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Abstract
For decades, type I IFNs have been considered indispensable and unique antiviral mediators for
the activation of rapid innate antiviral protection. However, the recent discovery of type III IFNs is
challenging this paradigm. Since their identification in 2002/2003 by two independent groups,
type III IFNs or IFN-λs, also known as IL-28/29, have been the subject of increased study with
consequent recognition of their importance in virology and immunology. Initial reports suggested
that IFN-λs functionally resemble type I IFNs. Although IFN-λs and classical type I IFNs (IFN-α/
β) utilize distinct receptor complexes for signaling, both types of IFNs activate similar
intracellular signaling pathways and biological activities, including the ability to induce antiviral
state in cells, and both type I and type III IFNs are induced by viral infection. However, different
antiviral potency, pattern of their induction and differential tissue expression of their
corresponding receptor subunits suggest that the type I and type III IFN antiviral systems do not
merely duplicate each other. Recent studies have started to reveal unique biological activities of
IFN-λs in and beyond innate antiviral immunity.

Introduction
Interferons (IFNs) are defined by their ability to induce resistance to viral infection. Three
distinct types of IFNs are distinguished (type I, type II and type III), based on their structural
features, receptor usage and biological activities. Although all types of IFNs stimulate innate
and adaptive immune mechanisms that contribute to the clearance of viral infections, only
type I and type III IFNs are directly produced in response to virus infections. Until recently,
it was widely accepted that type I IFNs played an exclusive role as early mediators of the
innate response to viruses, as well as regulators of the subsequent responses from elements
of the adaptive immune system. Surprisingly, a group of proteins functionally similar to type
I IFNs was discovered in 2002/2003 [1;2]. These proteins, now collectively known as type
III IFNs and first designated as IFN-λs [1] or IL-28/29 [2], share with type I IFNs similar
expression patterns and trigger common signal transduction cascades and sets of stimulated
genes. Consequently, both types of I and type III IFNs share many biological activities,
including the ability to induce an antiviral state in cells.

In humans, three functional IFN-λ genes are clustered on human chromosome 19 and encode
highly homologous IFN-λ1, IFN-λ2 and IFN-λ3 proteins [1], whereas the type I IFN family
includes 13 IFN-α proteins, and one of each IFN-β, IFN-ω, IFN-κ and IFN-ε, all encoded in
a gene cluster on chromosome 9 [3]. Although the type I IFN genes lack introns, the coding
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regions of the IFN-λ genes are interrupted by 4 introns, and the positions of the introns with
respect to the protein reading frames are conserved for the IFN-λ genes and for genes
encoding IL-10-related cytokines [3;4]. The amino acid identity between type I and type III
IFNs is very low, ranging from 15 to 20%. All IFN types belong to a family of α-helical-
bundle cytokines that share common functional and structural characteristics and a common
evolutionary origin [3;4]. In addition to type I and type III IFNs, in humans this cytokine
family also contains one type II IFN (IFN-λ), and six IL-10-related cytokines (IL-10, IL-19,
IL-20, IL-22, IL-24 and IL-26). In other species, the family can be further expanded with
several viral orthologs, as well as type I IFNs that are not represented in the human genome.
All these cytokines are collectively designated CRF2 cytokines because they interact with
receptors from a specific receptor family known as the class II cytokine receptor family
(CRF2) that is defined by common structural and functional features [5].

Although, type I and type III IFNs all possess intrinsic antiviral activities, they engage IFN
type-specific receptor complexes for signaling. Type III IFNs signal through a heterodimeric
IFN-λ receptor complex composed of a unique IFN-λR1 chain and the IL-10R2 chain that is
also the second subunit of the receptor complexes for IL-10, IL-22 and IL-26 [3]. In
contrast, all type I IFNs signal through a common cellular IFN-α/β receptor complex
composed of two unique subunits, IFN-αR1 (IFNAR1) and IFN-αR2 (IFNAR2) [6].

Recent studies have started to uncover a unique role of IFN-λs in antiviral defense, and there
is emerging evidence that IFN-λs may have functional importance beyond innate antiviral
protection. Although the overall biological significance of IFN-λs remains to be determined,
this report summarizes current information about the IFN-λ ligand-receptor system focusing
on advances in our understanding of the biological activities of type III IFNs, the differences
between the type I and type III IFNs, and the therapeutic potential of the IFN-λs.

Expression patterns
Co-expression of type I and type III IFNs in response to diverse viruses and various TLR
agonists was reported in numerous in vitro and in vivo studies (reviewed in [7]), although
differences in the expression of type I and type III IFNs have been documented. The similar
expression patterns are due to the presence of common regulatory elements in the promoters
of the type I and type III IFN genes (Fig. 1). Promoters of the IFN-λ genes contain predicted
sites for binding of transcription factors AP1 (dimeric transcription factor containing
members of the JUN, FOS, ATF and MAF protein families) and NF-κB (nuclear factor κB),
and multiple virus response elements which are the sites for binding of various interferon
regulatory factors (IRFs). All these factors are involved in the transcriptional regulation of
the type I IFN genes [8]. The importance of the IRF and NF-κB pathways in the
transcriptional regulation of the IFN-λ genes was also demonstrated [9;10]. It appears that
the human IFN-λ1 and IFN-β genes have similar transcriptional regulation that is controlled
by either IRF3 or IRF7, whereas IFN-λ2/3 genes, like most IFN-α genes, are more
dependent on IRF7 [10]. This observation is important because IRF3 is constitutively and
ubiquitously expressed in cells and, when activated upon viral entry, up-regulates expression
of the IFN-β and IFN-λ1 genes. By contrast, IFN-α and IFN-λ2/3 genes are unresponsive to
IRF3 alone and require IRF7 which is not constitutively expressed in most cell types but is
induced in response to IFNs. In humans, both IFN-β and IFN-λ1 can prime cells for virus-
induced IFN-α and IFN-λ2/3 production by up-regulating IRF7 expression. Thus, the
expression pattern of the IFN-λ genes conforms to a similar positive feed-back mechanism
that was first described for the type I IFN genes [11;12]. Similar to IFN-β, the IFN-λ1 gene
represents an early response gene, whereas IFN-λ2/3 are likely to be expressed similar to
IFN-αs, with delayed kinetics [13]. The regulation of type III IFNs may differ in mice,
however, since there is no functional IFN-λ1 gene in the murine genome [14]. This multi-
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layered regulation allows the majority of nucleated cells to achieve finely tuned levels of
IFN expression depending on the magnitude of viral infection. In contrast to most cell types,
plasmacytoid dendritic cells (pDCs) constitutively express IRF7, enabling these cells to
rapidly produce high levels of type I and type III IFNs upon stimulation [15;16]. Certain
viruses or TLR agonists can induce IFN-λ production from several DC subsets, whereas
other IFN-inducing stimuli act in a DC subset-restricted manner [16–19]. Thus, multiple cell
types can co-produce type I and type III IFNs in response to viral infection.

Despite these similarities in the pattern and regulatory mechanisms of type I and type III
IFN expression, potential differences have emerged indicating that our understanding of IFN
expression is incomplete. For example, it was reported that murine macrophages express
high levels of type I IFN mRNAs after HSV infection, but do not up-regulate IFN-λ mRNA
[20]. Human alveolar type II cells produced high levels of IFN-λs but not IFN-β in response
to influenza A virus infection [21]. Importantly, recent studies revealed that IFN-λs appear
to be the major IFN type produced by both murine and human airway epithelial cells in
response to various respiratory viruses [22–24]. There is also evidence that NF-κB alone is
able to induce IFN-λ expression after LPS treatment, independent of IRFs [25]. This may be
attributed to a cluster of NF-κB binding sites in the distal promoter of the human IFN-λ1
gene (Fig. 1). In support of this observation, inhibition of the NF-κB pathway in murine DCs
and in mice has a stronger effect on the expression levels of IFN-λs than on type I IFNs [26].
These studies suggest important differences in the transcriptional regulation of the type I and
type III IFN genes: whereas type I IFN expression is strongly dependent on the cooperative
action of multiple transcription factors, particularly IRFs and NF-κB, expression of type III
IFNs can be induced through the independent action of IRFs or NF-κB. One important
implication is that it may be more difficult for viruses to interfere with type III IFN
production because both IRF and NF-κB signaling pathways would need to be
simultaneously inhibited, whereas blocking IRFs is sufficient for the suppression of type I
IFN production. However, at least one virus has evolved a mechanism to inhibit both type I
and type III IFNs: the Yaba-like disease virus produces a soluble IFN antagonist able to bind
and neutralize not only all type I IFNs but also type III IFNs, despite the considerable
structural and sequence differences among these cytokines [6]. The ability of many viruses
to successfully target pathways leading to IRF activation [27] may underlie the high levels
of type III IFNs, but not type I IFNs, detected in the lungs of mice infected with influenza A
virus [24], and elevated levels of type III IFNs but not type I IFNs in liver biopsies from
patients with chronic hepatitis C virus infection [28]. Similarly, Hantaan virus triggered an
early and high level of expression of IFN-λ1 mRNA, followed by IFN-λ2 mRNA, and a
delayed and low level of IFN-β mRNA, with no significant change in levels of IFN-α
message [13].

Receptor complex and signaling
As previously mentioned, the IFN-λs interact with a unique heterodimeric receptor
consisting of IFN-λR1 (also known as IL-28RA, LICR or CRF2-12), and IL-10R2 (also
known as IL-10Rβ), originally identified as the second subunit of the IL-10 receptor, and
now known to be used in specific receptor complexes for other members of the IL-10
cytokine family [3;4]. The genes encoding receptors for IFNs and IL-10-related cytokines
share a similar intron/exon structure, with the coding regions of the receptor genes divided
into seven exons [4]. The IFN-λ gene and the IL-10R2 gene are positioned on human
chromosome 1 and chromosome 21, respectively.

Crystal structures of human IFN-λ3 [29] and of human IFN-λ1 bound to the high affinity
receptor subunit IFN-λR1 revealed a common topology with other CRF2 cytokines and a
common mode of ligand-receptor interaction [30]. Similar to type I IFNs, IFN-λs are
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monomers in solution and interact with IFN-λR1 in a 1:1 ratio [1;29;30]. Thus, binding of a
monomeric IFN-λ is likely to engage one molecule each of IFN-λR1 and IL-10R2 subunits
(Fig. 2). Despite signaling through distinct receptor complexes, type I and type III IFNs
trigger similar signaling pathways (Fig. 2), culminating in the activation of a transcriptional
complex designated ISGF3 (IFN-stimulated gene factor 3) that is a unique and critical
mediator of type I and type III IFN-induced biological activities. ISGF3 binds to the IFN-
stimulated response element (ISRE) in the promoters of IFN-stimulated genes (ISGs)
leading to gene transcription. Similar to the type I IFNs, IFN-λs also up-regulate expression
of SOCS-3 providing the mechanism for negative regulation of IFN-λ signaling [31].

IFNs can also induce signaling through pathways other than the canonical Jak-STAT
pathway [32]. Similar to type I IFNs, IFN-λs trigger signaling through three major mitogen-
activated protein kinase (MAPK) cascades: the extracellular signal-regulated kinase
(ERK)-1/2; stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK); and p38
kinase [31;33]. IFN-λs also induce phosphorylation of Akt though the phosphatidylinositol
3-kinase (PI3K) pathway [31]. Engagement of Akt-mTOR and MEK/ERK pathways by
IFN-λ results in the activation of the downstream kinases, p70 ribosomal protein S6 kinase
(p70S6K) and p90 ribosomal protein S6 kinase 1 (RSK1), and their targets, the translational
repressor 4E-BP1 and eukaryotic translation-initiation factor 4B (eIF4B), which regulate the
initiation of mRNA translation [34]. However, the ability of IFN-λs to trigger these
alternative pathways could be cell-type specific or altered in cancer cells, because
phosphorylation of Akt, ERK and SAPK/JNK in response to IFN-λ was not detected in a
panel of melanoma cell lines [35]. IFN-λ-induced phosphorylation of ERK was also not
detected in Raji cells [33], whereas levels of phosphorylated p38 did not significantly
changed in colorectal adenocarcinoma HT-29 cells [31].

It should be noted that the intensity of STAT activation and subsequent biological activities
in response to IFN-λs, particularly inhibition of cell proliferation, is generally weaker than in
response to type I IFNs [1;2;36]. This may result from the low level of IFN-λR1 expression
in cells, or from differential ability to recruit and/or activate components of the intracellular
signaling system. Overexpression of IFN-λR1 or a chimeric receptor that recapitulates IFN-λ
signaling enables type III IFNs to induce strong signaling, leading to the pronounced anti-
proliferative and pro-apoptotic responses in the transfected cells [37;38]. Interestingly,
overexpression of IFN-λR1 in cells resulted in decreased antiviral activity of IFN-α [2],
suggesting that IFNs may compete for common downstream signaling components. It is
important to note that receptor complexes for type I and type III IFNs act independently of
each other: in vitro and in vivo experiments demonstrated that either type I or type III IFN
antiviral systems are functional in cells lacking receptors from the opposite receptor
complex [20;33;39].

Except for the conserved STAT2 docking sites, the intracellular domains of IFN-λR1 and
IFN-αR2c, the receptor chains respectively responsible for STAT activation within the type
III and type I IFN receptor complexes, are very different, providing the basis for the possible
engagement of distinct signaling pathways by the each type of IFNs. These elusive type I
and type III IFN-specific pathways and subsequent biological activities are still to be
identified by future experiments.

Functional significance of type III IFNs
Signaling though common pathways enables type I and type III IFNs to induce similar
biological activities, particularly antiviral resistence, in responsive cells, presumably
mediated by the induction of nearly identical sets of more than 300 ISGs [33;40;41].
Consequently, the most prominent biological function of type I and type III IFNs resides in
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their ability to induce an antiviral state in cells. However, important differences between the
two antiviral systems first emerged from in vitro and ex vivo experiments, which revealed
that not all cell types respond to type III IFNs: whereas different epithelial-like cell lines and
primary keratinocytes are responsive to both types of IFNs, splenocytes, fibroblasts and
endothelial cells do not seem to respond to IFN-λ [14]. Subsequent in vivo experiments
elegantly demonstrated that the primary targets of type III IFNs are epithelial cells of the
respiratory, gastro-intestinal and reproductive tracts [20;39;42–44]. The unique functional
tissue-specificity of IFN-λs is due to the cell type-restricted pattern of IFN-λR1 expression;
although all cells express receptors for type I IFNs, IFN-λR1 is primarily expressed in
epithelial cells and specific subsets of immune cells [14;20;33;39;40;42–46]. In vivo studies
further demonstrated that both type I and type III IFN systems are capable of providing
efficient, comparable, and independent antiviral protection in epithelial tissues where
receptors for both types of IFNs are expressed [20;39;43;44;47]. However, the IFN-λ
antiviral system alone cannot provide full protection against systemic virus infections,
presumably because these viruses infect cells that are not responsive to type III IFNs; for
systemic infections, the functional type I IFN antiviral system is required. In contrast,
antiviral protection of intestinal epithelial cells against GI viruses mainly relies on the action
of the type III IFN antiviral system [48]. This recent study demonstrates that mice lacking a
functional IFN-λ receptor complex had impaired control of oral rotavirus infection; the type
I IFN system alone was unable to protect against rotaviruses, which infect intestinal
epithelial cells. Importantly, systemic administration of IFN-λ, but not type I IFN, was able
to induce an antiviral state in intestinal epithelial cells resulting in the suppression of
rotavirus replication in the gut. Thus, the type III IFN system has a unique function in
antiviral protection of intestinal epithelium that is independent of, and not overlapping with,
the type I IFN antiviral system. Because expression of IFN-λs may be triggered by various
bacteria-associated molecules, type III IFNs may be involved in the maintenance of GI tract
homeostasis.

Concluding remarks
It is now clear that IFN-λs are important mediators of antiviral responses in mucosal/
epithelial tissues, and are critically important for the protection of GI epithelium.
Nevertheless, important aspects of IFN-λ biology require further experimental exploration to
advance our understanding of the complex role of type III IFNs in overall immunity.

For example, although specific sets of immune cells such as pDCs [49] clearly respond to
type III IFNs, it remains controversial whether IFN-λs affect any aspect of T cell biology,
and whether effects of IFN-λs on T cells are direct or mediated by DCs. Thus, the current,
immunomodulatory activities of IFN-λs are poorly defined and include apparently opposing
functions such as: DC-mediated stimulation of either T-reg proliferation [50] or skewing
toward Th1 differentiation [51]; DC-independent inhibition of Th2 cytokine production
from CD4+ T cells [52]; induction of apoptosis of CD3+ T cells [53]; or augmentation of
CTL effector functions during vaccination [54]. Clarification of these effects and expansion
to understand IFN-λ effects on other immune cells, particularly those found in epithelial
tissues, is a clear part of the research agenda.

The roles of IFN-λs in pathology or the potential of either these cytokines or anti-cytokine
therapeutics are new areas for investigation. IFN-λs may also have a specialized role in the
etiology of some diseases of epithelial tissue, and in the treatment of viral infections of these
and other responsive tissues. The tissue-restricted expression of the IFN-λ receptor has
several implications, including the likelihood that IFN-λ therapy may cause fewer and/or
milder side effects than IFN-α therapy which is accompanied by numerous side effects. In
the airway and lung, for example, there is strong evidence that the type III IFN system play
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an important role in the pathology of asthma [51;55]. Also, because IFN-λs are active on
lung epithelial cells and are important mediators in innate responses to respiratory viral
infections [1;55], it is possible that intranasal delivery of IFN-λs could be effective treatment
and/or preventive measure against numerous respiratory viruses, particularly against viruses
which are poor IFN-inducers. Moreover, IFN-λ therapy may represent a novel approach to
prevention and/or treatment of respiratory virus-triggered asthma exacerbations [51;55].

Pegylated IFN-λ1 is undergoing clinical trials for the treatment of chronic hepatitis C
infection [56]. Human primary and cultured hepatocytes respond to type III IFNs, and IFN-
λs exhibit antiviral activities against HCV and HBV in these cells [40;41;57;58]. Moreover,
the importance of IFN-λs for antiviral immunity against HCV in humans is highlighted by
recent reports about several single nucleotide polymorphisms (SNPs) near the IFN-λ3 gene,
which seem to affect IFN-λ expression levels [59–61], were correlated with the spontaneous
clearance of HCV [62], and were also associated with sustained virologic response (SVR) in
patients with chronic HCV undergoing pegylated IFN-α/ribavirin (pegIFN-α/RBV)
combination therapy [60,61,63]. On the other hand, the IFN-λ antiviral system appears to
play minimal if any role in the protection of mice against hepatotropic viruses [39], so the
results of the human clinical trials are of great interest.

The potential broad roles of IFN-λs in immune function also opens questions in
autoimmunity and cancer therapy. By analogy with type I IFNs, it remains to be seen
whether IFN-λs are involved in the development or can be used for the treatment of other
inflammatory or autoimmune diseases such as systemic lupus erythematosus (SLE) [64],
inflammatory bowl disease (IBD) [53], multiple sclerosis (MS) [65] or rheumatoid arthritis
(RA). Furthermore, the finding that IFN-λs display potent antitumor activities in murine
models of cancer [14;66–68], motivates an exploration of their potential as anti-cancer
therapeutics. Thus, although the overall importance of the IFN-λs in host immune responses
remains to be fully determined, accumulating evidence suggests that IFN-λs occupy a
unique functional niche in the regulation of well-balanced immunity and may have strong
and diverse therapeutic potential.
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Highlights

> The interferon (IFN) family was recently expanded with the discovery of
type III IFNs

> Type III IFNs or IFN-λs, also known as IL-28/29, are directly induced by
viral infection

> IFN-λs, together with type I IFNs, function as early mediators of the innate
antiviral response

> IFN-λs engage a specific receptor complex to induce antiviral state in cells

> IFN-λs possess unique biological activities in and beyond innate antiviral
immunity
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Fig. 1. Model of the IFN expression
A variety of sensors are employed by cells to recognize molecules associated with pathogens
or the damage to the host cells caused by pathogens. When engaged, these sensors trigger
several overlapping pathways leading to the activation of transcriptional factors that induce
expression of the type I and type III IFN genes [69]. Two classes of transcription factors,
nuclear factor κB (NF-κB) and interferon regulatory factors (IRFs), are crucially important
for the induction of type I and type III IFN expression. AP1 transcription factor (dimeric
transcription factor containing members of the JUN, FOS, ATF and MAF protein families)
is involved in the regulation of transcription of the IFN-β gene [8]. AP1 binding sites are
also predicted in the promoters of the IFN-λs genes, but their functions have not been
studied.
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Fig. 2. Model of the IFN-λ receptor system, in relation to the type I IFN receptor system
Type I and type III IFNs signal through unique receptor heterodimers. The functional IFN-λ
receptor complex is composed of IFN-λR1 and IL-10R2 chains. IFN-λ-induced receptor
engagement leads, via the activation of receptor-associated Jak kinases, Jak1 and Tyk2, to
the tyrosine phosphorylation of the IFN-λR1 intracellular domain and subsequent activation
of latent transcription factors of the STAT family: STAT1, STAT2, STAT3, STAT4, and
STAT5 [1;37]. Phosphorylated STATs form various homo- and heterodimers, translocate to
the nucleus, and bind to specific DNA elements in the promoters of IFN-stimulated genes
(ISGs) leading to gene transcription and induction of IFN-λ-specific biological activities,
such as upregulation of MHC class I antigen expression, activation of antiviral protection,
anti-proliferative response and antitumor activities. STAT1-STAT2 heterodimers interact
with a DNA-binding protein IRF9 to form IFN-stimulated gene factor 3 (ISGF3) complex
that binds the IFN-stimulated response element (ISRE). Activated STAT1 can also
homodimerize and bind to the GAS (gamma-activated sequence) element. Latent STAT2 is
recruited to the IFN-λ receptor complexes through the interaction of STAT2 SH2 domain
with two specific phosphotyrosine based motifs (Tyr343 or Tyr517) within the intracellular
domain of IFN-λR1 that are similar to motifs found in the IFN-α receptors [37]. Activation
of STAT2 requires the presence of either Tyr343 or Tyr517 of IFN-λR1, whereas STAT4
phosphorylation, and to some extent STAT1 and STAT3 phosphorylation, can proceed
independently of IFN-λR1 tyrosine residues. The ability of IFN-λs to induce antiviral and
antiproliferative activities is completely dependent on Tyr343 or Tyr517 of IFN-λR1,
demonstrating that the activation of STAT2 is pivotal for these biological activities [37]. Not
shown here, but mentioned in the text, are alternate signaling pathways, in addition to the
Jak-Stat pathways illustrated here.
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