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Increased iron deposition might be implicated in multiple sclerosis (MS). Recent development of MRI enabled to determine
brain iron levels in a quantitative manner, which has put more interest on studying the role of iron in MS. Evidence for abnormal
iron homeostasis in MS comes also from analyses of iron and iron-related proteins in CSF and blood and postmortem MS brain
sections. However, it is not yet clear if iron accumulation is implicated in MS pathology or merely reflects an epiphenomenon.
Further interest has been generated by the idea of chronic cerebrospinal venous insufficiency that might be associated with brain
iron accumulation due to a reduction in venous outflow, but its existence and etiologic role in MS are currently controversially
debated. In future studies, combined approaches applying quantitative MRI together with CSF and serum analyses of iron and
iron-related proteins in a clinical followup setting might help to elucidate the implication of iron accumulation in MS.

1. Introduction

Iron is essential for normal neuronal metabolism, including
mitochondrial energy generation and myelination [1, 2].
However, excessive levels of brain iron may exert iron-
induced oxidative stress and thus lead to neurodegeneration
[3]. During the process of normal aging, various regions
of the brain, predominantly the basal ganglia, tend to
accumulate nonhemin iron, which is primarily stored in
the form of ferritin [4]. Increased iron deposition has
been observed in various chronic neurological disorders,
including multiple sclerosis (MS) [5].

Evidence for increased iron accumulation in MS is
mainly derived from magnetic resonance imaging (MRI) and
histopathologic studies; however, some information exists
also from analyses of iron and iron-related proteins in
cerebrospinal fluid (CSF) and blood. The following review
summarizes current knowledge of increased brain iron accu-
mulation in MS derived from (2) MRI, (3) histopathologic
analyses, (4) studies on CSF and blood, and (5), finally,
provides an outlook on potential therapeutic interventions.

2. Magnetic Resonance Imaging

In several studies, evidence for increased iron accumulation,
preferentially in deep gray matter areas of the brain, was

mainly derived from the signal reduction on T2-weighted
MR images [5].

First reports on a regionally signal reduction on T2-
weighted brain MRI images in MS indicative of increased
iron deposition were published by Drayer et al. [6] and
Grimaud et al. [7].

Several studies then followed with a focus on the
clinical implication of increased iron accumulation in MS.
Increased deep gray matter T2 hypointensities were found
to be correlated with disease duration [8, 9], physical
disability [9–13], and cognitive impairment [14]. Clinical
followup studies in MS revealed that baseline gray matter T2
hypointensities were associated with disability progression
over time [12, 15]. Another consistent finding is that deep
gray matter T2 hypointensity, suggestive of increased iron
content, is correlated with brain atrophy [8, 16]. While this
was evidenced in patients with definite MS, there is only
little information available regarding the extent and clinical
significance of increased iron deposition in patients with
a clinically isolated syndrome. Ceccarelli et al. found only
minor changes of signal reductions on T2-weighted images
compared to healthy controls, and the extent did not predict
conversion to clinically definite MS [17]. The approaches
used in the studies mentioned above suffered from the
methodological drawback of deducing iron concentrations
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from a visual grading of the reduction of signal intensity on
T2-weighted images even though more recent studies have
determined the extent of T2 hypointensity in a semiquanti-
tative manner [8, 10, 14, 16].

In recent years, methodical development of MRI enabled
to assess brain iron concentrations quantitatively. In addi-
tion, quantitative iron mapping by MRI offers a more sensi-
tive discrimination of iron levels and, therefore, is especially
advantageous in longitudinal studies and monitoring of
long-term disease progression.

The techniques utilized for quantitative iron mapping are
mainly based on relaxation time mapping [18–20] (Figure 1)
but also other approaches such as phase mapping [21, 22],
magnetic field correlation [23], or direct saturation imaging
[24] are applied.

Susceptibility weighted imaging (SWI), a technique that
takes advantage from the full complex MR signal by combin-
ing magnitude and phase images, has gained attention as a
means to assess brain iron [25, 26]. However, the complexity
of the postprocessing involved in SWI renders comparative
studies challenging and remains an objective of research [27].
Quantitative susceptibility mapping (QSM) is an approach
using solely phase images and produces susceptibility maps
which are independent of the orientation of the tissue to the
main magnetic field [28, 29]. Because paramagnetic iron is
considered a main determinant of brain tissue susceptibility,
QSM seems especially useful to assess brain iron.

2.1. Validation of MRI Methods. Several methods have been
proposed for the measurement of brain iron concentration;
however, the majority of them lack validation and, therefore,
the specificity and sensitivity of these techniques are not
reliably known.

From theoretical considerations based on susceptibility
models for brain tissue, it can be concluded that iron is a
main determinant of susceptibility-induced contrast in MRI
[30]. Several studies have indirectly investigated the relation
of MRI parameters with iron by using the age-dependency of
iron accumulation in the basal ganglia as reported in [4, 31].

Recently, high-pass filtered SWI phase images were
compared to regional iron concentrations in postmortem
tissue determined by synchrotron X-ray fluorescence and
revealed a correlation between phase shifts and iron [32].

Other recent work acquired quantitative MRI directly
after death from seven human brains and subsequently
determined brain iron concentrations by using inductively
coupled plasma mass spectrometry [33]. This study showed
that the relaxation rates R2 and R2∗ can be used as sensitive
and linear measures for brain iron concentration.

These quantitative MRI techniques together with a better
understanding of pathophysiologic concepts of increased
iron levels [1–3] have put more interest on elucidating the
role of iron in MS.

In recently performed studies on quantitative brain iron
levels in MS, based on R2∗ relaxometry at 3 Tesla, increased
iron levels have been found in patients with advancing
MS compared to clinically isolated syndrome [20]. Using
this validated quantitative technique, higher R2∗ levels in
basal ganglia structures reflecting higher iron content were

Figure 1: R2∗ map of a 50-year-old female MS patient. Higher iron
concentrations in basal ganglia structures are reflected by brighter
signal intensities.

correlated with gray matter atrophy and also with T2-lesion
volume [20]. These findings are supported by earlier studies
where MRI T2 hypointensities suggestive of increased brain
iron, preferentially located in deep gray matter areas, were
linked to physical disability and gray mater atrophy in MS
[8–10, 12, 34]. Further support comes from a followup
study showing that MRI T2 shortenings in deep gray matter
areas at baseline are predictive of the evolution of brain
atrophy [16].

Apart from gray matter regions with known high iron
levels (putamen, globus pallidus, caudate nucleus, substantia
nigra, and red nucleus) efforts were made to investigate
iron levels in white matter by MRI [22, 35, 36]. Using
SWI, the phase values of MS lesions were investigated
and compared to adjacent white matter [36]. However,
compared with chemically determined iron concentrations
of postmortem studies, the iron levels within MS lesions
were not substantially altered than in reference white matter
structures [4, 33]. Due to the confounding impacts of iron
and myelin to MRI contrast generation, disease-induced
alterations of iron levels in white matter need to be treated
with caution and are an objective of ongoing research [37].

Further interest on iron deposition in MS has been
generated by the idea of chronic cerebrospinal venous
insufficiency (CCSVI) [38] that might be associated with
the accumulation of iron in the brain due to a reduction in
venous outflow [39, 40]. Following this hypothesis, CCSVI is
postulated to be implicated in the etiology of MS. The under-
lying mechanism is believed to originate from increased
iron accumulation in patients due to a reduced venous
blood flow caused by constrictions of cerebral veins. This
then leads to extravasation of erythrocytes with subsequent
iron deposition [41], subsequently triggering inflammation-
dependent tissue damage [42]. However, the existence of
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CCSVI as well as its etiologic role in MS are currently contro-
versially debated [43], and there is an increasing amount of
papers published now that challenge this hypothesis [44–47].
Furthermore, histopathologic studies do not provide clear
evidence for extravasation of erythrocytes into lesions caused
by increased intraluminal venous pressure [48–52].

3. Histopathology and Pathologic
Significance of Increased Brain Iron

The normal anatomic and cellular age-dependent iron
distribution within the brain, as described previously [4,
53, 54], should be considered when comparing with iron
deposition in pathological conditions.

Craelius et al. described positive iron staining in MS
brain sections surrounding demyelinated plaques, myeli-
nated white matter near the lesions, and within blood vessels
of gray matter near the lesion [55]. Iron deposits were
also described in the putamen and the thalamus [6], in
macrophages and reactive microglia [56] and in normal-
appearing white matter tissue [57]. Mehindate et al. showed
that heme oxygenase 1, which is involved in regulating iron
metabolism, was upregulated in astrocytes of MS spinal cord
tissue [58].

The exact underlying mechanism by which brain iron
accumulates in MS is not fully understood. Iron transport
across the blood-brain barrier is dependent on iron transport
proteins, predominantly by transferring receptors expressed
on brain epithelial cells [59]. Other transporters may also
facilitate iron transport across the blood-brain barrier, such
as the divalent metal transporter (DMT) and the lactoferrin
receptor [60].

It is also not yet clear if increased brain iron deposition
is implicated in MS pathology or merely reflects an epiphe-
nomenon [3, 61]. Potential toxic iron products may arise
when hydrogen peroxide is formed by superoxide dismutase,
which then reacts with free or poorly liganded iron (Fenton
reaction [62]). Superoxide may also react with ferric iron
through the Haber-Weiss reaction, producing Fe2+, which
then again affects the redox cycling [1, 2] (Figure 2).

The resulting highly reactive free hydroxyl radicals (OH•)
interact with molecules leading to the production of other
free radicals [63]. This leads to oxidative stress-induced
lipid peroxidation, mitochondrial dysfunction, increase in
intracellular free-calcium concentration, and finally causing
cell dysfunction and death [62–64]. Because neuronal mem-
brane lipids are rich in highly polyunsaturated fatty acid,
they are susceptible to damage caused by lipid peroxidation
[62, 63]. Iron itself can initiate and amplify lipid peroxidation
[62, 63]. Several naturally produced antioxidants, such as
alphatocopherol, may help to reduce oxidative stress-induced
tissue damage [62].

4. Cerebrospinal Fluid and Blood

Only a limited number of studies have analyzed iron and
iron-related protein levels in CSF and peripheral blood of
MS patients. CSF ferritin levels were shown to be elevated
in patients with chronic progressive active MS [65] and in

patients with SPMS compared to controls [46, 57]. Another
study showed that CSF ferritin levels were lower but within
normal limits in patients with optic neuritis compared to
patients with other neurologic diseases [66]. Similar levels
of CSF ferritin were detected in RRMS patients compared to
controls [57, 67]. In a recently performed cross-sectional and
longitudinal study, CSF ferritin levels did not significantly
change over a time period of 3 years, which also may argue
against an etiologic role for CCSVI-related parenchymal iron
deposition in MS [46].

Serum soluble transferring-receptor levels were signifi-
cantly increased in MS compared to controls [68, 69], while
serum ferritin levels were elevated in patients with chronic
active MS only [68]. Conversely, analyses of iron status in
two children with recurrent episodes of tumefactive cerebral
demyelination revealed decreased serum iron and ferritin
and constant iron supplementation was needed to prevent
an iron deficiency state in both children [70].

5. Therapeutic Implications

On basis of pathophysiologic concepts implicating iron-
induced tissue damage in MS, potential therapeutic inter-
ventions, including iron chelators, and inhibitors of iron-
related oxidative stress and lipid peroxidation may have
beneficial effects [3, 71, 72]. Several chelators are of putative
therapeutic value in neurodegenerative disorders [73].

Studies on experimental autoimmune encephalomyelitis
(EAE), the animal model of MS, showed that treatment
with the iron chelator desferrioxamine reduced clinical and
pathologic signs of EAE [74]. Deferiprone, an orally deliv-
ered iron chelator, ameliorated signs of EAE, an inhibited T-
cell function [75]. However, a clinical trial testing the iron
chelating drug desferrioxamine in chronic progressive MS
patients failed to demonstrate any effects on disease progres-
sion [76]. A recent observation revealed that supplementing
nonanaemic iron deficiency in two children with recurrent
episodes of tumefactive demyelination leads to sustained
remission [70].

In the future large randomized double-blinded multi-
center studies are needed to elucidate the potential use of
therapies targeting oxidative stress and lipid peroxidation in
patients with MS. Quantitative MRI techniques and detailed
monitoring of body-fluid iron and iron-related proteins
levels should be included in such study protocols.

6. Summary

In summary, increased iron deposition has been consistently
reported to occur in MS, but its role in pathogenetic
processes of this disease has not yet been completely clarified.
Whether increased brain iron levels are also the cause or
only the consequence of tissue destruction is still a matter
of debate. Future longitudinal studies combining clinical
disease status, quantitative MRI techniques sensitive for
iron, and additional analyses of iron in CSF/serum and
iron-related proteins (as well as iron regulator proteins),
might help to unravel the implication of increased iron
accumulation in MS. Quantitative MRI and histopathologic
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Figure 2: Generation of reactive and damaging hydroxyl radicals (OH•). Free Iron (Fe2+) reacts trough the Fenton reaction with hydrogen
peroxide, leading to the generation of very reactive and damaging hydroxyl radicals (OH•). Superoxide can also react with ferric iron in the
Haber-Weiss reaction leading to the production of Fe2+, which then again affects redox cycling. The highly reactive hydroxyl radicals lead to
oxidative stress-induced lipid peroxidation, mitochondrial dysfunction, and increase in intracellular free-calcium concentration, and finally
causing neuronal death.

analyses of postmortem MS brains should complement these
studies.
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