. The maintenance of epigenetic patterns is dependent on the preservation of the balance of 
factors such as DNMTs, Histone acetyl transferases/HDACs or histone methyltransferases/histone demethylases and on the translocation of these enzymes into the 
nucleus. Extra- or intracellular signalling pathways could trigger activation of one of these factors and result in loci-specific modifications. PPAR: Peroxisome prolifera-
tor-activated receptor; DNMT: DNA methyltransferase.
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to chromatin structure in several ways (Figure 2)[42].
There is emerging evidence that the environmental 

changes, triggered at different stages of  development, 
lead to the self-propagation of  epigenetic marks associ-
ated with changes in gene expression and an adult-onset 
phenotype[43-55] (for review see[56]). Most studies have dealt 
with DNA methylation, histone modifications or chro-
matin occupancy by components of  the epigenetic ma-
chinery, rarely with combinations of  these factors. Such 
combined studies would provide ���� �����������������������   (1)������������������������     a better definition of  
the respective roles of  the different epigenetic alterations��;� 
(2)���������������������������������������������������        an understanding of  the consequences of  crosstalk 
between different modifications�� ���� ����������������������  ; (3)�����������������������    identification of  the 
initiating mark; or ���������������������������������������      (4)������������������������������������       the matrix for subsequent marks as 
the individual progresses from an asymptomatic, latent 
state towards full-blown disease. 

Environmental conditions before conception and 
implantation 
Preimplantation development in mammals has recently 
been shown to be sensitive to environmental conditions, 
both in vivo and in vitro, modifying blastocyst potential 
and leading to long-term changes in fetal and postnatal 
health and physiology. Similarly, the environment inhab-
ited by a breeding female before conception and early in 
pregnancy has striking effects on the oocytes developing 
in the ovarian follicle and embryos in the early stages of  
development in the reproductive tract. Environmental 
conditions at these stages may also alter behavior, cardio-
vascular function and reproductive function throughout 
postnatal life[57-64]. Low maternal protein consumption or 
vitamin B and methionine status leads to behavioral and 
cardiovascular abnormalities in offspring, sex-specific 
changes in hepatic gene expression in rat fetuses and 
changes in imprinted gene expression in the rat embryo-
fetal axis[65-68]. It has recently been shown that in vitro cul-
ture conditions, as found in assisted reproduction tech-
nology, may affect global patterns of  DNA methylation 
and gene expression. Gametes or early embryos from 
couples undergoing treatment for infertility may there-
fore display epigenetic modifications. An association was 
indeed observed between in vitro conception and changes 
in DNA methylation, potentially affecting the long-term 
pattern of  expression of  genes involved in chronic meta-
bolic disorders, such as obesity and T2D[45]. Thus, identi-
fying the specific features and functions of  the epigenetic 
build-up at these stages and determining the mechanisms 
by which environmental factors may affect them in the 
long term will be a major milestone in the domain of  
DOHaD investigation[69,70].

Post-translational histone modifications have been 
implicated in the complex changes in gene expression 
driving early mammalian development. Optimization of  
the chromatin immunoprecipitation technique enables 
analysis of  histone modifications in mouse embryos in 
culture, from the 8-cells stage to blastocysts. An increase 
in H4ac and H3K4me in the promoters of  Hoxb1 and 
Hoxb9 was observed after the exposure of  embryos to 

the HDAC inhibitor valproic acid. These changes are 
heritable, even after removal of  the inhibitor, at least until 
the blastocyst stage. These findings illustrate the way in 
which an environmental signal can generate an inherited 
epigenetic modification during early development with 
potential long-term consequences[40].

Ontogeny of chromatin remodeling: An ongoing process 
Recent epigenomic profiling and functional studies 
have provided insights into the dynamics and regulatory 
complexity of  the transcriptional repression mediated 
by histone-modifying enzymes and other chromatin-
associated proteins. These machineries clearly function 
in a sequential manner. Furthermore, the repressed chro-
matin state is dynamic rather than static and reflects the 
balance between antagonistic enzyme activities[41]. A full 
understanding of  the role of  chromatin in transcriptional 
regulation will require knowledge of  the relative levels of  
antagonistic histone modifications and their spatial distri-
butions with respect to transcription factor binding sites 
and RNA polII[71].

Pinney et al[72] studied epigenetic events at the pro-
moter of  the gene encoding Pdx1, a critical transcription 
factor for β cell function and development, the expres-
sion of  which is reduced in intrauterine growth retarda-
tion (IUGR), promoting the development of  diabetes 
in adulthood. They demonstrated that IUGR induces a 
self-propagating epigenetic cycle, in which the mSin3A/
HDAC complex is first recruited to the Pdx1 promoter at 
the fetal stage, leading to histone deacetylation and a loss 
of  binding of  major transcription factors to the Pdx1 
promoter, resulting in transcriptional repression. In the 
postnatal period, as histone deacetylation progresses, ac-
tive H3K4me3 levels decrease and repressive H3K9me2 
accumulates. This epigenetic process is still reversible at 
this stage, which may be an important developmental 
window for therapeutic approaches. H3K9me2 accumu-
lation promotes the recruitment of  DNMT3A, initiating 
de novo DNA methylation and locking pdx1 in a silent 
state in the pancreas of  adults born with IUGR. 

Similarly, Raychaudhuri et al[53] focused on the se-
quence of  epigenetic mechanisms responsible for the 
weak expression of  Glut4 in the skeletal muscle of  sub-
jects with IUGR[53]. Different DNMTs bound the Glut4 
promoter at different ages: DNMT1 bound postnatally, 
whereas DNMT3a and 3b bound in adults. DNA meth-
ylation was unaffected in subjects with IUGR, but they 
displayed greater binding of  DNMTs to the Glut4 pro-
moter, resulting in higher levels of  methyl CpG-binding 
protein (MeCP2). H3K14 deacetylation mediated by 
HDAC1 recruitment and enhanced HDAC4 binding were 
observed. This set the stage for Suv39H1 methylase-
mediated dimethylation of  H3K9 and an increase in the 
recruitment of  heterochromatin protein 1, which partially 
inactivates postnatal and adult Glut4 gene transcription 
in subjects with IUGR. This study demonstrated that 
perinatal nutrient restriction resulting in IUGR leads to 
histone modifications in skeletal muscle that directly de-
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crease Glut4 gene expression. This effectively creates a 
metabolic knockdown of  this important regulator of  pe-
ripheral glucose transport and insulin resistance, thereby 
contributing to the adult T2D phenotype. 

Finally, two groups recently demonstrated that mice 
with disrupted H3K9 demethylase Jhdm2a gene develop 
adult-onset obesity, hypertriglyceridemia, hypercholester-
olemia, hyperinsulinemia and hyperleptinemia, hallmarks 
of  metabolic syndrome. Thus, this H3K9 demethylase 
is a crucial regulator of  genes involved in energy expen-
diture and fat storage[73-75]. The disruption of  epigenetic 
components may therefore play a key role in the progres-
sion of  obesity and metabolic syndrome.

Thus, histone modifications can be stably inherited 
while giving rise to additional alterations, and the epi-
genetic landscapes established under the influence of  
an environmental factor at a given stage, in a specific 
chromatin context, may evolve with time. The epigenetic 
landscapes observed subsequently may therefore not fully 
reflect the mechanisms initially involved.

Physiological ‘‘hyperglycemic metabolic memory’’ is 
based on epigenetic modifications 
Diabetic patients continue to develop inflammation and 
vascular complications, even when glycemia is controlled. 
This poorly understood metabolic memory phenomenon 
poses major challenges for diabetes treatment. Recent 
studies have highlighted the persistent and dramatic ef-
fects of  short-term hyperglycemic spikes on vascular 
cells in animal models and humans. They have demon-
strated a link between epigenetic changes (H3K9me and 
H3K4me) and the expression of  transcription factors, 
such as NFkB, involved in modulating inflammatory 
gene expression[76-78]. Brasacchio et al[77] reported that hy-
perglycemia induced dynamic cooperativity between his-
tone methylase and demethylases, associated with gene-
activating epigenetic marks on the H3 lysine tail. Thus, 
an increase in NFkB gene expression is associated with 
the persistence of  epigenetic marks after the removal of  
a cell from its hyperglycemic environment, providing evi-
dence that epigenetic modifications contribute to changes 
in gene expression, potentially forming the basis of  a 
physiological ‘‘hyperglycemic memory’’. 

Malprogramming other than that associated with early 
nutrition is beyond the scope of  this review. The long-
term outcomes of  epigenetics alterations in malprogram-
ming to other later-onset diseases or to short-term out-
comes of  epigenetic changes are progressively declined. 
However the similitude of  the mechanisms involved, 
whatever the environmental factor (i.e. circadian, nutri-
tional, hormonal or exercise-induced changes) is striking 
and should help complete our understanding of  the pic-
ture[55,70,79-84].

SEXUAL DIMORPHISM OF GENE 
EXPRESSION AND EPIGENETICS
The vast majority of  common diseases, including athero-

sclerosis, diabetes, osteoporosis, asthma, neuropsycho-
logical and autoimmune diseases which often take root in 
early development, display sex bias. Moreover, the risk of  
developing complex disease in offspring often depends 
on the sex of  the affected parent. The relevance of  
epigenetic mechanisms underlying the physiological dif-
ferences between sexes, particularly in drug metabolism, 
fits well into the epigenetic theory of  complex disease 
(reviewed in[85]).

This bias could be explained by the role of  sex chro-
mosomes, the different regulatory pathways underlying 
sexual development of  most organs and finally, lifelong 
fluctuating impact of  sex hormones. Many tissues exhibit 
sexual dimorphism for a substantial proportion of  the 
genes that they express[42,86]. In fact, sex-specific expres-
sion appears to be under the control of  sex-specific 
epigenetic marks. Environmental factors such as social 
behavior, nutrition or chemical compounds can influence, 
in a sex-related manner, these flexible epigenetic marks 
during particular temporal windows of  life. For example, 
modifications of  histone H3 are sexually dimorphic in 
the developing mouse brain and patterns of  acetylation, 
but not methylation, are masculinized in females by tes-
tosterone in utero[87]. There are many examples of  sex 
differences in the effects of  prenatal and early postnatal 
life exposures on the risks of  subsequent metabolic dys-
function[42,88-92].

It’s not all hormones: Roles of sex chromosomes 
Sexual dimorphism has been explained traditionally by 
the regulatory pathways that underlie sexual development 
of  the gonads, brain and other organs, and the impact of  
lifelong fluctuations in the circulating level of  sex hor-
mones. Mammalian sexual differentiation was assumed 
to be initiated by the presence or absence of  the testis-
determining factor SRY, encoded on the Y chromosome, 
in a very narrow spatiotemporal window restricted to the 
Sertoli cells between 6 and 7 wk of  gestation. However, 
recent findings propose that sexual dimorphism pre-
cedes gonadal development. Recently, it was found that 
the sexual dimorphism between male and female cells 
in their response to chemical exposure to either ethanol 
or camptothecin apparently occurred at fetal stages that 
preceded the production of  sex hormones and, accord-
ingly, could be directly attributed to a sex chromosome 
effect[93,94]. Sex-determining genes on sex-chromosomes 
can influence not only the development of  non-gonadal 
secondary sexual organs but also of  organs outside of  
the reproductive system, such as brain[95]. Indeed, at the 
level of  the whole body, the sex-chromosomes are crucial 
for establishment of  sex-dimorphism of  cellular func-
tions[42]. All male cells possess a single X chromosome of  
maternal origin and a Y chromosome of  paternal origin. 
Female cells consist of  two populations, both of  which 
possess two X chromosomes: one population with inac-
tive maternally inherited X and the second population 
with inactive paternally inherited X. As a consequence of  
this random female mosaicism, it is possible that certain 
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traits, such as cognitive traits, show a greater degree of  
variability amongst females than amongst males[96].

Extent of global sexual dimorphism
A substantial proportion of  dimorphic gene expression 
might be under the control of  sex-specific epigenetic 
marks. The regulatory pathways underlying sexual differ-
entiation clearly result in extensive differences in gene ex-
pression in adults. The genetic and transcriptional mecha-
nisms regulating differences between the sexes have 
intensively been investigated in the liver but dimorphic 
gene expression have also been reported in mouse kid-
ney, blastocysts, lacrimal gland, placenta and brain[96-104], 
and more global differences[105-109]. A recent microarray 
analysis of  23 574 transcripts by Yang et al[86] revealed the 
extent of  sexual dimorphism in gene expression to be 
much greater than previously recognized. The degree of  
sexual dimorphism ranged from 14% of  active genes in 
the brain to 70% in the liver. These genes displayed high-
ly tissue-specific patterns of  expression, correlated with 
high levels of  activity of  distinct pathways. Differences 
in expression level of  a factor of  less than 1.2 between 
tissues were observed for 70% of  the sexually dimorphic 
genes. Interestingly, these genes displayed evidence of  
clustering, not only on the sex chromosomes, but also on 
several autosomes.

Sexual dimorphism of gene expression in the liver 
Gene expression in somatic cells and tissues can be influ-
enced by external factors, such as the extracellular hor-
monal milieu. A good example of  hormonal regulation is 
the effect of  growth hormone (GH) on gene expression 
in the liver, which leads to sex-differences in many meta-
bolic processes, such as steroid and fatty acid metabolism, 
cholesterol homeostasis and drug metabolism[110]. Impor-
tant sex differences also characterize responses to various 
hepatic stresses in both rodent models and humans. For 
example, alcohol-induced liver fibrosis is more preva-
lent in women than in men, whereas sepsis and hepatitis 
virus-induced liver fibrosis, hepatic ischemia/reperfusion 
injury and hepatocellular carcinoma are more prevalent 
in men than in women; and these sex differences are at 
least in part due to hormonal factors[110,111]. Support for 
the involvement of  chromatin features in the regulation 
of  genes showing sex differences in liver comes from 
the discovery of  short genomic regions that show sex-
dependent and GH-regulated differences in chromatin 
accessibility (“hypersensitivity sites”) in liver tissue, as 
probed using the enzyme DNase I. Thus, increased hy-
persensitivity to DNase I cleavage in the male liver tissue 
compared to that of  female liver tissue is seen in the pro-
moter regions of  two male-specific genes, Ca/Slp, sex-
limited protein, and Cypc, which catalyzes testosterone 
hydroxylation[110-113]. DNase hypersensitive chromosomal 
regions, such as these, have increased access to transcrip-
tion factors and other DNA-binding proteins, and include 
promoters, enhancers, silencers and insulators. These 
findings of  sex differences in DNase hypersensitivity are 

indicative of  a sex-specific liver chromatin organization, 
which is presumably established and/or maintained by 
the sexually dimorphic patterns of  pituitary GH secretion 
that emerge at puberty, and through their downstream 
signaling, which leads directly to the sex-dependent pat-
terns of  nuclear STAT5b activity[110,114-117].

Sexual dimorphism of placenta 
The placenta has long been considered to be an asexual 
organ, with most placental studies consistently pooling 
data for male and female placentae into a single group[96]. 
However, predisposition to metabolic disease differs 
between the sexes, with women more likely to develop 
obesity and men cardiovascular disease. This sexual di-
morphism may already exist during development. Indeed, 
there is mounting evidence to suggest that the sex of  
the embryo, through the embryo-derived tissues of  the 
placenta, plays a significant role in determining fetal size, 
nutrition, morbidity and survival[96,118]. Only a handful of  
studies have reported differences between the sexes, in 
terms of  the expression of  individual genes or pathways 
in male and female human and rodent placentae. These 
studies also addressed the impact of  differences in the 
quality of  the maternal diet on placental gene expression, 
with a systematic investigation of  the relationship between 
diet and the expression of  sexually dimorphic genes, pro-
viding insight into the different sensitivities of  male and 
female fetuses to what the mother eats[96,101-105,108,109]. 

We have data showing that gene expression and DNA 
methylation are sexually dimorphic in male and female 
placentae under control conditions. Surprisingly, in stress-
ful conditions, say at high fat or low calorie diet, or ma-
ternal overweight/obesity, the placentae from male and 
female fetuses do not use the same gene pathways and 
networks to cope with the stress. Does that lead to differ-
ent outcomes? Maybe this leads to sex-dependent differ-
ences in the outcome of  programming with long lasting 
effects. Alternatively, males may “climb the mountain” 
taking the north face while females take the south face 
but they ultimately reach the same peak after using differ-
ent paths. 

CONCLUSION
The DOHaD science is still accumulating proof  of  evi-
dence of  fetal programming: a developmental insult (diet, 
drugs, lifestyle, social interventions, etc.) leading to long-
term consequences (metabolic syndrome, psychiatric 
diseases, etc.). A new field is emerging, aiming to identify 
epigenetic targets to improve our understanding of  the 
ontology of  chronic diseases in response to environmen-
tal factors. Experiments in this area must be carefully 
designed.

How should such studies be carried out? Investiga-
tions should first be carried out in appropriate animal 
models exposed to specific environmental factors during 
critical developmental windows. Many analytical proce-
dures are available; each with its own biases and limita-
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tions and the choice depends on the question posed. 
We may need genome-wide or gene-specific approaches 
targeting regulatory regions (promoters, enhancers, gene 
body or elsewhere) and assessing functional significance[9]. 
New high-throughput tools are becoming available and 
may soon be applied more widely as DNA sequencing 
costs drop, to studies of  the epigenomic changes associ-
ated with developmental shifts, environmental changes, 
and disease states[14,15,18,38,119-123].

Where should we look for epigenomic effects? Each 
environmental factor may target specific cell types, lead-
ing to a unique, specific epigenome identifiable only in 
the appropriate tissue[124], which will often contain mixed 
cell populations. However, the appropriate tissues are 
generally not available for study in humans. Fortunately, 
recent data suggest that the traces left by specific envi-
ronmental factors can be visualized in leukocytes, at least 
for dietary factors[81]. However, the question remains as to 
whether surrogate tissues obtained by minimally invasive 
procedures, such as the placenta or cord blood, truly re-
flect early programming in utero, cataloguing intrauterine 
environmental events, or whether adult tissues and cells, 
such as lymphocytes, monocytes or buccal smears, reflect 
the lifelong metabolic memory[43,76,77,125].

When should epigenetic effects be studied? Circadian 
and seasonal rhythms are important components. Sam-
pling at the right time may unmask pertinent marks im-
portant for determining both the nature of  the challenge 
and the extent of  the effect[126]. 

What are we actually studying? Are the marks ob-
served the cause or just a consequence? It would be very 
interesting to carry out studies at several time points, to 
unravel the sequence of  epigenetic events and to distin-
guish between causal changes and the resulting epigenetic 
landscape.

Who should be studied? It should be borne in mind 
that men and women have different programming trajec-
tories[42]. Different recent studies show an obvious sexual 
dimorphism in response to the same environmental in-
sult.

Why not? The inherent reversibility of  epigenetic 
marks is promising for treatment approaches. However, 
one major potential problem is that epigenetic processes 
associated with the disturbance of  programming by early 
environmental events may disappear during differentia-
tion, may be leaky, leading to irreparable changes in the 
number of  nephrons, β cells of  the pancreas, or changes 
in the function of  target tissues, or may remain dormant 
until the appropriate environmental stimulus comes along 
to activate them[127]. 

All epigenetic changes are, in theory, flexible, but 
can interventions really modify them? Without side ef-
fects[128]? A growing number of  studies have demon-
strated the potential reversibility or compensation of  
misprogramming with appropriate nutrients or epigenetic 
drugs[52,129-132].

This should make it possible to identify the specific 
epigenetic marks induced by specific environmental fac-

tors and to study their changes during the individual’s life 
and potential reversibility, using appropriate epigenetic 
tools.
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