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Abstract
Often investigators need to calculate power to demonstrate feasibility of proposed genetic studies
for grant proposals or simply to aid in their own study planning. Frequently, power can be easily
calculated using a closed form formula. However, in some situations such formulae for calculating
power have not been derived and derivation on demand may be difficult if not impossible. In these
situations investigators typically perform simulations specific to the study. Yet such simulations
can be computationally extensive and take weeks to months depending on the circumstances.
Here, we provide a simple method to rapidly estimate power when one has power estimates
available for corresponding situations that differ from the situation of interest only in sample size
and/or alpha (type I error) level desired. We show by application to multiple published results
from the genomics field that these methods are generally very accurate and applicable to a broad
range of genomic studies.
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1. INTRODUCTION
Consider the following fictional anecdote. Dr. X plans to submit a grant application
involving a complex genetic study and proposes to use a specialized recently published
statistical method. For a study of the type Dr. X proposes with effect sizes that she finds
plausible in her study, the paper introducing the method reports statistical power for sample
sizes of 500 and 1,000 at an α-level of 0.001, but Dr. X is planning to use 750 subjects and
an α of 0.0001 and wants to know the power she will have. No publicly available software
or simple closed form equations exist to calculate power and Dr. X does not have the
wherewithal to program and run extensive computer simulations to determine power. What
can she do?

We suspect that almost every investigator studying complex genetic traits has faced some
variant of this quandary whether it is due to limitations of time, hardware, software,
willingness, or ability to run all the simulations one would need to calculate power for all of
one’s scenarios of interest. More formally, we can generalize this quandary to the following
question. Given known or at least precisely estimated power for a given effect size, design,
sample size, and α level, can we quickly and easily compute sufficiently accurate power
estimates for the same design and effects size, but for different sample sizes and/or α levels,
and if so, how? Our aim in this paper is to address this question and after a careful empirical
analysis we believe that the answer is unequivocally, “Yes.”

We provide a very simple formula dubbed EEE that can be applied in any situation of the
type described in the question above, is theoretically shown to be justified asymptotically in
an enormous variety of situations, and is empirically shown to perform remarkably well in a
variety of situations. EEE stands for Elston’s Excellent Estimator and is an equation, to be
specified in the method section, which permits simple calculation of power and sample size
estimates in many complex situations.

2. METHODS
The EEE Formula. The formula we use was first introduced to us by Robert Elston
(Personal communication, January, 1995) and we have taken to calling it “Elston’s Excellent
Estimator” (EEE). The basic formula for EEE can be expressed as:

(1)

where Φ−1(•) denotes the inverse of the standard normal cumulative distribution function
(cdf) evaluated at •, n is the initial sample size used for the available power estimate (often
from a prior simulation study), n* is the new sample size an investigator is planning to use
for his/her study, α is the two tailed significance level on which the initial power estimate
was based, α* is the significance level for the two tailed test in planned study, 1−β denotes
power given in the simulation study, and 1−β* denotes power to be estimated for the
planned study. Derivations are in the Appendix.
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One can begin with any sample size, α level, and power from a given study, then choose a
new α level, and solve for the resultant power (1 − β*) given a new sample size (n*), using
equation (1). This formula can easily be programmed into Excel, SAS, SPSS, or any other
software that has a standard normal distribution and inverse of the distribution function
routine embedded in it.

2.1 Asymptotic correctness
For the vast majority of tests, the proof of the asymptotic correctness of this formula is easy
to show. Almost all parametric1 statistical tests commonly utilize test statistics that are
either exactly or asymptotically distributed as either Z, t, χ2, or F. These four distributions

are closely related [21]. For example, , limc→∞ tdf=c = Z, and
. From these relations, if one can derive EEE for the case of a normal test

statistic (Z), it is easy to show that the EEE formula also is asymptotically correct for any
test involving t, F, or χ2. Indeed, this approach underlies the rapid calculations offered in
many canned statistical power calculation programs [8].

2.2 Empirical evaluation of performance
Although one could assess the accuracy of EEE via simulations, it would be difficult to
conduct simulations over a sufficiently broad range of circumstances to evaluate whether
EEE has the flexibility to adapt to almost any testing situation. Instead, following the
conceptual lead of Micceri [15], we rely on multiple studies of specialized statistical genetic
techniques published in the literature as test cases and ask empirically, if an investigator
used EEE to estimate their power or required sample size by beginning with the readily
available published literature as a base from which to project, how accurate would they be?
An advantage of this approach coupled with the large number of statistical genetic
simulation studies published is that it allows statistical methodology to be practiced as much
an empirical as a theoretical science.

2.3 Implementation of EEE
EEE can be used in 2 ways to evaluate power. First, we can approximate power for
situations in which the sample size for a test is altered but all other study parameters remain
the same. Second, we can approximate required sample size for situations in which a
different power level is desired and/or a different α level is chosen, but all other study
parameters remain the same.

To test concordance of the EEE power estimates with available study power, we used the
Concordance correlation coefficient (CCC) [14]. The CCC evaluates the agreement of
paired observations by measuring variation from the 45% line through the origin (the
concordance line) and is used to validate the reproducibility of paired observations. It is also
robust against samples from uniform and Poisson distributions even with small sample sizes.
For each EEE estimate for power, we also computed percent power difference (PPD) as
100*(Power estimated by EEE – Power given in available simulation study), and also
calculated its absolute value (APPD).

3. RESULTS
We identified papers that would allow the empirical assessment of the proposed
approximation procedure for calculating power. We searched PubMed and major journals

1Herein we use the term ‘parametric’ in the classical statistical sense (Lehmann [12]) and not to refer to statistical tests that are not
genetic model-free analysis (Elston [4]).
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for papers where the value of power was given by simulations for the same test, design,
sampling procedure, and effect size, but at different sample sizes or α-levels, so that we
could compare the power given in the paper estimated directly by simulation with the power
that we estimated through the EEE approach. No attempt was made to conduct an exhaustive
search of all eligible papers. Instead, we tried to obtain a sufficiently large sample of papers
to yield clear results and a sufficiently diverse sample to permit an assessment of
performance of EEE over a broad range of circumstances. A total of 15 simulation studies
were used to estimate power or sample size using the EEE procedure [1–3, 5–7, 9–11, 13,
16–20]. We had one study involving linkage analysis [20], one study involving familial
aggregation analysis [16], 5 involving various family-based association (i.e., TDT-type)
tests [1–3, 18, 19], one involving a population-based association test [6], 2 involving
epistasis or GxG interactions [9, 10], 3 involving haplotype analysis [11, 13, 17], one
involving genome-wide association mapping [5], and one involving imprinting [7].

Accuracy of power estimates
Figure 1 displays the power approximated by the EEE procedure (x-axis) against the
available simulated study power (y-axis) when the sample size of the available study is
smaller than the sample size of the planned study with constant α level for both studies. A
total of 540 data-points from 12 published studies [1, 2, 5–7, 9, 10, 13, 16, 17, 19, 20] are
included in the Figure 1. The CCCs between available simulated power and EEE estimated
power was 0.9886 (95% CI 0.9865 – 0.9903). The Pearson correlation coefficient was
0.9893 very close to CCC. We observed that there were only 24 (4%) out of 540 total
observations discordant with EEE power versus available study power, where a difference of
greater than 10% between simulated and EEE estimated power was observed. There were
four extreme observations where the difference between EEE and available study power was
close to 0.30. In these extreme observations, the ratio of the sample size of the planned study
to available study was greater than 4 and given power of the available study was less than
10%. Also, we observed that power calculated by EEE was conservative compared to
simulated power in these situations. In general, the majority of the discordance between EEE
approximated power and simulation estimated power occurred when the available initial
simulated power that was used as input to the EEE formula was less than 10% and sample
size for the planned study was more than tripled. In such extreme situations then,
investigators should proceed with caution, if at all, with the use of the EEE approximation.

Table 1 gives descriptive statistics for percent power difference (PPD) and absolute value of
the PPD (APPD) corresponding to Figure 1 (PPD and APPD defined in methods). The mean
APPD was 2.74% showing tight concordance between simulated study power and EEE
approximated power. When one considers that the simulated power levels, by being random
variables are themselves prone to some error, this degree of concordance is all the more
impressive.

We also estimated EEE power when the sample size of the available study is larger than the
sample size of the planned study with α level constant for both studies. In general, EEE
performed very well. The exception occurred when the initial simulated power was very
close to 1.0 (e.g., 0.99999), and had been rounded off to ‘1’. This makes the inverse of the
standard normal distribution function Φ−1(•) to be infinite. Hence the EEE formula cannot
be applied when power is reported as 1.0 and is dubious if the inputted simulation power is
0.99 or greater. Note that this is not a limitation of EEE, but a limitation of the data that are
provided. Once we remove such data points, it is clear that the EEE approximated values
and the simulated values are once again in very close concordance (Figure 2). After
removing the observations where simulated power was 1.0, we had a total of 504
observations and the CCC between simulated study power and EEE approximated power
was 0.9939 (95% CI 0.9927 – 0.9948) and Pearson correlation coefficient was 0.9941. Table
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2 provides the summary statistics of PPD and APPD. The mean APPD was only 1.8976%
showing the extreme concordance between EEE power and what would have been obtained
by simulation. Also, discordance of greater than 10% between EEE power and simulated
study power occurred at only 3 observations. We also evaluated the effect of α level changes
in both directions, larger to smaller (e.g., when available study power is given for an α level
of 0.05 and an investigator wishes to calculate power at an α level of 0.01) or smaller to
larger (e.g., when available study power is given for α level of 0.01 and an investigator
wishes to calculate power at an α level of 0.05). Figures 3 and 4 depict comparisons of
power between EEE approximated power versus simulated power values for these two
scenarios. A total of 208 data-points from 5 published studies [3, 5, 11, 18, 20] are included
in Figures 3 and 4. The CCC between simulated study power and EEE power was 0.9802
(95% CI 0.974 – 0.9849) corresponding to Figure 3 and 0.9840 (95% CI 0.9791 – 0.9877)
corresponding to Figure 4, respectively. The Pearson correlation coefficients were 0.9803
and 0.9499. The descriptive statistics for PPD and APPD are given in Tables 3 and 4
corresponding to Figures 3 and 4, respectively. There were only 4 observations in Figure 3
and 5 observations in Figure 4 for which the difference between the EEE approximated and
simulated power was more than 10%, again showing extreme concordance with the power
calculated by EEE and simulated study power. Note that Lin’s CCC and Pearson correlation
coefficients are quite similar in all scenarios presented here.

As can be seen, the EEE estimates are very near to their simulated counterparts. Clearly,
these estimates are quite good and suggest that when using EEE to estimate power from
published simulation studies, investigators will obtain accurate estimates and rarely be in
error by more than 3 absolute percentage points of power (Tables 1–4). We provide a URL
for simple software to estimate power using EEE (http://www.ssg.uab.edu/eee-power/).

4. DISCUSSION
Our findings show that given an initial simulated power estimate for a complex genomic
study, power can be approximated by a simple formula, EEE, that can easily be
implemented in a matter of minutes in software as simple and widely available as Excel. In
addition, computational time involved in simulation studies to calculate power can be
prohibitive in certain situations. For example, suppose we have familial data consisting of
800 families with 6,560 individuals and wish to calculate power for association test between
SNP and quantitative trait using mixed model and also assume there are 10 different
scenarios with respect to effect size. We observed that on a Dell PowerEdge 2650 with the
Intel Xeon 2.8 GHz processor and 2 GB of RAM, it took us 2.83 seconds per replicate to
simulate and 449 seconds to analyze per replicate. Thus, only generating 2,000 replicates
can take about 10.46 days. However, using EEE the computational time in calculating power
will be almost negligible. Though some situations exist in which the procedure is not useful,
such situations are predictable and in those situations, EEE should typically not be used. For
example, when the power of the available study is less than 10% and sample size for the
planned study is 4 times larger than the available study power. In such extreme situations
then, investigators should proceed with caution, if at all, with the use of the EEE
approximation. However, one can still use EEE in these extreme situations, but EEE power
will be very conservative. Yet in the vast majority of situations, EEE approximates power
extremely accurately and can be used with confidence, provided the initial simulated power
values taken as inputs are believed to be trustworthy and are derived from a sufficiently
large number of simulation runs. EEE enjoys not only a sound theoretical asymptotic basis,
but has now empirically been shown to work quite well across a great variety of genomic
research situations.
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APPENDIX

Example of estimating power using Z-test
Suppose we want to test the null hypothesis H0: μ = μ0 against the alternate hypothesis H1: μ

≠ μ0. We can use the test statistic = X̅, then .

We know for the above testing problem,

that is,

and

It’s easy to see, under H0, α = 1 − β. Let us consider a case in which μ0 = 0, then

 implies ; where Φ−1(•) is an inverse of standard
Normal distribution function.

We can also write

where I(μ) = 1 if μ > 0, and 0 if μ < 0. Solving the above equation we get
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(2)

For a different pair of (α*, β*), we similarly have

(3)

By combining the above two equations (2) and (3), we get the estimate of the new sample
size in terms of n, α, β, α*, and β*.

(4)

Solving equation (4) for the desired power, we get the following.
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Figure 1.
EEE power versus available simulated study power when the sample size of the available
study is smaller than the sample size of the planned study with α level same for both studies.
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Figure 2.
EEE power versus available simulated study power when the sample size of the available
study is larger than the sample size of the planned study with α level same for both studies.
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Figure 3.
EEE power versus available simulated study power when α level changes from small to
large, but sample size remain constant in both studies.
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Figure 4.
EEE power versus available simulated study power when the α level changes from large to
small, but sample size remains constant in both studies.
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Table 1

Descriptive statistics for percent power difference (PPD) and absolute percent power difference (APPD)
between power available from the simulated study and estimated power by EEE when sample size increases
and alpha remains constant for both studies, based on 540 observations

PPD APPD

Mean 0.6168 2.7430

SD 4.7261 4.0098

Min, Max −34.0577, 12.4280 4.68E-9, 34.0577
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Table 2

Descriptive statistics for percent power difference (PPD) and absolute percent power difference (APPD)
between power available from the simulated study and estimated power by EEE when sample size decreases
and alpha remains constant for both studies, based on 504 observations

PPD APPD

Mean 0.1588 1.8976

SD 2.8850 2.1773

Min, Max −19.9329, 13.5285 0.0026, 19.9329
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Table 3

Descriptive statistics for percent power difference (PPD) and absolute percent power difference (APPD)
between power available from the simulated study and estimated power by EEE when alpha changes from
smaller α-level to larger α-level, based on 208 observations, where sample size remains constant

PPD APPD

Mean −0.2183 2.6788

SD 3.8787 2.8073

Min, Max −13.2142, 10.8043 0.0013, 13.2142

Stat Interface. Author manuscript; available in PMC 2011 October 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tiwari et al. Page 16

Table 4

Descriptive statistics for percent power difference (PPD) and absolute percent power difference (APPD)
between power available from the simulated study and estimated power by EEE when alpha changes from a
larger α-level to a smaller α-level, based on 208 observations, where sample size remains constant

PPD APPD

Mean 0.5557 2.9829

SD 4.2218 3.0320

Min, Max −9.0752, 22.0928 0.0024, 22.0928
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