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Abstract

Background: Meta-analyses including a limited number of patients and events are prone to yield overestimated
intervention effect estimates. While many assume bias is the cause of overestimation, theoretical considerations suggest
that random error may be an equal or more frequent cause. The independent impact of random error on meta-analyzed
intervention effects has not previously been explored. It has been suggested that surpassing the optimal information size
(i.e., the required meta-analysis sample size) provides sufficient protection against overestimation due to random error, but
this claim has not yet been validated.

Methods: We simulated a comprehensive array of meta-analysis scenarios where no intervention effect existed (i.e., relative
risk reduction (RRR) = 0%) or where a small but possibly unimportant effect existed (RRR = 10%). We constructed different
scenarios by varying the control group risk, the degree of heterogeneity, and the distribution of trial sample sizes. For each
scenario, we calculated the probability of observing overestimates of RRR.20% and RRR.30% for each cumulative 500
patients and 50 events. We calculated the cumulative number of patients and events required to reduce the probability of
overestimation of intervention effect to 10%, 5%, and 1%. We calculated the optimal information size for each of the
simulated scenarios and explored whether meta-analyses that surpassed their optimal information size had sufficient
protection against overestimation of intervention effects due to random error.

Results: The risk of overestimation of intervention effects was usually high when the number of patients and events was
small and this risk decreased exponentially over time as the number of patients and events increased. The number of
patients and events required to limit the risk of overestimation depended considerably on the underlying simulation
settings. Surpassing the optimal information size generally provided sufficient protection against overestimation.

Conclusions: Random errors are a frequent cause of overestimation of intervention effects in meta-analyses. Surpassing the
optimal information size will provide sufficient protection against overestimation.
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Introduction

Systematic reviews and meta-analyses combining evidence from

several high-quality randomized clinical trials (RCTs) are

generally considered the highest level of evidence for effects of

interventions [1–3]. Many systematic reviews address questions

important and pressing to a large group of patients and clinicians.

Therefore, these analyses are often conducted at a stage when the

evidence on a particular question is still limited. Such meta-

analyses lack the precision (i.e., are underpowered) to establish

realistic intervention effects with a high level of confidence [4–11].

Yet, it is not infrequently that such preliminary meta-analyses yield

apparently large intervention effect estimates which, if meeting the

conventional criterion for statistical significance (i.e., p#0.05), can

appear compelling [4–11]. Empirical studies suggest that when

more evidence is accumulated over time, many of these ‘early’

large apparent intervention effects turn out to be substantial

overestimates [4–6,12]. Meta-analysis authors often assume that

time-lag, publication bias, methodological bias, or outcome

reporting bias are the main cause(s) of early overestimation, but

theoretical considerations suggest that lack of precision may be an

equally or more frequent cause [3–11,13].

As authors and users of meta-analyses and systematic reviews,

we wish to avoid the mistake of trusting spuriously large meta-

analyzed intervention effects. Because precision (and power) is

highly correlated with the cumulative number of patients and
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events, some authors have recommended that meta-analyzed

intervention effect estimates should be interpreted in relation to

the cumulative number of patients or events [6–9,14–17]. In

particular, a required or an optimal information size (OIS, analogous

to a required sample size in a clinical trial) has been proposed for

meta-analysis [9,15–17]. While we find this proposal highly useful,

the optimal information size does not provide insight into the

degree and likelihood of overestimation of intervention effects that

one can expect at various preceding stages of a meta-analysis.

Further, it is unknown whether conventional information size

requirements (i.e., a= 5%, b= 10%, and plausible a priori

assumptions about the intervention effect, control group risk,

and degree of heterogeneity), provide sufficient protection against

overestimation of meta-analyzed intervention effects caused by

random errors (imprecision). The existing empirical studies on this

topic are, unfortunately, limited by their respective sample sizes

(the number of meta-analyses studied empirically), and thus, do

not provide a reliable basis for assessing the expected degree and

likelihood of overestimation at various stages evidence accumula-

tion. Further, because the impact of bias (systematic error) is next

to impossible to infer with certainty in individual meta-analyses, it

is also difficult to isolate the degree to which random error alone

(and not bias) causes overestimation in individual meta-analyses.

The sole effect of random error on the meta-analyzed intervention

effect can, however, be accurately evaluated via simulation.

To assess the degree and likelihood with which imprecision

causes overestimation of intervention effects at various stages of a

meta-analysis, we undertook a simulation study. We measured the

probability of observing relative risk reduction estimates that could

potentially represent important overestimations after every 500 or

200 patients and for every 50 or 20 events (depending on the

simulation scenario). We explored how well conventional

information size requirements protected against overestimation

by comparing these with the number of patients and events

required for reducing the probability of overestimation to

‘acceptable levels’ (i.e., 10%, 5%, or 1%). Our simulations cover

a comprehensive array of scenarios that approximate common

meta-analysis data sets and our tables and figures may readily aid

systematic review authors in assessing the risk of overestimation

due to random error in their specific meta-analysis.

Methods

Simulation framework
We simulated binary meta-analysis data sets using a DerSimo-

nian-Laird random-effects model framework [3,18,19]. The

statistical formulation for the random-effects model as well as

the formula for the DerSimonian-Laird estimator for the between-

trial variance are presented in the supporting information

(Appendix S1). We simulated meta-analysis scenarios based on

assumed distributions and fixed, chosen values for the trial specific

variables: the trial sample sizes, the control group risks, the ‘true’

intervention effect, and the degree of heterogeneity. We used two

trial sample size distributions: one based on a survey of the

Cochrane Heart Group meta-analyses on mortality (Table S1, S2)

and one based on our subjective assessment of what constitutes a

‘common’ meta-analysis scenario. We used four different uniform

distributions to sample the control group risk: 1% to 5%

(representing ‘low’ control group risk), 5% to 15% (representing

‘moderately low’), 15% to 40% (representing ‘moderate’), and

40% to 80% (representing ‘high’). We used three different values

of the between-trial variance (referred to as t2 in the supporting

information - Appendix S1) of the log relative risk to simulate

different degrees of heterogeneity: 0.05, 0.15, and 0.25. Because

our study objective was to investigate various aspects of

overestimation of intervention effects, we used relative risk

reduction (RRR) = 0% (no effect) and RRR = 10% (small but

possibly unimportant effect) as the ‘true’ underlying intervention

effects. In-depth rationale for the choice of the performed

simulation scenarios is provided in appendix S2 in the supporting

information. Further, the technical details of our simulation

approach are described in detail in Appendix S2 in the supporting

information.

For each scenario, we simulated 20,000 meta-analysis data sets,

and for each simulated meta-analysis data set, we simulated 100

trials. Although meta-analysis data sets including this many trials

are uncommon in practice, we were interested in estimating the

risk of overestimation both in common as well as uncommon

meta-analysis scenarios. Simulating 100 trials for each meta-

analysis data set allowed us to accurately estimate the risk of

overestimation regardless of the cumulative number of patients

and events. Figure 1 presents a flowchart of the simulation and

analysis structure.

The optimal information size
The optimal information size, OIS, for a binary outcome meta-

analysis (also referred to as the required information size) is

calculated as

OIS~ 4: z1{azz1{b

� �2:P: 1{Pð Þ=d2
� �

: 1= 1{I2
� �� �

Where z1-a and z1-b are the (1-a)th and (1-b)th percentiles from the

standard normal distribution, P is the average of the control group

risk, PC, and intervention group risk, PE, d is the difference

between PC and PE, and I2 is the popular (heterogeneity) measure

for the proportion variation in a meta-analysis explained by

differences between trials rather than sampling error. (Note, I2 is

typically reported as a percentage (e.g., I2 = 35%), but in the OIS

formula above, I2 is a proportion (e.g., I2 = 0.35)). The OIS

provides the required number of patients in a meta-analysis to

ensure that the maximum type I error is no larger than a and the

maximum type II error is no larger than b when testing for

statistical significance. The OIS can be converted to the required

number of events by multiplying the required number of patients

by P (assuming an approximately equal number of patients in the

two groups).

Analysis

For each simulation scenario of 20,000 cumulative meta-

analyses data sets, we recorded the DerSimonian-Laird random-

effects model cumulative meta-analyzed RRR (1 minus the meta-

analyzed relative risk), the cumulative number of patients, and the

cumulative number of events after each included trial. For each

simulation set (i.e., true RRR = 0% and true RRR = 10%), we

judged that RRR estimates larger than 20% and 30% could

potentially represent important overestimates. At any given

cumulative number of patients and events, we therefore calculated

the proportion of simulated meta-analysis RRR that were larger

than these thresholds.

We assessed the degree and likelihood of overestimation at

various stages of a meta-analysis. For each scenario, we plotted the

proportion of overestimates (according to the two thresholds) in

relation to the cumulative number of patients and events. For each

plot, we divided the cumulative number of patients into intervals of

500 or 200 (depending on the scenario), and the cumulative number

of events into intervals of 50 or 20 (depending on the scenario).

Risk of Overestimation in Meta-Analysis
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We assessed how many patients and events were required to

reduce the proportion of overestimates to acceptable levels,

according to the two thresholds. We calculated the number of

patients and events required to limit the probability of overesti-

mation (according to the two thresholds) by 10%, 5%, and 1% -

each of which could potentially constitute an ‘acceptable’ risk of

overestimation.

We assessed the extent to which conventional information size

requirements protect against overestimation. We calculated the

optimal information sizes based on a= 5% and b= 20%, 10%, or

5%, with assumed control group risks set to the averages of the

four control group risks distributions used in the simulation (i.e.,

PC = 3.0%, PC = 10.0%, PC = 27.5%, or PC = 60.0%), powered to

detect intervention effects of RRR = 30% or RRR = 20%, and

with heterogeneity corrections of I2 = 0.00, I2 = 0.25, or I2 = 0.50

(corresponding to I2 = 0%, I2 = 25%, and I2 = 50%). In total, 72

OIS estimates were calculated. We then compared the calculated

information size requirements with the simulation results by

matching OIS estimates with the scenarios where the underlying

assumptions were similar. For example, the estimated probabilities

of overestimation from the simulation based on a control group

risk between 5% and 15% and tau2 = 0.15 was compared to the

information size requirements based on an assumption of a 10%

control group risk and 25% heterogeneity (I2 = 0.25 = 25%). For

the comparison of information size requirements and simulation

results, we post hoc created three categories for the ‘acceptability’

of the risk of overestimation: ‘good’, ‘very good’, and ‘excellent’.

We defined ‘good’ acceptability as the situation where the

probability of observing an RRR.20% was smaller than 10%

and the probability of observing an RRR.30% was smaller than

5%. We defined ‘very good’ acceptability as the situation where

the probability of observing an RRR.20% was smaller than 5%

and the probability of observing an RRR.30% smaller than 1%.

Lastly, we defined ‘excellent’ acceptability as the situation where

the probability of observing an RRR.20% was smaller than 1%.

Of note, we did not record the probability of underestimation

(i.e., we took a one-sided approach). Thus, 50% is the maximum

observable probability of overestimation of intervention effects,

and our results should be interpreted accordingly.

Results

In most scenarios, the probability of overestimation was higher

than 25% when the number of patients (or events) was small, but

subsequently decreased exponentially (the x-axis is log scaled in

Figure 2, and in Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12).

Figure 2 presents the probability of overestimation in relation to

the cumulative number of patients and events for a selected

simulation scenario: no true intervention effect (RRR = 0%),

moderate control group event risk (uniform distribution from 5%

to 15%), and moderate heterogeneity (between-trial variance

t2 = 0.15), and distribution of trials sizes based on our survey of the

Cochrane Heart Group meta-analyses. Figures S1, S2, S3, S4, S5,

S6, S7, S8, S9, S10, S11, and S12 present the probability of

overestimation in relation to the cumulative number of patients

and events for all simulation scenarios.

The number of patients and events required for the probability

of overestimation to drop below 10%, 5%, and 1% in the

simulated scenarios are presented in Table 1, and Tables S3 and

S4. Table 1 presents the scenarios where the distribution of trial

sample sizes were based on our survey of the Cochrane Heart

Group meta-analyses, and Tables S3 and S4 present the scenarios

where the distribution of trial sample sizes were based on our

assessment of what we subjectively assessed constituted a

‘common’ meta-analysis scenario.

The number of patients and events required to limit the risk of

overestimation depended on the threshold for overestimation

(i.e., RRR = 20% or RRR = 30%) and all the considered

simulation components: relative risk reduction, control group risk,

Figure 1. Flowchart of simulations and analyses. Simulation scenarios that included combinations of Cochrane Heart Group survey based trial
sample size distribution and either ‘moderate’ or ‘high’ control group risks were not performed.
doi:10.1371/journal.pone.0025491.g001

Risk of Overestimation in Meta-Analysis
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heterogeneity, and trial size distribution. The larger the overes-

timation (i.e., the larger the difference between the meta-analyzed

and the true RRR), the smaller the number of patients and events

required to limit the risk of overestimation. A larger number of

patients were required to limit the risk of overestimation in the

scenarios where the control group risk was low. Conversely, a

smaller number of events were required to limit the risk of

overestimation in the scenarios with control group risk was low.

The number of patients and events required to limit the risk of

overestimation was generally smaller in scenarios when heteroge-

neity was set at the lowest level (t2 = 0.05) than when it was set to

the highest level (t2 = 0.25). In contrast, in scenarios with the

‘common’ trial size distribution and with low control group risks

(1–5%), the number of patients and events required was higher

when heterogeneity was lowest. This reversed pattern was also

observed in a few other isolated scenarios.

Table 2 presents the calculated optimal information size for 72

different settings (see analysis section for more detail). Table 3 and

4 present of the number of patients and events required to limit the

risk of overestimation, grouped by control group risk and

distribution of trial sample size. The calculated OIS are included

in these tables for comparison. In scenarios with low control group

risk (1%–5%), the risk of overestimation generally reached very

good or excellent acceptability before reaching optimal informa-

tion sizes (based on 80% power or 90% power). In scenarios with

moderately low control group risk (5% to 15%), good acceptability

was commonly reached before or close to the OIS based on 80%

power, whereas very good and sometimes excellent acceptability

was reached before the OIS based on 90% power or 95% power.

In scenarios with moderate control group risk (15% to 40%), good

acceptability was reached before the OIS based on 80% power

and very good acceptability was usually reached before the OIS

based on 95% power. In scenarios with high control group risk

(40% to 80%), good acceptable was often (but not always) reached

before the OIS based on 95% power. Some exceptions were

observed in all of the above generalizations when the heteroge-

neity was large (i.e., t2 = 0.25).

Discussion

Our simulations provide valuable insight on the risk of

overestimation of intervention effects in meta-analysis due to

random errors over time. The risk of observing overestimated

intervention effects due to random error at ‘early’ stages of a meta-

analysis is substantial. The number of patients and events required

to limit this risk depend considerably on each of the components

considered in our simulation study: the degree of overestimation

that is considered to be important, the underlying true effect, the

control group risk, the degree of heterogeneity, and the

distribution of trial sample sizes. However, the comparison of

our simulation results with the approximately corresponding

information size requirements demonstrated that upon reaching

the OIS in a meta-analysis, one can be relatively confident that the

intervention effect is not overestimated due to random error.

Our study comes with several strengths and limitations. Our

simulations covered a wide spectrum of meta-analysis scenarios

which we believe occur frequently in the systematic review

literature. Our simulation results therefore have good generaliz-

ability to meta-analysis in practice. While the spectrum of

scenarios covered in our simulations is not as extensive as seen

in some previous meta-analysis simulation studies, adding

additional scenarios to the current study would likely increase

the complexity and hamper the interpretability of our findings. We

believe the chosen spectrum of our simulations constitute a close to

optimal balance between interpretability and generalizability.

Our simulation study is the first of its kind to contrast the risk of

overestimation of intervention effects due to random errors with

information size requirements. The statistical purpose of calculat-

ing the OIS is to gain control over the risk of obtaining a false

positive finding (type I error) and a false negative finding (type II

error). Extending this purpose, authors have previously considered

information size requirements as a means of gaining control over

the risk of overestimation [2,20]. Our simulation study is the first

to explore the validity of this theoretical claim. However, we only

investigated the extent to which information size requirements

protect against overestimation when the underlying assumptions

(e.g., a priori assumed RRR and control group risk) matched the

parameter settings in a given simulation scenario (e.g., the assumed

control group risk for the optimal information size was set to 10%

when the control group risk in the simulation was sampled from a

uniform distribution between 5% and 15%). That is, our findings

hold for information sizes that have been calculated using the

appropriate assumptions for a given scenario. In reality, it can be

difficult to know which assumptions are most appropriate when

doing information size calculations for a meta-analysis. The

implications of employing overly lenient or conservative a priori

assumptions for the OIS are, theoretically, relatively straightfor-

ward. Lenient assumptions (e.g., b= 20% and RRR = 0.35) will

results in relatively small information size requirements, and thus,

an inappropriately high degree of confidence that the estimated

intervention effect can be trusted (i.e., is not an overestimate).

Conversely, conservative assumptions (e.g., a= 0.1% and

RRR = 0.10) have the potential to remove confidence about an

Figure 2. Presents the proportions of pooled intervention
effects overestimating the relative risk reduction with 30% (–
& – &) and 20% (NNNNNNNNN) in the scenario with no underlying
intervention effect (i.e., RRR = 0%), the trial sample size
distribution is based on the Cochrane Heart Group survey,
the control group risk is moderate (i.e., drawn from a uniform
distribution between 5% and 15%) and the heterogeneity is
moderate (i.e., t2 = 0.15). The proportion of pooled intervention
effect estimates (the risk of overestimation) are plotted in relation to the
cumulative number of patients (upper plot) and events (lower plot).
doi:10.1371/journal.pone.0025491.g002
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intervention effect estimate, even if the intervention effect estimate

is in fact reliable.

We mentioned in the introduction that various types of bias

(e.g., methodological bias or publication bias) may also be

important causes of overestimation of intervention effects [3,13].

We did not attempt to include any biases in our simulations. It is

likely that when bias is present in a meta-analysis, a larger number

of patients and events will be required to limit the risk of

overestimation. In some cases, bias may limit the reliability of the

size of the intervention estimate independent of how large the

meta-analysis is.

Another limitation of our simulations is that the underlying true

trial effects were sampled as random effects. This approach does

not consider the possibility that the magnitude of trial effects to

some extent may depend on time. For example, the first series of

trials in a meta-analysis compared to the later trials may generally

recruit a broader or narrower population, use shorter or longer

follow-up, or administer higher or lower doses of a drug.

Depending on the effect such time dependencies have on the

evolution of the meta-analyzed intervention effect, the number of

patients and events required to limit overestimation may be either

larger or smaller than our results indicate.

Our simulation results are consistent with the results of previous

empirical studies. More specifically, the pooled intervention effect

estimates tend to fluctuate considerably when the number of patients

and events are sparse, thus creating a high risk of overestimation [4–

6,12]. Ioannidis and Lau previously investigated convergence of

intervention effects in two fields, interventions in pregnancy and

perinatal medicine and management of myocardial infarction. They

found that more than 10,000 patients were generally required to

relieve uncertainty about subsequent changes in meta-analyzed

intervention effects [4]. Trikalinos et al. performed a similar study on

interventions within the field of mental health and found that only

2000 patients were required to relieve uncertainty about subsequent

changes in meta-analyzed intervention effects [5]. The meta-

analyses considered by Ioannidis and Lau were similar to many of

our simulated scenarios where the control group risk was ‘low’ and

‘moderately low’. The meta-analyses considered by Trikalinos et al.

were similar to many of our simulated scenarios where the control

group risk was ‘moderate’ or ‘high’.

The results of our simulation study have several implications.

First, they underscore the need for information size requirements

in all meta-analyses. Second, they illustrate the dangers of relying

on intervention effect estimates before the OIS is reached (or is

close to being reached), even when the presence of bias is unlikely.

The figures in the supporting information provide meta-analysts

with an opportunity to check the approximate risk of overestima-

tion due to random error in their meta-analyses.

Table 1. Presents the required number of patients and events for the probability of overestimation to drop below 10%, 5% and
1%, in scenarios where the control group risk is ‘low’ or ‘moderately low’ and where the distribution of trial sample sizes is based
on a survey of 23 Cochrane Heart Group meta-analyses on mortality.

Scenario parameters
Number of patients required for the pro-
bability of overestimation to drop below

Number of events required for the pro-
bability of overestimation to drop below

True effect Overestimation PC t 2 10% 5% 1% 10% 5% 1%

RRR = 0% RRR.30% 1%–5% 0.05 2000 3500 8000 100 150 300

0.15 2500 4500 10500 100 150 350

0.25 3000 5500 11500 150 200 350

5%–15% 0.05 1000 1500 3500 100 150 350

0.15 1500 2500 6500 150 250 600

0.25 1500 3500 8000 200 350 750

RRR.20% 1%–5% 0.05 5500 9000 19500 200 300 600

0.15 6500 10500 21500 250 350 650

0.25 6500 11500 23000 250 350 700

5%–15% 0.05 2500 4000 9000 200 400 850

0.15 3000 6500 13000 350 600 1250

0.25 4500 8000 16500 450 750 1650

RRR = 10% RRR.30% 1%–5% 0.05 4000 7000 14500 150 250 450

0.15 5500 9000 18000 200 300 550

0.25 5500 9000 18500 200 300 550

5%–15% 0.05 2000 3000 7500 200 300 700

0.15 2500 5500 11000 250 450 1000

0.25 3500 7000 14000 350 600 1250

RRR.20% 1%–5% 0.05 16500 26500 .50000 500 800 1650

0.15 15000 25000 .50000 500 800 1500

0.25 14500 24000 .50000 450 750 1450

5%–15% 0.05 7500 13500 26500 700 1250 2500

0.15 10000 17000 37000 950 1600 3400

0.25 12000 19500 40000 1150 1850 3750

doi:10.1371/journal.pone.0025491.t001

Risk of Overestimation in Meta-Analysis
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Table 2. Presents the calculated optimal information size (OIS) to detect RRR = 30% and RRR = 20% respectively depending on the
underlying assumed control group risk (PC), a desired type I error of 5%, variations of the desired type II error (b = 20%, 10%, or 5%)
and the anticipated degree of heterogeneity.

Scenario parameters OIS (required number of patients) OIS (required number of events)

Assumed effect PC I2 b = 20% b = 10% b = 5% b = 20% b = 10% b = 5%

RRR = 30% 3% 0% 9600 13000 16000 250 350 400

25% 13000 17000 21500 350 450 550

50% 19500 26000 32000 500 650 800

RRR = 20% 0% 23000 30500 38000 600 850 1000

25% 30500 41000 51000 850 1100 1350

50% 46000 61000 76000 1250 1650 2050

RRR = 30% 10% 0% 2700 3600 4500 250 300 400

25% 3500 5000 6000 300 400 500

50% 5500 7500 9000 450 600 750

RRR = 20% 0% 6500 8500 10500 600 800 1000

25% 8500 11500 14000 750 1000 1300

50% 13000 17000 21500 1150 1550 1900

RRR = 30% 27.5% 0% 900 1100 1400 200 300 350

25% 1100 1500 1800 250 350 450

50% 1700 2200 2700 400 550 650

RRR = 20% 0% 1900 2600 3200 500 650 800

25% 2600 3500 4300 650 850 1050

50% 3900 5200 6400 950 1300 1600

RRR = 30% 60% 0% 200 300 400 150 200 200

25% 300 400 500 200 250 300

50% 500 600 800 250 350 400

RRR = 20% 0% 500 700 900 300 400 500

25% 700 1000 1200 400 550 650

50% 1100 1500 1800 600 800 950

The required number of events have been rounded up to the nearest number divisible by 50. The required number of patients have been rounded up to the nearest
number divisible by 1000 when PC = 3% and PC = 10% and to the nearest number divisible by 100 when PC = 27.5% and PC = 60%.
doi:10.1371/journal.pone.0025491.t002

Table 3. Presents the comparison of the optimal information size to demonstrate a relevant intervention effect with the required
number of patients and events to limit the risk of overestimation in simulation scenarios where the distribution of trial sample sizes
was based on survey of Cochrane Heart Group meta-analyses.

Simulation Optimal Information Size (OIS)

PC Overestimation Acceptability Patients Events PC RRR Power Patients Events

1%–5% RRR.30% Good 3500–5500 150–200 3% 30% 80% 10000–20000 250–500

Very Good 7000–11500 250–350 90% 13000–26000 350–650

Excellent 14500–18500 450–550 95% 16000–32000 400–800

RRR.20% Good 10000–15000 400–500 20% 80% 23000–46000 600–1250

Very Good 20000–25000 600–800 90% 30000–61000 850–1650

Excellent .50000 1400–1600 95% 38000–76000 1000–2050

5%–15% RRR.30% Good 2000–4000 200–300 3% 30% 80% 3000–5500 250–450

Very Good 3000–8000 300–700 90% 3500–7500 300–600

Excellent 7000–14000 700–1200 95% 4500–9000 400–750

RRR.20% Good 7000–12000 600–1200 20% 80% 6500–13000 600–1150

Very Good 9000–19000 1250–1850 90% 8500–17000 800–1600

Excellent 26000–40000 2500–2800 95% 10500–21000 1000–1900

doi:10.1371/journal.pone.0025491.t003

Risk of Overestimation in Meta-Analysis
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Two key inferential measures in a meta-analysis are the p-value

and the 95% confidence interval associated with the estimated

intervention effect. We wish to offer additional caution in

interpreting meta-analyzed intervention effect estimates in the

face of limited evidence. Large effect estimates (true or false) do not

require high precision to reach conventional statistical significance

(i.e., p#0.05). As demonstrated in empirical studies, early large

intervention effects are likely to dissipate and early statistically

significant meta-analyses are likely to be false positives [4–

6,12,21]. Therefore, when observing a large statistically significant

intervention effect estimate (e.g., RRR.30%) in a meta-analysis

including a limited number of patients and events, one should

always consider whether the meta-analysis, with the same

precision, would have been statistically significant had the

observed intervention effect been moderate or small. Chances

are it would not. By the same token, one should always consider

what values the confidence interval would have included had the

effect estimate been moderate or small.

Even if an ‘early’ large intervention effect estimate is not

supported by formal statistical significance, the situation may still

be problematic. Large intervention effects will encourage clinical

trial investigators to conduct further trials, and systematic review

authors to perform regular updates of the meta-analysis until it

either reaches statistical significance or the early trend has been

definitively refuted. Updates of meta-analysis cause multiplicity

due to repeated significance testing – a conduct which has been

documented as highly problematic [6,10,22–24]. In particular,

multiple testing increases the risk of observing a falsely significant

result before the optimal information size has been surpassed. This

may very well happen at a point where the risk of overestimation is

still substantial. Moreover, in the face of repeated significance

testing, confidence intervals suffer from reduced coverage, and

thus an increased risk of precluding the ‘true’ intervention effect.

Multiplicity due to repeated significance testing in meta-analysis

can be accounted for by employing sequential testing procedure

like the O’Brien-Fleming group sequential boundaries (i.e.,

adjusted thresholds for statistical significance) and adjusted

confidence intervals can be constructed accordingly. Evidence

suggests that these techniques provide adequate protection against

false positives [6,8,14,22]. Given that such adjusted significance

thresholds and the corresponding adjusted confidence intervals are

tied to the calculated information size requirement, and given that

information size criteria seem to provide adequate protection

against ‘early’ overestimation, it seems reasonable to believe that

adjusted significance thresholds and confidence intervals are

appropriate inferential measures for interpreting early intervention

effect estimates in meta-analysis.

In conclusion, the risk of overestimated intervention effects in

meta-analysis due to random error is often substantial in the face of a

limited number of patients and events. Insisting that a meta-analysis

Table 4. Presents the comparison of the optimal information size (OIS) to demonstrate a relevant intervention effect with the
required number of patients and events to limit the risk of overestimation in simulation scenarios where the distribution of trial
sample sizes was based on survey of Cochrane Heart Group meta-analyses.

Simulation Optimal information size

PC Overestimation Acceptability Patients Events PC RRR Power Patients Events

1%–5% RRR.30% Good 2500 100 3% 30% 80% 10–20000 250–500

Very Good 3500–4500 150–200 90% 13–26000 350–650

Excellent 6000–7500 200–250 95% 16–32000 400–800

RRR.20% Good 4000–7500 150–250 20% 80% 23–46000 600–1250

Very Good 7000–11000 250–400 90% 30–61000 850–1650

Excellent 14000–19000 350–600 95% 38–76000 1000–2050

5%–15% RRR.30% Good 1500 100–150 10% 30% 80% 3000–5500 250–450

Very Good 2000–3000 200–250 90% 3500–7500 300–600

Excellent 3500–4500 350–450 95% 4500–9000 400–750

RRR.20% Good 2500–3500 250–350 20% 80% 6500–13000 600–1150

Very Good 4500–5500 450–600 90% 8500–17000 800–1600

Excellent 11000–12000 900–1150 95% 10500–21000 1000–1900

15%–40% RRR.30% Good 500–2500 150–700 27.5% 30% 80% 800–1700 200–400

Very Good 1400–6200 400–1700 90% 1100–2200 300–550

Excellent 4000–12000 1000–3000 95% 1400–2700 350–650

RRR.20% Good 1000–3000 300–850 20% 80% 1900–3600 500–950

Very Good 2100–5400 550–1350 90% 2600–5200 650–1300

Excellent 6200–11400 1500–2300 95% 3200–6400 800–1600

40%–80% RRR.30% Good 200–1000 150–500 60% 30% 80% 200–500 150–250

Very Good 600–1800 300–1000 90% 300–600 200–350

Excellent 1100–3200 600–1600 95% 400–800 200–400

RRR.20% Good 700–3400 350–1950 20% 80% 500–1100 300–600

Very Good 1400–5800 750–3500 90% 700–1500 400–800

Excellent 4000–11000 2000–5000 95% 900–1800 500–950

doi:10.1371/journal.pone.0025491.t004
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meets a reasonable OIS will ensure an acceptably low risk of

observing an overestimated intervention effect due to random errors.

Supporting Information

Figure S1 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is no underlying
intervention effect (i.e., RRR = 0%), and where the
distribution trial sample sizes are based on the survey
of 23 Cochrane Heart Group meta-analyses. The propor-

tions are plotted in relation to the cumulative number of patients.

The upper three plots present the results from the simulated

scenarios where the underlying ‘true’ trial control group risks are

drawn from a uniform distribution between 1% and 5% (‘low’

risk), and the lower three plots present the results from the

simulated they are drawn from a uniform distribution between 5%

and 15% (‘moderately low’ risk). The two left plots present results

from scenarios with ‘mild’ heterogeneity (t2 = 0.05), the middle

two results from scenarios with moderate heterogeneity(t2 = 0.15),

and the two right plots results from scenarios with substantial

heterogeneity (t2 = 0.25).

(TIFF)

Figure S2 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is no underlying
intervention effect (i.e., RRR = 0%), and where the
distribution trial sample sizes are based on the survey
of 23 Cochrane Heart Group meta-analyses. The propor-

tions are plotted in relation to the cumulative number of events.

The upper three plots present the results from the simulated

scenarios where the underlying ‘true’ trial control group risks are

drawn from a uniform distribution between 1% and 5% (‘low’

risk), and the lower three plots present the results from the

simulated they are drawn from a uniform distribution between 5%

and 15% (‘moderately low’ risk). The two left plots present results

from scenarios with ‘mild’ heterogeneity (t2 = 0.05), the middle

two results from scenarios with moderate heterogeneity(t2 = 0.15),

and the two right plots results from scenarios with substantial

heterogeneity (t2 = 0.25).

(TIFF)

Figure S3 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is a small but
potentially important intervention effect (i.e.,
RRR = 10%), and where the distribution trial sample
sizes are based on the survey of 23 Cochrane Heart
Group meta-analyses. The proportions are plotted in relation

to the cumulative number of patients. The upper three plots

present the results from the simulated scenarios where the

underlying ‘true’ trial control group risks are drawn from a

uniform distribution between 1% and 5% (‘low’ risk), and the

lower three plots present the results from the simulated they are

drawn from a uniform distribution between 5% and 15%

(‘moderately low’ risk). The two left plots present results from

scenarios with ‘mild’ heterogeneity (t2 = 0.05), the middle two

results from scenarios with moderate heterogeneity (t2 = 0.15), and

the two right plots results from scenarios with substantial

heterogeneity (t2 = 0.25).

(TIFF)

Figure S4 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–&
– &) and 20% (NNNNNNNNN) when there is small but potentially

important intervention effect (i.e., RRR = 10%), and
where the distribution trial sample sizes are based on
the survey of 23 Cochrane Heart Group meta-analyses.
The proportions are plotted in relation to the cumulative number of

events. The upper three plots present the results from the simulated

scenarios where the underlying ‘true’ trial control group risks are

drawn from a uniform distribution between 1% and 5% (‘low’ risk),

and the lower three plots present the results from the simulated they

are drawn from a uniform distribution between 5% and 15%

(‘moderately low’ risk). The two left plots present results from

scenarios with ‘mild’ heterogeneity (t2 = 0.05), the middle two results

from scenarios with moderate heterogeneity (t2 = 0.15), and the two

right plots results from scenarios with substantial heterogeneity

(t2 = 0.25).

(TIFF)

Figure S5 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is no underlying
intervention effect (i.e., RRR = 0%), and where the
distribution trial sample sizes are our assessment of
what constitutes ‘common’ meta-analysis trial size
distributions. The proportions are plotted in relation to the

cumulative number of patients. The upper three plots present the

results from the simulated scenarios where the underlying ‘true’

trial control group risks are drawn from a uniform distribution

between 1% and 5% (‘low’ risk), and the lower three plots present

the results from the simulated they are drawn from a uniform

distribution between 5% and 15% (‘moderately low’ risk). The two

left plots present results from scenarios with ‘mild’ heterogeneity

(t2 = 0.05), the middle two results from scenarios with moderate

heterogeneity (t2 = 0.15), and the two right plots results from

scenarios with substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S6 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is no underlying
intervention effect (i.e., RRR = 0%), and where the
distribution trial sample sizes are our assessment of
what constitutes ‘common’ meta-analysis trial size
distributions. The proportions are plotted in relation to the

cumulative number of events. The upper three plots present the

results from the simulated scenarios where the underlying ‘true’

trial control group risks are drawn from a uniform distribution

between 1% and 5% (‘low’ risk), and the lower three plots present

the results from the simulated they are drawn from a uniform

distribution between 5% and 15% (‘moderately low’ risk). The two

left plots present results from scenarios with ‘mild’ heterogeneity

(t2 = 0.05), the middle two results from scenarios with moderate

heterogeneity(t2 = 0.15), and the two right plots results from

scenarios with substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S7 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (– &

– &) and 20% (NNNNNNNNN) when there is small but potentially
important intervention effect (i.e., RRR = 10%), and
where the distribution trial sample sizes are our assess-
ment of what constitutes ‘common’ meta-analysis trial
size distributions. The proportions are plotted in relation to the

cumulative number of patients. The upper three plots present the

results from the simulated scenarios where the underlying ‘true’ trial

control group risks are drawn from a uniform distribution between

1% and 5% (‘low’ risk), and the lower three plots present the results

from the simulated they are drawn from a uniform distribution
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between 5% and 15% (‘moderately low’ risk). The two left plots

present results from scenarios with ‘mild’ heterogeneity (t2 = 0.05),

the middle two results from scenarios with moderate heterogeneity

(t2 = 0.15), and the two right plots results from scenarios with

substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S8 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–&
– &) and 20% (NNNNNNNNN) when there is small but potentially
important intervention effect (i.e., RRR = 10%), and
where the distribution trial sample sizes are our assess-
ment of what constitutes ‘common’ meta-analysis trial
size distributions. The proportions are plotted in relation to the

cumulative number of events. The upper three plots present the

results from the simulated scenarios where the underlying ‘true’ trial

control group risks are drawn from a uniform distribution between

1% and 5% (‘low’ risk), and the lower three plots present the results

from the simulated they are drawn from a uniform distribution

between 5% and 15% (‘moderately low’ risk). The two left plots

present results from scenarios with ‘mild’ heterogeneity (t2 = 0.05),

the middle two results from scenarios with moderate heterogeneity

(t2 = 0.15), and the two right plots results from scenarios with

substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S9 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is no underlying
intervention effect (i.e., RRR = 0%), and where the
distribution trial sample sizes are our assessment of
what constitutes ‘common’ meta-analysis trial size
distributions. The proportions are plotted in relation to the

cumulative number of patients. The upper three plots present the

results from the simulated scenarios where the underlying ‘true’

trial control group risks are drawn from a uniform distribution

between 15% and 40% (‘moderate’ risk), and the lower three plots

present the results from the simulated they are drawn from a

uniform distribution between 40% and 80% (‘high’ risk). The two

left plots present results from scenarios with ‘mild’ heterogeneity

(t2 = 0.05), the middle two results from scenarios with moderate

heterogeneity (t2 = 0.15), and the two right plots results from

scenarios with substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S10 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is no underlying
intervention effect (i.e., RRR = 0%), and where the
distribution trial sample sizes are our assessment of
what constitutes ‘common’ meta-analysis trial size
distributions. The proportions are plotted in relation to the

cumulative number of events. The upper three plots present the

results from the simulated scenarios where the underlying ‘true’

trial control group risks are drawn from a uniform distribution

between 15% and 40% (‘moderate’ risk), and the lower three plots

present the results from the simulated they are drawn from a

uniform distribution between 40% and 80% (‘high’ risk). The two

left plots present results from scenarios with ‘mild’ heterogeneity

(t2 = 0.05), the middle two results from scenarios with moderate

heterogeneity (t2 = 0.15), and the two right plots results from

scenarios with substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S11 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30%

(– & – &) and 20% (NNNNNNNNN) when there is small but
potentially important intervention effect (i.e.,
RRR = 10%), and where the distribution trial sample
sizes are our assessment of what constitutes ‘common’
meta-analysis trial size distributions. The proportions are

plotted in relation to the cumulative number of patients. The

upper three plots present the results from the simulated scenarios

where the underlying ‘true’ trial control group risks are drawn

from a uniform distribution between 15% and 40% (‘moderate’

risk), and the lower three plots present the results from the

simulated they are drawn from a uniform distribution between

40% and 80% (‘high’ risk). The two left plots present results from

scenarios with ‘mild’ heterogeneity (t2 = 0.05), the middle two

results from scenarios with moderate heterogeneity (t2 = 0.15), and

the two right plots results from scenarios with substantial

heterogeneity (t2 = 0.25).

(TIFF)

Figure S12 Presents the proportions of pooled interven-
tion effects exceeding a relative risk reduction of 30% (–
& – &) and 20% (NNNNNNNNN) when there is small but
potentially important intervention effect (i.e.,
RRR = 10%), and where the distribution trial sample
sizes are our assessment of what constitutes ‘common’
meta-analysis trial size distributions. The proportions are

plotted in relation to the cumulative number of events. The upper

three plots present the results from the simulated scenarios where

the underlying ‘true’ trial control group risks are drawn from a

uniform distribution between 15% and 40% (‘moderate’ risk), and

the lower three plots present the results from the simulated they are

drawn from a uniform distribution between 40% and 80% (‘high’

risk). The two left plots present results from scenarios with ‘mild’

heterogeneity (t2 = 0.05), the middle two results from scenarios with

moderate heterogeneity (t2 = 0.15), and the two right plots results

from scenarios with substantial heterogeneity (t2 = 0.25).

(TIFF)

Figure S13 Histogram of trial sample sizes in the
surveyed Cochrane heart group meta-analyses.

(TIF)

Table S1 Presents the recorded meta-analysis and trial
characteristics from the survey of Cochrane Heart
Group mortality meta-analyses. The column labeled

‘Quartile’ contains the 25th to 75th percentile interval. The

columns labeled ‘Spectrum’ contains the minimum and maximum

value observed. The last column contains the DerSimonian-Laird

estimate of the between-trial variance (on the log relative risk

scale).

(DOC)

Table S2 Estimated proportions of trial sample sizes
based on the survey of Cochrane Heart Group meta-
analysis as well as proportions used in our simulations.

(DOC)

Table S3 Presents the required number of patients and
events for the probability of overestimation to drop
below 10%, 5% and 1%, in the simulation based on the
sensitivity trial size distribution.

(DOC)

Table S4 Presents the required number of patients and
events for the probability of overestimation to drop
below 10%, 5% and 1%, in the simulation based on the
sensitivity trial size distribution.

(DOC)
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Appendix S1 Presents the conventional random-effects
model meta-analysis setup and the DerSimonian-Laird
random-effects model.
(DOC)

Appendix S2 Presents the complete simulation setup as
well as the rationale for the choice of parameter
distributions and fixed values.
(DOC)
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