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Abstract

Adaptive laboratory evolution (ALE) under controlled conditions has become a valuable approach for the study of the
genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in
ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell
division in growing cultures, the cumulative number of cell divisions (CCD) would be an alternative way to set the timescale
for ALE. Here we show that in short-term ALE (up to 40–50 days), Escherichia coli, under growth rate selection pressure, was
found to undergo approximately 1011.2 total cumulative cell divisions in the population to produce a new stable growth
phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N9-nitro-N-
nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger
number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental
kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.
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Introduction

Adaptive laboratory evolution (ALE) has become a valuable

approach for the study of the genetic and biochemical basis for

microbial adaptation under a strict selection pressure [1,2]. With

the availability of low-cost whole-genome sequencing platforms,

the genetic changes that result in an advantageous phenotype

during ALE can be readily determined [3,4,5,6,7,8,9]. ALE

experiments, as presented in this study, are carried out for a

sufficient time period to generate an apparently stable phenotype

or when non-detectable changes are observed in the selected

phenotypic trait (Fig. 1A). Long-term ALE experiments using

Escherichia coli conducted by Lenski et al. [7,10,11,12] have spanned

.50,000-generations, while many shorter-term evolutions have

been completed in 500 to 2,000 generations [8,13,14,15,16].

The time coordinate in ALE processes is normally scaled in

terms of generations. However, DNA polymerase errors are

significant sources of mutations and contribute to genetic

diversity during cell growth and chromosomal replication [17].

As such, the likelihood that a mutation will occur is proportional

to the number of cell divisions that take place during an ALE

experiment. Therefore, one can use the cumulative number of

cell divisions (CCD) in the history of the population being

carried at a given time as a more meaningful measure of

timescale in ALE experiments. This timescale can also be

accelerated by a constant presence of a non-toxic level of a

mutagen, as it increases the probability of a mutation occurring

during a cell division. The CCD parameter can thus improve

our understanding of ALE processes by incorporating the actual

number of cells responsible for a phenotypic outcome and allow

for a more precise analysis of phenotypic outcomes on a per cell

basis (Fig. 1B).

We thus set out to study the dynamics of short-term ALE

experiments by determining the CCD that is needed to converge

to stable phenotypes and the effects of a mutagen on this process.

Results

Previously, we have performed a number of short-term ALE

experiments using growth rate as the selection pressure. The

genetic bases for the improved growth rate phenotypes were also

determined using whole-genome sequencing of the endpoint

strains, followed by introduction of mutations into the starting

strain using allelic replacement [4,6,8]. Data from previously

conducted experiments [6,8,13,15] and additional new short-term

ALE experiments with continuous exposure to a low level of a

mutagen were used to compute the CCD in the population that is

required to generate a reproducible phenotype. N-Methyl-N9-

nitro-N-nitrosoguanidine (NTG) was chosen as an efficient

mutagen at a level that gave excellent preservation of cell viability
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with continuous exposure during ALE experiments. The non-toxic

amount of NTG determined by monitoring cell growth on glycerol

and L-lactate minimal media was found to be 5 mg/ml and 4 mg/

ml, respectively (Fig. 2). The level of NTG for ALE on glycerol

minimal media was also used for E. coli evolution on L-1,2-

propanediol (L-1,2-PDO) minimal media. A total of 24 individual

ALE experiments were considered for analysis in the present study

(Table 1).

Phenotypic properties
ALE of wild-type (WT) E. coli K-12 MG1655 on the three-

carbon compounds, glycerol, L-lactate, and L-1,2-PDO, has been

conducted without and with a mutagen (Fig. 3). The main findings

from these studies were:

N Glycerol-evolved E. coli endpoint strains (named GA, GB, GC,

GD, GE) [13] reached the maximum growth rate

Figure 1. The conceptual process of ALE and calculations used to characterize ALE. (A) The top image demonstrates how serial passage is
used to select for growth rate where cells are grown in flasks and passed below entering stationary phase to maintain exponential growth. During
this evolution process, the growth rate of the population increases or maintains in consecutive flasks. ALE experiments are stopped when an
observed stable phenotype is encountered and an overall increase in fitness can be calculated from the initial and final growth rates. The average
dilution factor per passage is 161027–161021 on a volume per volume basis. (B) A diagram of how a single bacterial cell grows, replicates, and
undergoes cytokinesis. From this process, the number of cells at a given point in time (N) can be measured, the number of generations (n) can be
calculated by determining the initial number of cells in a culture (N0) and assuming exponential growth and a negligible death rate, and the CCD can
be calculated by summing divisions from each flask.
doi:10.1371/journal.pone.0026172.g001
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(0.6460.04 h21) after 1011.2 total cell divisions. However, the

endpoint E. coli strains evolved in the presence of NTG (GM1,

GM2) underwent 1010.9 total cell divisions to reach the

maximum growth rate of glycerol-evolved E. coli without NTG

and had 1.2-fold increase in maximum growth rate (0.74 h21)

at the end point of evolution (Fig. 3A).

N L-Lactate-evolved E. coli strains without NTG (named LF, LG,

LH, LI, LJ, LK) [6] and with NTG (LM1, LM2) exhibited

1011.3 and 1011.2 total cell divisions, respectively, and reached

steady growth rates similar to the ALE experiments on glycerol

(Fig. 3B). Growth rates of the evolved strains at the endpoint of

evolution without and with NTG of 0.5460.04 h21 and

0.62 h21 were achieved, respectively.

N L-1,2-PDO-evolved E. coli strains were generated through ALE

(named PA, PB, PC) [8]. In a previous study, these three

populations were designated eBOP12, eBOP13, and eBOP14,

respectively [8]. As shown in Fig. 3C, L-1,2-PDO-evolved E. coli

strains with NTG (PM1, PM2, PM3) showed remarkable

increase in relative fitness (1.8-fold, 0.6460.01 h21) at the end

of adaptive evolution over the strains evolved without NTG

(0.3560.04 h21) and their CCDs required for maximum growth

rate are 1011.2 (PA, PB, PC) and 1010.7 (PM1, PM2, PM3).

In addition to ALE on three-carbon substrates, ALE of multiple

gene knockout strains of E. coli has been carried out on glucose

minimal medium [14,15,18,19,20]. One such strain was a

cytochrome oxidase-deficient E. coli mutant which produced D-

lactic acid from glucose under aerobic conditions, resulting in the

ECOM3 family of strains, i.e., replicate ALE endpoint populations

(ECOM31, ECOM32, ECOM33) [15]. The CCD was deter-

mined for the ALE at the point where an observed stable growth

rate was reached. Consistent with the above results, the ECOM3

strains showed a total of 1011.2 cell divisions to reach the maximum

growth rate (0.4360.01 h21) during ALE (Fig. 3D).

Figure 2. Titration of NTG on M9 minimal media supplemented with glycerol (N) or L-lactate (m). WT E. coli was grown at 37uC under
aerobic conditions. Growth rate was determined by measuring the OD600 of triplicate cultures at several time points and defined as the slope of the
linear best-fit line in a plot of ln(OD600) versus time (hours).
doi:10.1371/journal.pone.0026172.g002

Table 1. Adaptive laboratory evolutions used in this study.

Evolution Replicates GR (h21)
No. of
mutations Generations CCD Ref.

Without NTG Glycerol 5 (GA, GB, GC, GD, GE) 0.6460.04 2–3 595618 3.96101160.561011 [4]

L-Lactate 6 (LF, LG, LH, LI, LJ, LK) 0.5460.04 3–8 643675 3.86101160.161011 [6]

L-1,2-PDO 3 (PA, PB, PC) 0.3560.04 6 (PA) 546621 3.96101160.361011 [8]

Glucose 3 (ECOM31, ECOM32, ECOM33) 0.4360.01 N/A 648610 2.46101160.261011 [15]

With NTG Glycerol 2 (GM1, GM2) 0.74 517 (GM1) 252612 0.936101160.0161011 This study

L-Lactate 2 (LM1, LM2) 0.62 167 (LM1) 447637 2.26101160.961011 This study

L-1,2-PDO 3 (PM1, PM2, PM3) 0.6460.01 54–152 335685 0.516101160.0161011 This study

GR, average stable growth rate for each condition, the endpoint culture and previous two recorded growth rates from each parallel evolution were considered in the
average; N/A, not available; No. of mutations were determined by whole genome-sequencing; Generations, averaged cumulative number of generations of individual
populations required for a stable phenotype to be reached; CCD, averaged cumulative number of cell divisions of individual evolved populations required for a stable
phenotype to be achieved. The standard deviation of GRs for glycerol- and L-lactate-evolved populations with NTG was less than 1% of the mean values.
doi:10.1371/journal.pone.0026172.t001
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Genotypic properties
The genetic variations that are occurred during ALE can be

readily identified by next-generation sequencing technologies. For

evolved endpoint strains with NTG, we used Illumina-based

sequencing to determine the mutations using the same methods as

in the previous studies [4,6,8]. The presence of NTG markedly

increased the number of mutations. A glycerol- (GM1), a L-lactate-

(LM1), and multiple L-1,2-PDO-evolved strains (PM1, PM2, PM3)

with NTG had 517, 167, 54, 71, and 152 mutations, respectively.

The single nucleotide differences between the evolved strains with

NTG and the parental WT E. coli reference strain are described in

Table S1. A comparison of the mutations found in the cells

evolved with and without NTG will now be presented to

characterize the impact of the mutagen.

N In the GM1 strain, a total of 459 mutations among 517

discovered mutations were found within the coding region.

Although most SNPs resulted in an amino acid change, 75

SNPs were synonymous mutations. In addition, 58 and 40

mutations were found in intergenic regions and genes

annotated only as conserved or predicted proteins (i.e.,

unknown function genes), respectively. Unlike glycerol-evolved

strains without NTG (GA, GB, GC, GD, GE), many SNPs

were identified in genes of glycerol metabolism from the GM1

strain, namely; glpD (aerobic glycerol 3-phosphate dehydroge-

nase), glpT (glycerol 3-phosphate MFS transporter), ugpA/B

(glycerol 3-phosphate ABC transporter), dhaR (dihydroxyace-

tone regulator), gpmM (phosphoglycerate mutase), and acs

(acetyl-CoA synthetase). These mutations found might confer

the GM1 advantageous growth phenotype on glycerol minimal

media. The number of mutations found in glycerol-adapted

strains without NTG was between two and three [4].

Mutations in the non-mutagenized strains were found in genes

encoding the two major subunits of RNA polymerase (rpoB and

Figure 3. Replicate ALE of WT E. coli strains during adaptation to the three-carbon compounds (glycerol, L-lactate, and L-1,2-PDO)
and glucose. The relative growth rate is used as a fitness criteria; i.e., growth rates are normalized to the final observed growth rates of the endpoint
strains evolved without the mutagen NTG under a given selection condition. Outliers were excluded using the plotting software SigmaPlot after
setting an upper and lower outlier boundary for each data set. (A) Evolution of WT E. coli on glycerol. Replicate ALEs were conducted without NTG
(GA, GB, GC, GD, GE) [13] and with 5 mg/ml NTG (GM1, GM2). (B) Evolution of WT E. coli on L-lactate. L-Lactate-evolved strain without NTG (LF, LG, LH,
LI, LJ, LK) [13] or with NTG (LM1, LM2). (C) Evolution of WT E. coli on L-1,2-PDO. The L-1,2-PDO-evolved E. coli strains of PA, PB, and PC were generated
previously through ALE (PA, PB, PC) [8]. In this study, we have generated the L-1,2-PDO-evovled E. coli (PM1, PM2, PM3) under continuous exposure to
NTG during ALE. The arrows indicate cells growing solely on L-1,2-PDO and no glycerol was added to support growth. (D) Evolution of ECOM3 strains
on glucose. Cytochrome oxidases-deficient E. coli mutants were previously reported to produce D-lactic acid from glucose under aerobic conditions
[15]. Three replicate ALEs (denoted by ECOM31, ECOM32, and ECOM33) were conducted to adapt the parental ECOM3 strain to growth on M9
minimal medium with glucose as the sole carbon source. The arrow indicates cells growing solely on glucose and no amino acid supplement was
added to support growth.
doi:10.1371/journal.pone.0026172.g003
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rpoC), which are conferring the largest change in growth rate.

In addition, all sequenced clones had mutations in the glpK

gene coding for glycerol kinase, which catalyzes the first step in

glycerol catabolism [4]. These mutations (glpK and rpoB) were

also detected in the adapted strain with NTG, GM1 (Fig. 4).

N In the LM1 strain, a total of 167 mutations were detected from

whole-genome sequencing. Among them, 137 and 17

mutations were discovered in coding regions of annotated

genes and genes annotated only as conserved or predicted

proteins, respectively. Whole-genome sequencing of the LM1

showed many mutations in relevant central metabolic

pathways that were not previously identified in L-lactate-

evolved strains without NTG (LF, LG, LH, LI, LJ, LK); aldA

(aldehyde dehydrogenase A), gapA (glyceraldehyde 3-phosphate

dehydrogenase), livH/J (branched amino acids ABC trans-

porter), acs (acetyl-CoA synthetase), and ydjG (methylglyoxal

reductase). Like E. coli strains evolved without mutagen on L-

lactate, the LM1 had a mutation in the rpoB (RNA polymerase

b subunit) gene (Fig. 4), while conversely, there was no

mutation in lldD (L-lactate dehydrogenase), which catalyzes the

first step in L-lactate catabolism in E. coli. Accounting for SNPs,

deletions, and insertions, we found a total of 34 mutations

across six L-lactate-evolved strains evolved with no mutagen

[6]. Those mutations affected many different genes with a

broad range of cellular functions, but the majority of mutations

belong to genes with primary functions relating to metabolism,

regulation, or the cell envelope. The most frequently mutated

metabolic gene was rph-pyrE, which is involved in pyrimidine

biosynthesis [6]. However, this mutation was not found in L-

lactate-evolved strains with mutagen.

N In the PM1, PM2, and PM3 strains, a total of 277 mutations

corresponding to 217 unique genomic positions were detected

across all three strains from whole-genome sequencing. Of

these mutations, 53 were detected in intergenic regions at 45

unique positions in the genome across all three strains. The

evolved strains on L-1,2-PDO with NTG had a mutation in a

regulatory gene (rpoD; sigma 70 factor or cyaA) or the RNA

polymerase (rpoB or rpoC; RNA polymerase b’ subunit) which

were not reported previously. However, the beneficial effects

of these mutations on adaptation to other three carbon

substrates (glycerol and L-lactate) are well known [4,6].

Interestingly, all mutations found in a L-1,2-PDO-evovled

strain without NTG (PA) were also detected in L-1,2-PDO-

adapted strains with NTG (Fig. 4). A total of six mutations

were found to have accumulated in the L-1,2-PDO-adapted

strain (PA) [8]. Five of the six mutations were in coding

regions, and there was an IS5 insertion in the region between

the fucAO and fucPIKUR operons, which had caused

constitutive activation of the fucAO operon [8]. Also, a SNP

was also found in the fucO gene encoding the L-1,2-PDO

oxidoreductase in the PA strain, which catalyzes the first step

of L-1,2-PDO catabolism in E. coli.

Discussion

ALE is increasingly being used to study the dynamics of

bacterial adaptation, its underlying genetic basis, and to identify

the altered biochemical mechanisms [21]. The measure of time for

these experiments should be scaled in terms of the probability of

generating mutations and the number of cells needed to select for

them through competition. In this study, we found: 1) that the

CCD needed for the generation of reproducible growth pheno-

types during short-term ALE is about 1011.2, 2) that this rate can

be accelerated using a continuous exposure to a nontoxic low level

of a mutagen, and 3) that in the presence of the mutagen, the

number of mutations that are explored by whole-genome

sequencing increases significantly, leading to improved growth

phenotypes as compared to the endpoint strains generated without

the mutagen.

The main advance of the present study is in calculating the

CCD that was required for E. coli cells to show the reproducible

phenotype during short-term ALE. Regardless of carbon sources

(three-carbon compounds and glucose) and strain backgrounds

(WT and knockout E. coli), the CCD were approximately 1011.2 to

generate the observed stable growth phenotype (Fig. 3). The CCD

has been used as a unit of time to estimate bacterial mutation rate

[22,23]. Luria and Delbrück [22] devised the fluctuation test,

assuming that the mutation is proportional to the number of cells

present at that time and that the number of cell divisions is

approximately equal to the number of cells in the population

(because the cell population is so large (.107)). If we use the

cumulative generations as the timescale of ALE, the mutation rate

will be overestimated because the cumulative generations cannot

reflect the real number of cells in a culture at a given time. The

CCD incorporates the actual number of cells involved in an

evolution experiment specifically into a parameter that can be

correlated to a phenotypic outcome in an experiment. Thus, usage

of the CCD allows for a more precise analysis of phenotypic

outcomes on a per cell basis. Furthermore, the use of the CCD

accounts for variability and allows for a more precise comparison

of multiple evolution experiments because the number of cells

passed serially from one flask to the next can vary across a range,

as we presented here.

Figure 4. Venn diagram of mutations shared between the evolved strains with and without NTG. Surface areas are not proportional to
members contained in each set. Light blue and purple circle represents the mutations found in total number of strains evolved with and without
NTG, respectively. The single nucleotide differences between the evolved strains with NTG and the parental WT E. coli reference strain are described
in Table S1. Whole-genome sequencing of ALE endpoint strains evolved on glycerol, L-lactate, and L-1,2-PDO without NTG has been previously
reported [4,6,8]. The ylbE1 gene of L-1,2-PDO-evolved E. coli without NTG had two mutations [8].
doi:10.1371/journal.pone.0026172.g004
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Cells copy their genetic material with exceptional accuracy (the

spontaneous mutation frequency in E. coli can be as low as

4610210 base substitution mutations per base pair per generation)

[24]. The robust amplification of the effects of an individual

molecular event resulting from such accuracy makes it difficult to

study the mutations. Mutagens can speed up the rate of these

spontaneous mutations during ALE experiments. The continuous

exposure of E. coli to non-toxic levels of NTG during ALE

decreases the CCD required for a maximum observed stable

growth rate. In addition, NTG treatment has been shown to

generate a superior growth phenotype at the endpoint of ALE as

compared to ALE without NTG. Comparisons of whole-genome

sequences between the non-mutagenized evolved E. coli strain and

descendants exposed to NTG mutagenesis revealed 257 mutations

per genome on average, while spontaneously evolved E. coli strains

showed between 2 to 8 mutations. Clearly, it is impractical to

investigate all of these mutations by allelic replacement. However,

with the increasing prevalence and decreasing cost of genome

resequencing, along with the emergence of technologies such as

MAGE [25] to rapidly and accurately introduce mutations into a

genome so that causality can be determined, we envision that the

ability to evaluate causality with a relatively large number of

mutations will be possible. Furthermore, in our experience,

because only very few mutations of ALE without mutagen prove

dominant, it is feasible to determine the genetic basis for

adaptation [4,6,8].

Given the three different evolution conditions, a high-level

comparison can be made about the path to higher fitness taking in

account the overlap of genes in which mutations were found with

and without mutagen. For increased fitness in L-1,2-PDO strains,

the evolutionary trajectory is rather restricted as all of the

mutations found in the no mutagen evolution were also in the

strains evolved with mutagen. For the glycerol evolution, the path

to increased fitness is broader as the overlap is only a few genes.

These two overlapping mutated genes (glpK and rpoB), in

particular, solely accounted for most of the increase in fitness

observed for evolution on glycerol, thus proving to be important in

the glycerol evolution [4]. Lastly, for the L-lactate evolution, the

path to higher fitness seems rather diverse given a large amount of

mutations found in multiple evolutions without mutagen and an

overlap of only 1 gene, with the resequenced evolution with a

mutagen, rpoB. With further experimentation in terms of replicates

and under different conditions, the path to higher fitness and

flexibility in which genes mutate as a result will become clearer.

Taken together, this information can be used to define studies

examining the kinetics of the ALE process and further the

possibility of developing mathematical descriptions of the

dynamics of the selection process that takes place during ALE.

With the availability of inexpensive whole-genome sequencing,

such dynamic models can be generated with a full genetic basis. In

addition, this information will not only aid in understanding

adaptation, but can be leveraged to engineer and design desirable

microbial stains.

Materials and Methods

Strains and media
A WT E. coli K-12 MG1655 strain was used as a parent strain

for adaptive evolution on glycerol, L-lactate, and L-1,2-PDO with

NTG (Catalogue number 05343; Sigma Aldrich). Evolutions were

carried out at 37uC using 200 ml of M9 minimal medium

supplemented with 2 g/liter of each carbon source in 500-ml

Erlenmeyer flasks containing magnetic stir bars for aeration. M9

minimal medium contained (per liter of deionized water) 0.8 g of

NH4Cl, 0.5 g of NaCl, 7.5 g of Na2HPO4?2H2O, and 3.0 g of

KH2PO4. The following components were sterilized separately

and then added (per liter [final volume] of medium): 2 ml of 1 M

MgSO4, 0.1 ml of 1 M CaCl2, and 0.5 ml of a trace element

solution containing (per liter) 1 g of FeCl3?6H2O, 0.18 g of

ZnSO4?7H2O, 0.12 g of CuCl2?2H2O, 0.12 g of MnSO4?H2O,

and 0.18 g of CoCl2?6H2O. During the early stage of adaptive

evolution on L-1,2-PDO, the minimal medium was also supple-

mented with 2 g/liter of glycerol and the concentration of these

compounds was gradually decreased while the L-1,2-PDO

concentration was increased to keep the total carbon source

concentration in the minimal medium 2 g/liter.

ALE with NTG
At the start of adaptive evolution, the WT strain was cultured

on solid M9 minimal medium containing 2 g/liter of carbon

source and incubated overnight at 37uC. A single colony was

selected from the plate that was incubated, resuspended in 10 ml of

sterile water, and inoculated into two or three 500-ml Erlenmeyer

flasks containing 200 ml of M9 minimal medium supplemented

with 2 g/liter of appropriate substrate. NTG was added as an

efficient mutagen at a level that gave excellent preservation of

viability with continuous exposure. The flasks were incubated at

37uC using a stir bar for mixing and aeration (,1,000 rpm). For

adaptive evolution cultures, the optical density at 600 nm (OD600)

was determined and cells were transferred into fresh medium. The

dilution factor used for each passage was adjusted daily to account

for changes in the growth rate (typically between 2.56104 and

1.26106 cells were transferred during each inoculation) and to

ensure that cultures did not enter the stationary phase before the

next passage. ALE experiments were ended when no significant

change in the culture growth rate was observed over several

passages (typically, the growth rates of the previous ten flasks were

considered). Replicate cultures were evolved concurrently under

identical conditions. Cultures were screened every other day for

contamination by performing PCR with primers for the V2 region

of 16S rDNA genes and Sanger sequencing [8]. Samples were

stored at 280uC every day over the course of evolution.

Titration of NTG to a nontoxic level
To determine the non-toxic level of NTG to E. coli K-12

MG1655 cell growth, various amounts of NTG were tested.

Growth rate was determined by measuring the OD600 of triplicate

cultures at several time points at which the OD600 was .0.05 but

,0.3. The growth conditions used were identical to the conditions

used for ALE, except that flasks were placed in a 37uC water bath

instead of the 37uC air incubator used for ALE. The growth rate

was defined as the slope of the linear best-fit line in a plot of

ln(OD600) versus time (hours).

Calculation of CCD
The CCD for each replicate evolution was calculated using the

equation:

CCD~
Xm

i~1

N0,i(2
ni-1)

Where, N0,i is the initial number of cells in each flask during the

evolution, n is the number of generations for each flask, and m is

the total number of individual flask cultures used in the serial ALE

process. The number of generations for each flask, n, was

calculated using the equation:

Timescale for Adaptive Laboratory Evolution
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n~
log(N=N0)

log 2

Where, N is the final number of cells in a flask at the time of

passage to the next flask (see Fig. 1B). The initial and final

numbers of cells were estimated daily by measuring the OD600

using a Biomate 3 spectrophotometer (Thermo Scientific) and

determining how many cells were in 1 L of M9 minimal medium

at a normalized OD600 of 1. A value of 7.8761010 cells ? L21 ?

OD600
21 and 2.3261010 cells? L21 ? OD600

21 was used calculate

cell numbers for evolved populations without and with the NTG,

respectively. The CCD calculation assumes that each cell is viable

and the death rate is negligible, the cells are growing exponentially

throughout the ALE experiment, and the cells are dividing by

binary fission.

Whole-genome sequencing
Five micrograms of genomic DNA isolated from a single clone

of the endpoint glycerol-, L-lactate, and L-1,2-PDO-evolved

populations with continuous exposure to a low level of NTG

was used to generate a genomic DNA library using an Illumina

genomic DNA library generation kit by following the manufac-

turer’s protocol (Illumina Inc., San Diego, CA). Briefly, bacterial

genomic DNA was fragmented by nebulization. The ends of

fragmented DNA were repaired by T4 DNA polymerase, Klenow

DNA polymerase, and T4 phosphonucleotide kinase. The

exonuclease-negative Klenow DNA polymerase was then used to

add an A base to the 39 end of the DNA fragments. After ligation

of the adapters to the ends of the DNA fragments, the ligated

DNA fragments were subjected to electrophoresis on a 6% 16
Tris-borate-EDTA (TBE) gel. DNA fragments ranging from

190 bp to 220 bp long were recovered from the gel and purified

using a Qiagen minigel purification kit. Finally, the adapter-

modified DNA fragments were enriched by PCR. The final

concentration of the genomic DNA library was determined by

using a NanoDrop instrument (Thermo Scientific), and the results

were validated by using a 6% 16 TBE gel. The genomic DNA

library was used to generate a cluster on a Flowcell by following

the manufacturer’s protocol. The V2 genomic sequencing primer

was used for all DNA sequencing. A 36-cycle sequencing program

was used with an Illumina genome analyzer II by following the

manufacturer’s protocol.

Genome sequence assembly and identification of
polymorphism

The Illumina output for the resequencing run was first curated

to remove any sequences containing a period. We then used

MosaikAligner, developed by M. P. Stromberg and G. T. Marth

(unpublished data), to iteratively align reads with the E. coli

reference sequence (gi 48994873); for each iteration a limit was

placed on the number of alignment mismatches allowed. This

iterative limit increased from 0 to 5, and unaligned reads were

used as input for the next iteration, which had a more lenient

mismatch limit. An in-house script (available upon request) was

then used to compile the read alignments into a nucleotide

resolution alignment profile. The consistency and coverage were

then assessed to identify likely polymorphic locations. Locations at

which the count for a single-nucleotide polymorphism (SNP) was

greater than twice the count for the nucleotide matching the

reference sequence were considered to likely be polymorphic

locations. False-negative rates were determined by this sequencing

method by carrying out polymorphism identification analysis using

an E. coli reference sequence which had 1,000 SNPs, deletions, and

insertions added at random and known locations. Mutations were

not permitted to overlap. The rate of detection of SNPs was

determined by calculating the fraction of each type of mutation

that was marked as polymorphic by the script described above

when sequence data from an end point were mapped on the

mutated reference genome.

Supporting Information

Table S1 Table showing the single nucleotide differenc-
es between the evolved strains with NTG (GM1, LM1,
PM1, PM2, and PM3) and the parental WT E. coli
reference strain. GM1, the endpoint glycerol-evolved E. coli

strain with NTG; LM1, the endpoint L-lactate-evolved E. coli

strain with NTG; PM1,PM3, the endpoint L-1,2-PDO-evolved

E. coli strains with NTG; Position in reference, genomic position in

wild-type E. coli K-12 MG1655; AA, amino acid.

(XLSX)
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