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Abstract

Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on
endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic
Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of
mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular
domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been
elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic
analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC

potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated
model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural
changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere
mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are
known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the
structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation,
to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or
non-synonymous polymorphisms.
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Introduction

Activin A receptor, type II-like kinase 1 (also called ALK1,

Uniprot entry P37023, protein family (pfam) 01064 of Activin

types I and II receptor domains), is a serine-threonine kinase

predominantly expressed on endothelial cells surface and it acts as

a type I receptor for the Transforming Growth Factor-b/Bone

Morphogenetic Protein (TGF-b/BMP superfamily of ligands.

TGF-b/BMP signalling is induced when a dimeric ligand binds to

the extracellular domain of two type I and two type II receptors

[1]. This hexameric assembly permits interaction between the

intracellular domains, with the constitutively active intracellular

domain of type II receptor cross-phosphorylating the intracellular

glycine-serine (GS) domain of type I receptor [2]. These receptor

complexes can contain a type III receptor also termed a co-

receptor (betaglycan [3], Endoglin [4] or RGM-a, b, c [5]) that

modulates ligand affinity for its type I and type II receptors [6].

From the structural point of view, type I and type II receptors

share a general fold resembling a class of neurotoxins known as

three-finger toxins and hence called ‘‘three-finger toxin fold’’. This

fold is comprised from b-strands stabilised by disulphide bonds

formed by conserved Cys residues. Three pairs of anti-parallel

b-strands are curved to generate a concave surface. Despite the

common architecture and the cluster of conserved Cys residues,

very little sequence identity and no functional overlap exist

between the two types of receptors.

BMPs consist of a Cys knot characterised by three pairs of

highly conserved disulphide bonds in which one traverses through

a ring formed by the other 2. This fold can be described as a hand

with a concave palm side and two parallel b-sheet forming 4

fingers, with each b-strand being likened to a finger. Finger 2 leads

to a helix ‘‘wrist’’ region. In the dimeric ligand the 4 fingers extend

from the Cys core of the protein like butterfly wings. Binding of

type I receptors occurs near the a-helix on the concave side at the

junction between the two subunits [7], whereas binding to type II

receptors happens on the convex side of the hand near the

‘‘fingertips’’ [8,9].

ALK1 shares with other type I receptors a high degree of similarity

in the GS domain, in the following serine-threonine kinase

subdomains and in the short C-terminal tail [10], but the extracellular

domain shows a peculiar aminoacidic sequence. ALK1 ligand has

been elusive for a long time, but it has been recently demonstrated

that BMP9 binds ALK1 in association with BMPRII or ActRIIA

[11–14], inhibiting endothelial cell proliferation and migration.
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BMP9 triggers Smad1/5/8 phosphorylation trough ALK1/BMPRII

in endothelial cells with an EC50 around 50 pg/ml (2 pM). This is a

much higher affinity than that of other BMPs for their type I

receptors: for example, BMP2 has an apparent Kd of 0.9 nM for

ALK3 and 3.6 nM for ALK6 [14]. This feature suggests that the

structural basis of ALK1 receptor binding might be different from

other BMPs, which is further supported by the fact that, in contrast to

all other type I receptors, ALK1 is missing residue F85, which was

shown to be involved in the hydrophobic interactions between other

BMPs and their type I receptors [15,16]. Mutations in the

components of this complex signalling system have been associated

with diseases. Thus, Hereditary Hemorrhagic Telangiectasia (HHT)

is an autosomal dominant multisystem vascular dysplasia character-

ized by mucocutaneous telangiectases and multiple arteriovenous

malformations (AVMs) mainly in lung, liver and brain. Its HHT1

form is determined by mutations of type III receptor Endoglin

(CD105), a homodimeric membrane glycoprotein coded by ENG

(9q34) (OMIM*131195), while HHT2 depends on mutations of

ALK1 coded by the ACVRL1 gene (12q11-14) (OMIM*601284). The

pathological basis of the associated vascular malformations is lack of

intervening capillaries and results in direct connections between

arteries and veins. HHT is a Rare Disease, with an incidence of 1 in

5-8000, likely underestimated. Penetrance is complete after the 4th

decade of life but a large inter and intra-familial variability in

phenotype is observed. Moreover, a combined phenotype of HHT

and Juvenile Polyposis is recognized as the JPHT syndrome, related

to mutations in MADH4 gene (18q21.1; OMIM*600993), coding for

SMAD4, the common mediator of TGF-b/BMPs signalling,

involved in transcriptional activation of as yet unidentified target

genes [17].

To date, 329 different mutations have been reported for ENG

(HHT1) and 272 for ACVRL1 (HHT2) [18] with an uneven

distribution of these mutation between North America/North

Europe population (higher prevalence of ENG mutations) and

Mediterranean populations (higher frequence of ACVRL1 muta-

tions). Our group reported an unusual distribution of mutations in

Italy, with more than 30% of Patients carrying an ACVRL1

mutation in exon 3, which codes for 98% of the extracellular

domain [19]. An issue which has not yet been completely

elucidated is whether mutated ALK1 is expressed or not. In fact,

missense mutations and short in frame deletions and insertions

often impair propensity of the affected polypeptide to fold to the

functional conformation and/or decrease stability of the functional

conformation [20]. Both effects lead to an increase of the

proportion of mutant polypeptide present in non-functional

conformations that are more susceptible to degradation or

aggregation than the functional conformation [20]. Diseases with

this kind of molecular pathogenesis are described as conformational

diseases, and the interest for their pathogenic mechanism is not only

academic: in fact, protein misfolding and aggregation may be an

ideal therapeutic target for diseases caused by trafficking defects of

misfolded secreted proteins. Recently, three mutants of ALK1EC

have been investigated and, though they barely reach the cell

surface and do not bind BMP9, they are expressed in transfected

cells [21], suggesting that alteration of structure determined by

these mutations is likely responsible of the permanence of the

protein in the cell and of the related pathogenic phenotype.

As reported in [22], several recent studies have applied one or a

few bioinformatic methods to predict potentially deleterious effects

of missense mutations in other diseases. However, the emerging

trend is to utilise a more extensive set of prediction methods in

order to attain more reliable results [22]. Many of them are based

on protein sequence, but several are structure-based, as the latter

are more reliable and provide more information. A model of the so

far elusive three-dimensional structure of ALK1EC could therefore

provide insight into its molecular functions and be used to study

the effect of disease-related mutations, like in [23–25]. In this

work, we have built a homology model of ALK1EC applying the

most updated available methods, and we have investigated the

predicted effects of HHT2-related missense mutations of ALK1EC

using multiple computational methods, including docking to the

X-ray structure of BMP9. This approach allowed a preliminary

characterization of ALK1EC mutations, with prediction of their

potential molecular pathogenic effect.

Results and Discussion

In order to tackle mutation analysis by structure-based methods,

we produced a homology model of ALK1EC. The first step

involved identification of the three dimensional fold.

Identification of the three dimensional fold
To create a model of ALK1EC, a BLAST search towards the

PDB database was performed using residues 22–118 of ALK1EC

target sequence (Uniprot entry P37023). No significant similarities

to other known structures were identified (minimum E value = 14).

In contrast, a C-BLAST in the Conserved Domain Database

found significant matches within protein family pfam01064, a

domain class characterised by conservation of the CCX(4–5)CN

motif. Though this observation and the absolute conservation of

ten Cys residues throughout the type I receptors of the TGF-b
superfamily [10] suggest a common fold for all its members, Cys-

rich proteins are known to potentially generate alternative folding

patterns, which would influence the choice of the correct template

for homology modelling. In cases where template identification by

sequence alignment fails or is uncertain, ab initio modelling

methods are a possibility, but they are not yet performing

sufficiently well according to the most recent 9th Community

Wide Experiment on the Critical Assessment of Techniques for

Protein Structure Prediction (CASP9, [26]). An alternative is

identification of the correct three dimensional fold by threading

methods, which allows assessment of the compatibility of the target

sequence with the available protein folds based not only on

sequence similarity, but also on structural considerations [27,28].

In order to analyse this problem, ALK1EC was submitted to the

protein fold recognition metaserver Pcons [29–31], which submits

the query sequence to multiple servers at the same time. All fold

recognition servers found templates, with a similar, low sequence

identity (21–23%). Particularly, FORTE, FUGUE, LFUGUE,

LSP3 and SAM-T02 reported BMP receptor IA (PDB entries:

2h62C, 1es7B and 1rewC) as the best template, HHPRED2,

LHHSEARCH15, LPROSPECT2, NFOLD and RPSBLAST

reported BMP receptor IB (PDB entry: 3evsC), and LPPA-I and

MUSTER, reported BMP receptor IA variant IA/IB (PDB entry:

2qjbD) as the best template. Only LSPARKS2 reported TGF-beta

type 2 receptor (PDB entry: 2pjyC) as the best template and

PHYRE the Urokinase plasminogen activator surface receptor,

UPAR (PDB entry: 1ywhC). All of them are members of the

‘‘snake toxin-like’’ superfamily, ‘‘extracellular domain of cell

surface receptors’’ family, according to SCOP database, and

share the same fold. On the basis of these results, we can conclude

that, despite the low sequence identity, comparative modelling can

be considered an appropriate approach to predict the three-

dimensional (3D) structure of ALK1EC.

Prediction of an atomic model for ALK1EC

Availability of experimental 3D templates allowed us to create a

3D model of ALK1EC by homology modelling, taking into account

Modelling Missense Mutations of ALK1 Ectodomain
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the difficulties encountered with low sequence identity (between 20

and 40%), a borderline case which has to be treated carefully [32–

34]. Nevertheless, when proteins used for alignment and modelling

belong to the same protein family in which the structure is well

conserved, overall structural similarity can overcome the problem

of low sequence identity [32]. Furthermore, model quality

assessment and comparison of homology models generated by

different algorithms is useful in order to identify problematic

regions. In order to do this, top scoring models were selected

among those obtained by each of the two metaservers Pcons [29–

31] and Genesilico [35], the latter including modelling by multiple

sequence alignment by the Frankenstein Monster approach [36],

and I-Tasser [37] and RaptorX [38], the two servers giving the

best homology modelling results for automated prediction of

human targets using multiple-template threading in CASP9

[26,39].

Pcons metaserver top scoring model (Pcons score: 0.352) was

the one based on the single target-template alignment obtained by

LPPA-I fold recognition server using structure 2qjbD as a template

(Fig. 1A) and was better than those generated by multiple sequence

alignments by the same metaserver, as evaluated by PconsM (data

not shown). Sequence alignments used by I-Tasser, RaptorX and

Genesilico are shown in Fig. 1B, 1C and 1D, respectively. Global

Qmean scores of each generated models ranged from 0.36 (I-

Tasser) through 0.49 (Pcons) and 0.56 (RaptorX) to 0.57

(Genesilico), indicating a significant variability of model quality.

However, superposition of the four models demonstrated that they

shared a virtually identical general fold, with a maximum RMSD

of 1.96 Å between Ca traces of Pcons and I-Tasser generated

models. Analysis of Qmean local scores for each model by

superposition of Qmean server-generated PDB files (Fig. S1A)

indicated that in all the models strands b1, b2 and b3 were

consistently reliable. b4 and b5 strands had slightly higher local

scores, which became even higher in the remaining part of the

polypeptide, especially loops. As a comparison, however, local

Qmean scores for structures available in the same protein family,

like 2h62C and 3evsC, were only slightly higher than those of the

generated ALK1EC models. This supported the fact that the four

models had a significant reliability. In order to further improve the

results and obtain a single final model, MODELLER was used

[40], using the four server-generated models as templates. In this

step, a a helix for residues 70–76, a secondary structure element

recognised by PSIPRED [41] and not present in the starting

structures, was also imposed. The resulting model was then

evaluated by Qmean and showed a significant increase in the

global Qmean score (0.603, Fig S1B). As a further assessment of

Figure 1. Structural alignments. Sequence alignment obtained using ALK1EC by different structure prediction software types: (A) Pcons
metaserver, (B) I-Tasser, (C) RaptorX, (D) Genesilico metaserver. In the alignment in (B) secondary structure elements are indicated. Disulphide bonds
are numbered within circles. Number 2 is in a dashed circle to indicate that it would be destabilising in our ALK1EC model. ALK1EC: ALK1 ectodomain
sequence. Other sequence names are given as PDB IDs followed by chain name. 2qjb: Bone Morphogenetic Protein Receptor Type IA (ALK-3), 2pjy:
TGF-b Receptor Type I (ALK-5); 1okg: 3-mercaptopyruvate sulfurtransferase from Leishmania major, 2h7z: irditoxin, 3evs: Bone Morphogenetic Protein
Receptor Type IB (ALK-6), 2qj9: BMP-2 in complex with BMPR-IA variant B1, 3kfd: ternary complex of TGF-b1, 2qja: BMP-2 in complex with BMPR-IA
variant B12, 1rew: complex of bone morphogenetic protein 2 and its type IA receptor, 2goo: BMP-2 bound to BMPR-Ia ectodomain and ActRII
ectodomain, 2h62: Bone Morphogenetic Protein Receptor Type IA (ALK-3), 1bte: extracellular domain of the type II activin receptor, 1nys: Activin A
bound to ActRIIB P41 ectodomain, 2h5f: denmotoxin.
doi:10.1371/journal.pone.0026431.g001

Modelling Missense Mutations of ALK1 Ectodomain
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model quality, structural variability within family pfam 01064,

measured with an all-versus-all comparison through the ProCKSI

server (www.procksi.net), gave an average TM-score of 0.6260.20,

while the same parameter measured for the final model versus its

structural templates was 0.7160.070 (t-test: P = 0.33)’’.Fig. 2A

depicts the model of ALK1EC (in red) overlapped on the most

recurrent templates used in the modelling procedure: Bone

Morphogenetic Protein Receptor Type IA (ALK-3, 2qjb, cyan),

TGF-b Receptor Type I (ALK-5, 2pjy, magenta), Bone Morpho-

genetic Protein Receptor Type IB (ALK-6, 3evsc, green); Bone

Morphogenetic Protein Receptor Type IA (ALK-3, 2h62, yellow);

BMP-2 in complex with BMPR-IA variant B1 (2qj9: light green).

Assessment of ALK1EC model by RAMPAGE for stereochemical

quality [42] showed 92.9% of residues in favoured regions, 4.3% of

residues in allowed regions, and 2.9% residues in disallowed regions.

The two residues in disallowed regions (S38 and T82) belong to the

Figure 2. ALK1EC model. (A) Cartoon representation of the most recurrent templates superposed onto the final ALK1EC model. Red: final ALK1EC

model; cyan: 2qjbd; magenta: 2pjyc; green: 3evsc; yellow: 2h62c; light green: 2qj9c. (B) Cartoon representation of secondary structure elements of the
final ALK1EC model. The typical three-finger toxin structure is visible. Yellow: b-strands, red: a-helices, green: loops. Disulphide bonds are displayed as
sticks and numbered in circles according to Fig. 1B. Dashed circle indicates a lacking disulphide bond: conserved in the templates, it would introduce
strain in the model. (C) and (D) Surface mapping of HHT2-related mutation sites on ALK1EC model (yellow). Views of the concave (C) and convex (D)
surface are displayed. In red: non-Cys mutational sites, labelled according to residue number. In blue (unlabelled for clarity): Cys residues. Non-Cys
mutational sites are mainly clustered in the lower two-thirds of the molecule. Figures were prepared with Pymol [106].
doi:10.1371/journal.pone.0026431.g002
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first and fourth loops and further optimisation to improve their phi

psi angles led to a reduction of Qmean score. Model validation was

also performed by ProSA-web [43], which gave a very good Z-score

of -5.45 and showed that the plot of the local model quality (energies

as a function of amino acid positions) was consistently negative for

all of them, confirming the absence of problematic parts (Table 1)

[44]. VERIFY3D [45], ProQ LG [46], and ProQ MaxSub [46]

scores were not too far or even better than those of the template

crystal structures (Table 1). Threading energy was also comparable

to the template structures.

In general, the results shown in Table 1 and the superposition of

Fig. 2A indicate that, though the final model is not as good as the

crystallographically determined reference structures, as expected

because of the low sequence identity to the templates, it was

anyway sufficiently good to derive some functional inference. The

model was deposited in the Protein Model Database (PMDB) with

code PM0077425.

Model description
The final model included residues 31–107 (Fig. 2B). The general

shape of ALK1EC model is of a cupped left hand, with the thenar

eminence corresponding to a-helix 1, including residues 70–77,

and the thumb to the loop formed by residues 78–84. The core

region of the model exhibits the characteristic three-finger toxin

fold (Fig. 1 and Fig. 2B), with strand b1 including residues V32-

E37, b2 residues T45-G48, b3 residues C51-R57, b4 residues P63-

G68 and b5 residues V85-C90. Strands 1 and 2, and 2 and 3 are

joined by a short loop, while strands 4 and 5 by a long, partially

unstructured loop, including residues N71-V85 and a short a-helix

(N95 and H98). Only four (C34-C51, C46-C69, C90-C95) of the

expected five disulphide bonds were predicted: none of the four

templates used in the Modeller modelling step included the bond

one between C36 and C41, which is instead present in the crystal

structures of all the other molecules of the same class. This might

depend on the fact that the loop formed by residues E37-H40

includes 4 residues, among which a Pro. All the other members of

the family have 3 or 5 residues loops and do not include Pro.

These two specific elements (unique loop length and Pro presence)

could explain why forcing Modeller to include a disulphide bond

in the final model lead to a worsening of the Qmean score,

especially because of alteration of torsion angles. This disulphide

bond, therefore, was not included in the final model.

Mutation analysis
In general, models with low sequence identity to the template

like the one of ALK1EC cannot be used for detailed predictions

of the effects of mutations. Nevertheless, thanks to the low

deviation of the Ca atoms positions with respect to templates, the

results of our analysis can be used to put forward new hypotheses

and may be helpful in guiding the design of further experimental

research.

At the moment of writing, 32 HHT2-related positions for

missense mutations have been described for ALK1EC (HHT

mutation database, [18]). Mutational sites P26, P30 and S110

were not included in our systematic bioinformatic analysis, as these

residues are not part of our structural model.

Mutation positions are underlined in Fig. 3A and were mapped

on the calculated model of ALK1EC domain in Fig. 2C and

Fig. 2D, where mutational sites not involving and involving Cys

residues are highlighted in red and blue, respectively. A visual

analysis of the mutation positions allowed to observe that they are

located in only two-thirds of the domain body, with the tip of the

fingers completely untouched. They involve residues located both

on the concave and convex surface and the wrist of the hand,

affecting all Cys and some non-Cys residues. In order to better

characterize the mutations, an extensive bioinformatic analysis

was performed, according to Thusberg and Vihinen [22], with

modifications described in the Material and Methods section.

Results are summarised in Table 2 and Fig. 4, and discussed

below.
Sequence conservation. Pathogenic mutations typically

involve conserved positions within a protein family, as these

involve residues essential for the structure and/or the function of a

protein [22,47–49]. In fact, the probability that a random

mutation can cause a genetic disease has been shown to increase

with an increase in the degree of site conservation [50]. The nature

of amino acid substitutions in invariant sites will condition the

effect on protein structure, while variable positions can be analysed

for residues that can be exchanged without detrimental effects.

Pfam [51] multiple sequence alignment for ALK1EC confirms that

there are 11 invariant positions (the 10 Cys and N96), all of which

modified by one or several disease-related mutations. Fig. 3B

shows the chemical nature of amino acids in MultiDisp output

[52], with asterisks above mutated positions: red for absolutetly

conserved positions and black asterisks above the others. Several

missense mutations involving the 10 absolutely conserved cysteine

residues have been identified so far: C34Y, C36Y, C41R, C46L,

C51Y, C69R, C69Y, C77Y, C77W, C89Y, C90Y, C95R.

Another absolutely conserved position is N96, which is mutated

to D in a disease phenotype. In fact, N96 belongs to the Pfam

characterising motif CCX(4–5)CN. Consurf [53] analysis of all

Pfam multiple sequence alignments recognises all Cys residues as

structurally important, and N96 as a functionally important

residue.

Fifteen mutations significantly alter the physicochemical

properties of wild-type amino acids as predicted by ProCon

[54]. Two hydrophobic residues (V32 and W50) are replaced by

Gly, an amino acid with a conformational role and with much a

smaller size. Three Gly residues (G48, G68 and G70) are changed

Table 1. Quality assessment of representative template structures and of ALK1EC model.

Molecule (PDB ID) Qmean [76] Verify 3D [45] ProQ LG [46] ProQ MaxSub [46]

2h62C 0.73 22.13 2.051 0.306

2qjbD 0.72 24.02 1.072 0.173

3evsC 0.74 25.11 1.370 0.220

2qj9D 0.77 24.90 1.208 0.184

2pjyA 0.71 17.33 1.228 0.209

ALK1EC 0.60 19.90 1.355 0.231

doi:10.1371/journal.pone.0026431.t001

Modelling Missense Mutations of ALK1 Ectodomain
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Figure 3. Bioinformatic analysis of HHT2 related ALK1EC missense mutations. (A) Comparison of HHT2 related mutations with residues
contacts. Top line: missense mutations are underlined in the sequence of ALK1EC. Red and green: mutations with a higher and lower impact,
respectively, on protein folding according to our bioinformatic analysis (see also Table 2). Pink: residues involved in interactions with BMP9. Triangles
are used to allow visualization of two colours when needed. Bottom line: Sting [64] output for contact analysis. Residue colour legend: grey: small and
hydrophobic; green: polar; red: negatively charged; blue: positively charged; yellow: disulphide forming cysteines. (B) MultiDisp [52] output of the
sequence alignment of ALK1EC with its homologues. The height of the character is proportional to the frequency of the amino acid in that position.
Similar colours are used for residues with similar physicochemical properties. Red asterisks indicate absolutely conserved residues, black ones other
mutational residues. (C) Covarying residues determined with the program ProCon (p-value 0.001). Mutational sites are highlighted pink. Figures were
prepared with Pymol [106].
doi:10.1371/journal.pone.0026431.g003

Modelling Missense Mutations of ALK1 Ectodomain
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either into charged residues (Glu or Arg) or into a hydrophobic

Cys. The former mutation might not be, however, very disruptive,

as Glu is found in this position in some members of the Pfam

group analysed by all the different alignment algorithms. The

positively charged H66, R67 and H87 are mutated, respectively,

into a conformationally important residue (Pro), which is likely to

interrupt the continuity of the b-strand, into a hydrophobic

residue (Trp) and into an oppositely charged residue (Asp). A Gln

in position 67, on the other hand, might be more easily tolerated,

as it is found in homologues by all MSA generators used. It is

expected, therefore, that mutations G48E and R67Q will lead to a

less disruptive action from the structural point of view.

There are four pairs of covarying residues (Fig. 3C), with 3

amino acids mutated in HHT2. In summary, our analysis shows

that pathogenic mutations are located not only in absolutely

conserved positions, but also in residues with a low level of

evolutionary conservation.

Structural disorder and b-aggregation. Disorder and

aggregation propensity of a protein can be increased by missense

mutations, leading to loss of a regular secondary structure fold.

These mechanisms have been recognised to be involved in

Alzheimer’s [55], Huntington’s diseases [56], amyloidosis [57] and

even aging [58]. At least three of the seven methods used predicted

six mutations as able to increase disorder, and at least two of the

four methods used predicted four of them as potentially able to

influence aggregation.

Stability. The most frequent effect of missense mutations is

alteration of protein folding and decreased stability [20]. Stability

centres were predicted by Scide [59] and Scpred [60] and

stabilizing residues by Sride [61]. Only mutated residue W50 was

found to belong to the first group, while no residues were found to

exert an essential stabilizing effect. However, when these results

were considered together with those obtained with the 8 softwares

used to test changes in stability upon mutations, all amino acid

replacements were predicted to be destabilising by at least 4

methods, or, in the case of mutations C41R, W50G, C51Y, C69R,

C69Y, H87D, C89Y, C95R and N98S , by at least 6 methods.

Structural mutations. Amino acid replacement can

determine major structural alterations, mainly determined by the

physico-chemical properties of the new residue. Analysis of the

fitting of each new side chain was performed using structural

models generated by FoldX, which adopts a probability-based

Table 2. Summary of the effects of ALK1EC mutations.

Mutation
Conserved
residues

Electrostatic
potential Conformational

Contacts and
stability Disorder Aggregation

Functional
mutations

Contacts
with BMP9

V32G - - - - x - - x

C34Y x - x x x - x -

C36Y x x x x x - x -

C41R x x - x x - x -

C46L x - - x x - x -

R47P - x - x x - - x

G48E - x - x x - - x

G48R - x - x x - - x

W50G - - - x x - - -

W50C - - - x x - - -

C51Y x x x x x - x -

T52A - - - x - - - x

H66P - x - x - - - x

R67W - x - x - - - x

R67Q - - - x x - - x

G68C - - - - - - - x

C69R x x - x x - x -

C69Y x - - x x - x -

G70R - x x x - - - x

C77W x - - x - - x -

C77Y x - - x x - x -

G79R - x - - x - - x

H87D - x - x - x - x

Y88C - - - x - - - -

C89Y x - - x - x x -

C90Y x - x x x x x -

C95R x x x x x - x -

N96D x - x x - - x -

N98S - x - x - x x -

doi:10.1371/journal.pone.0026431.t002
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rotamer library, while exploring alternative conformations of the

surrounding side chains. For each mutant, van der Waals clashes

were compared with the corresponding wild-type structures using

the corresponding energy values. Wild-type ALK1EC had a van

der Waals energy of –0.06 kcal/mole, while 12 out of the 28

mutants analysed showed higher values, comprised between

1.8 kcal/mole for C89Y and 26.14 kcal/mole for C51Y,

indicating a strong local perturbation to the structure. Each

mutant was analysed by Pymol and clashes visualised by a specific

python function written by Thomas Holder (show_bumps.py,

personal communication). Seven of the 12 mutants with high

energy showed a clear bad fitting, with potential detrimental

effects on folding (Table 1, ‘‘Conformational’’ column). A

representative case of these mutations is illustrated in Fig. 5A.

Mutations introducing proline residues, like R47P and H66P

are located at the base and in the concave surface of the ‘‘hand’’,

respectively. The former is likely to determine a change in the

conformation of the b-strand including residues 45–48, while the

latter affects one of the two symmetric His residues (H66 and H87)

located in the middle of b-strand 2.

Mutations in contacts maintaining stability. Accessible

surface area measurements performed by Areaimol [62,63]

indicate that ALK1EC includes, despite its small size and its

mainly b secondary structure, ten completely buried residues. Out

of these, nine are mutational sites (C34, C36, C46, C51, T52,

G68, G70, C95, N96), which is consistent with the notion that

buried residues are typically involved in the formation of core

interactions crucial for protein stability and that the probability of

a mutation to be pathogenic is inversely proportional to the solvent

accessible surface of the wild-type residue [50].

Residues T52, R67, Y88, C95 and N96 form a high number of

bonds with neighbouring aminoacids, as displayed by Sting

analysis [64] (Fig. 3A). All the mutations involving these residues

involve a reorganization of the bond network, and could thus

contribute to alteration of protein stability. However, it must be

taken into account that, when interactions in the wild-type protein

are mediated by main chain – main chain contacts, they are less

susceptible to be broken by missense mutations. This happens, for

example, in Y88C.

Mutations affecting Cys involved in highly conserved disulphide

bonds are known to strongly alter protein stability and folding.

This is consistent with the results of our bioinformatic analysis

(Table 2) and with biological data reported by Ricard et al. [21]. A

specific feature of the Pfam family ALK1 belongs to is the presence

of the CCX(4–5)CN motif, with C89, C90, C95 and N96 the

corresponding residues involved in ALK1EC, respectively. Their

crucial structural role depends on the fact that, in all the members

of the Pfam protein family whose structures are known, the first

Cys residue of the motif (C89) forms a disulphide bond with the

Cys comprised in the a1 helix (C77 in ALK1EC), while the second

Cys residue (C90) forms a disulphide bond with the third Cys of

the motif (C95), thus placing the following Asn residue (N96) in a

favourable position to interact with the N terminal b1 strand of the

domain (Fig. 5B). N96 is thus the pivotal residue around which the

entire structure is folded. Ideally, its ND2 atom is at the centre of a

triangular structure, wherefrom three bonds depart. One is the

covalent bond with the CG atom of the same residue, and the

other two the hydrogen bonds formed with T35 and T52, sewing

the N terminal b1-strand with the b3 (middle finger) and the C

terminal strands, with the latter generating the convex surface of

the ectodomain (Fig. 5C). In the N96D mutant (Fig. 5D) all these

bonds are lost, with a likely alteration of protein fold and of the

proper orientation of sugars potentially linked to N98. Biological

data supporting the results of our analysis are given in [21], where

mutations C51Y, C77W and N96D have been studied into details,

and demonstrated to allow expression of the corresponding

mutated protein, though imparing its exposure on the cell surface.

No measurements concerning folding status of mutant proteins or

subcellular localization was performed in this work. However, the

fact that mutants are detectable in western blot [21] suggests that

they cannot reach the cell surface despite correct protein synthesis.

In fact, misfolding in mutated proteins has been described as a

major cause of impaired surface expression for the neural cell

adhesion molecule L1 [65], with other examples represented by

the cystic fibrosis transmembrane conductance regulator (CFTR)

mutants [66,67], most forms of a1-anti-trypsin deficiency [68], or

Charcot-Marie-Tooth disease caused by missense mutations in the

connexin-32 gene [69] (a review is in [20]). In all these cases, the

Figure 4. Graphical representation of the effects of mutations. The chart summarizes the effect of mutations on ALK1EC protein structure.
Red and green bars: mutations with a high and low, respectively, destabilizing effects on protein structure.
doi:10.1371/journal.pone.0026431.g004
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mutated protein is misfolded, it is recognized as abnormal and,

hence, retained in the endoplasmic reticulum where it is degraded

by the ‘‘quality control’’ machinery. Correct folding and

oligomerization of newly synthesized membrane and secretory

proteins are prerequisites for export from the endoplasmic

reticulum. Mutant and misfolded polypeptides or unassembled

subunits of oligomeric proteins are retained in this organelle and

ultimately degraded (reviewed in [70]). The mechanism by which

mutants are recognised and disposed of by this apparatus are not

well understood. In vitro folding studies would be useful in this

respect for ALK1EC, as several mutations might interfere with

correct folding of the polypeptide and decrease its stability [71].

Since only main chain atoms of the two residues hydrogen

bonded to N96 are involved in structure stabilization, their

mutations would be considered unlikely to determine strong fold

alterations. T35 is not a mutational site. On the other hand,

mutation T52A in the mutated FoldX-generated model alters the

bond network involving N96 in a way totally similar to mutation

Figure 5. Structural effect of mutations. (A) Mutation C51Y causes major clashes with neighbouring residues. (B) Structural role of the highly
conserved CCX(4-5)CN motif. The central b-strands is connected with a1-helix by disulphide bond C77-C89 and with a2-helix by disulphide bond C90-
C95 combined with the hydrogen bonds formed by the N side chain atom of N96. Mutations affecting this motif have a high structural impact. (C)
N96D mutation removes the N96 side chain N atom and its replacement by the C atom of D96 alters the hydrogen bond network. (D) and (E) show
the effect of mutation H87D on electrostatic surface potential (from neutral to negative).
doi:10.1371/journal.pone.0026431.g005
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N96D. Moreover, residue T52 is involved in interactions with H73

through its side chain OH, useful to optimize the orientation of the

a1 helix against the concave surface of the hand. In this case,

replacement of the side chain of T52 with an Ala would lead to

loss of this potential interaction. Alternatively, T52 might also be

involved in ligand binding, a hypothesis that we tested by docking

simulation (see below).

R67, beyond binding E65 on the same b-strand, establishes

hydrogen bonds with E37 from the N-terminal strand and with

H97 from the helix of the convex surface. Therefore, it might have

a role complementary to N96. Replacement of R67 by Trp

disrupts these bonds, potentially jeopardizing the stability of the

convex surface of ALK1EC.

Effects on electrostatic potential. Fourteen out of the 29

known ALK1EC mutations determine alterations in the

electrostatic potential: a hydrophobic to negative shift is caused

by mutation G48E and H87D (Fig. 5E), and the reverse by

mutations C36Y and H66P. A positive to hydrophobic shift is

introduced by mutation R47P, while an increase in the negative

surface extent is determined by C51Y and R67W. The most

frequent alteration consists in the hydrophobic to positive shift

induced by mutations C41R, G48R, C69R, G79R, and C95R.

Interestingly, G48E and G48R induce an important alteration of

surface charge distribution, introducing a large negative and

positive patch, respectively, on a hydrophobic area of the convex

surface of ALK1EC. All these alterations might have an effect on

the interactions with BMP9, endoglin, and other potential ligands,

but it is worthwhile noting that also surface charges are relevant in

maintaining protein stability.

Surface mutations. According to our model, non-Cys

mutations involve both the concave and the convex surfaces of

ALK1EC. Particularly, mutational sites R47, T52, H66, R67, G68,

G70, G79, H87 are located on the former. Of these, H66 and H87

are symmetrically located at the sides of a vertical hydrophobic

groove whose floor is formed by residues V53, V54, L55, V56,

F84. Five of the mutated non-Cys positions, occupied mainly by

hydrophobic residues in the wild-type (V32, G48, A49, W50, G70,

Y88), cluster instead on the convex surface of ALK1EC suggesting

that they might be located in a critical region for protein-protein

interactions. In fact, changes introduced by the described missense

mutations determine important alterations in size and charge

(V32G, G48R, G48E, W50G, W50C, G70R, Y88C, C89Y),

which would significantly alter the conformation of this surface

region.

Functional mutations. ALK1EC conserved residues have

also a functional role, related to their being essential for a correct

protein folding. Thus, all mutations affecting Cys residues and

residues N96 and N98 belong to this class.

Pathogenic mutations. All the ALK1EC mutations

described here are known to be pathogenic. SIFT predicted all

of them to be potentially damaging except for Y88C. Pmut

predicted only T52A and N96D as tolerated instead of deleterious.

Polyphen and PhDSNP considered 6 and 13 mutations,

respectively, as tolerated.

Subsets of mutations. A summary of the data presented in

Table 1 is illustrated in Fig. 4, where bars represent the score (total

number of crosses) obtained in our analysis by each mutation. The

chart suggested that it might be possible to hypothesise a

preliminary classification of ALK1EC missense mutations:

mutations probably leading to protein misfolding and

impairment of ALK1 surface expression by protein aggregation

or by lack of binding of key components of the secretory pathway

(Table 1 and on the left in Fig. 4), and non-destabilizing mutations,

which might allow a significant or normal cell surface expression of

ALK1, mainly exerting their pathogenic effect by interference with

BMP9 or co-receptor binding (Table 1 and on the right in Fig. 4).

Discrimination between the two classes by a clear-cut threshold

was however difficult at this stage. We then decided to test our

model in a docking simulation to determine which mutational

residues would be expected to reside in interacting surfaces.

Prediction of the interaction mode of ALK1EC with BMP9
We performed a docking simulation with ClusPro 2.0 [72]

between ALK1EC and the structure of the dimeric form of BMP9

[PDB: 1ZKZ]. Though to be considered with great caution for the

errors intrinsic to the ALK1EC model used, the top scoring model

of the complex (Protein Model Database code PM0077426)

suggests a binding mode strikingly similar to the one between

BMP2 (31% identity to BMP9, Fig. 6A) and BMPR-IA complex

(PDB ID: 1es7, Fig. 6B). Interaction with BMP9 occurs at the

composite interface formed by the two ligand monomers, exactly

the same kind of binding strategy displayed by other receptors of

the same class (e.g. PDB IDs: 1es7, 2h62; Fig. 6B). This result can

be considered an important, indirect confirmation of the reliability

of our ALK1EC model. Moreover, in the complex with BMP9

ALK1EC is oriented with a rotation by 90u with respect to BMPR-

IA (Fig. 6B). This is in line with the view that, in these families of

molecules, variable structural strategies for complex formation

provide the specificity of interaction and hence of final signalling

cascade. BMP9 residues involved in binding have a striking

similarity with those recruited at the interface in the BMP2-

BMPR-IA complex (PDB ID: 1es7, Fig. 6A, pink). Extra-residues

are also involved in the case of ALK1EC-BMP9 interface (Fig. 6A,

pink), indicating a more extensive interaction surface, which could

explain the very high affinity measured in in vitro experiments for

this complex [14].

Some important observations can be made. First of all, in both

complexes ligand-receptor interactions occur mainly through

hydrophobic patches. The concave surface of BMPR-IA is largely

hydrophobic due to residues F60, G76, M78 and I99 and the

disulphide bridge between C77 and C53. It is interesting to note

that none of these residues is conserved in ALK1EC, except for

G76 (G68 in ALK1EC). However, a wide hydrophobic surface

area is present in the central part of the concave surface thanks to

residues V54, V56, F84, V85 and L103 (Fig. 5C). In BMPR-IA,

the hydrophobic concave surface is filled by residues from the pre-

helix loop of BMP2, particularly F49, P50 and A52. A key feature

of BMPR-IA binding is residue F85, which sticks out of the

receptor helix a1 and fits, with a knob-into-hole packing, into a

hydrophobic pocket of the ligand [7]. All of the pocket forming

residues of BMP2 are invariant or highly conserved within the

TGF-b superfamily, including BMP9 [73]. In fact, a highly

hydrophobic residue corresponding to F85 of BMPR-IA is found

in all type I receptors and has been proposed as a key feature of the

type I receptor binding site [7]. However, in ALK1EC the critical

residue F85 is replaced by E75, clearly unfit to bind the

hydrophobic binding pocket. This sequence feature of ALK1EC

suggested per se that binding of BMP9 was likely to occur through

interactions different from those observed in the BMP2/BMPR-IA

complex. In fact, the ca. 90u rotation (Fig. 6B and 6C) perfectly

sorts out this charge problem, moving E75 completely outside the

binding interface.

It is intriguing that the top scoring complex model showed an

interaction interface with BMP9 including 10 out of the 14 non-

Cys missense mutational positions for ALK1EC. They include, for

the interface between ALK1EC and BMP9 monomer A, residue

R47, and for monomer B: V32, R47, G48, T52, H66, R67, G68,

G70, G79 and H87. All these 10 mutational hotspots include
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Figure 6. ALK1EC-BMP9 docking simulation. (A) Sequence alignment of BMP2 from PDB structure 1es7 and BMP9 from PDB structure 1zkz.
Sequence numbering according to BMP9. Residues involved in type I receptor binding are shaded in pink. For BMP9, interface residues were
calculated with PISA [108]. (B) Superposition of ALK1EC/BMP9 complex, as calculated by ClusPro onto BMP2/BMPRIA (PDB ID: 1es7) by BMPs structural
alignment. In two shades of blue: surface of BMP9 subunits A and B (BMP2 not shown for clarity). In yellow and magenta: cartoon representation of
BMPRIA and ALK1EC, respectively. (C) BMPRIA and ALK1EC from (B) are visualised from the interface surface. The latter is rotated by about 90u with
respect to the former. Mutational positions of ALK1EC contacting BMP9 are shown as cyan sticks. (C) ALK1EC-BMP9 complex simulation: surface
representation of ALK1EC (magenta) and stick representation of BMP9 segments involved in binding (dark blue: subunit B, light blue: subunit A). Cyan:
non-Cys mutational sites from (C), in contact with BMP9.
doi:10.1371/journal.pone.0026431.g006
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residues whose replacement is not highly destabilizing according to

our analysis (Table 2, green bars in Fig. 4, Fig. 6). Two residues,

Y88 and W50, do not seem to affect ALK1EC structure or its

binding to BMP9. For its localization on the convex surface of

ALK1EC, Y88 might be involved in its interactions with another

partner, like, for example, a co-receptor. A similar line of

reasoning can be applied to residue W50, targeted by pathogenic

mutations W50G and W50C, which do not exert a crucial

structural modification role and are not involved in interactions

with the ligand.

The results of this simulation were also a further, indirect

confirmation that the group of mutations represented with red

bars in Fig. 4 affect residues which are more likely to have a

structural role.

Conclusions
HHT2-associated missense mutations detected in ALK1 result

in a clinically relevant phenotype due to receptor functional

impairment. Thus, they offer an invaluable source of information

for protein genotype-phenotype correlation, as they can demon-

strate the importance of wild-type residues located in mutational

spots in determining the correct molecular conformation and/or

in mediating interactions at the ligand-receptor interface. The

rationale of our work relies on the fact that the study of the

molecular basis of diseases by experimental methods is difficult

and time-consuming, and prediction of the structural effects of

pathogenic mutations may optimise the design, and reduce the

number, of targeted biological experiments. The multiple

combined bioinformatic methods, which we have applied to

HHT2-related ALK1EC pathogenic mutations required genera-

tion of a three-dimensional homology model of ALK1EC, the first

good-quality model of ALK1 receptor ectodomain proposed so

far. Consistency between independent predictions, particularly of

HHT2 related missense mutation effects and docking simulation,

is quite striking and suggests that a preliminary classification of the

29 ALK1EC missense mutations here analysed would include three

groups, affecting: residues mainly involved in protein structure

stabilization (14 out of 29), residues mainly involved in interaction

with BMP9 (12 out of 29), and, finally, residues likely to be

involved in interactions with other partners, probably coreceptors

(3 out of 29). These data lead to hypothesise that the similar

clinical phenotypes of HHT2 might actually depend on alteration

of at least three different molecular pathways or mechanisms:

protein misfolding (thus configuring a conformational disease),

ligand binding disruption or interference with co-receptor binding.

It is important to consider that each bioinformatic method

investigates a specific aspect of the sequence or structure under

consideration and implementing a considerable number of

methods is a common strategy to integrate their strengths and

overcome their weaknesses. Metaservers apply this philosophy on

a wide scale for homology modelling and integrate statistical

methods to assess the results. As a maximum number of methods is

tested per each query sequence, integration of a system to

automatically assess the results from different metaservers could be

very useful to speed up and improve homology modelling. Protein

threading itself is being the object of much improvement effort,

especially to optimize alignments and energy functions [74], while

assessments methods could be improved in order to better identify

regions that can be trusted, with unreliable parts piped

automatically to systems to improve them.

In the bioinformatic determination of pathogenic mutations,

several different principles are at the base of the available methods,

which is the reason why different results can be obtained for the

same query. A single query system is under development (http://

bioinfo.uta.fi/PON-P) and a method to assess and integrate the

results would be welcome as well, as careful choice and

understanding of the methods and their limitations is still

important to avoid overprediction. At the moment, as these

methods cannot find a clear correlation with a disease phenotype,

specifically designed experiments are still required.

Because of all these limitations, it would be risky to consider our

findings conclusive. In contrast, we believe that they can give an

initial but solid structural interpretation of how mutational

alterations of ALK1EC can lead to HHT2, and hence a valuable

framework to systematically tackle the molecular basis of its

pathogenesis by biological methods.

Materials and Methods

Comparative protein structure modelling
The amino acid sequence of human ALK1EC (residues 22–118)

was taken from Uniprot entry P37023. Pcons metaserver [29–31]

was used for identification of the three-dimensional fold. Four

initial models were generated by Pcons [29–31], Genesilico [35], I-

Tasser [37] and RaptorX [38], respectively. A fifth and final

model was then obtained by running Modeller [75] using these

four models as templates and secondary structure elements

predicted by PSIPRED [41]. Models and structures were assessed

by the Qmean server [76], the best performing and publicly

available model quality assessment software in CASP9 [26], and

by RAMPAGE [42], ProSA-web [43], VERIFY3D [45], ProQ

[46].

Missense mutation analysis
Twenty-nine missense mutations located in ALK1EC, both

deposited in the HHT database [18] and/or described by our

group [19], were analysed. All modelled mutations were therefore

found in HHT patients diagnosed as surely affected as reported by

Shovlin et al. [77]. The method of Thusberg and Vihinen [22] was

applied to study the effect of mutations, with the modifications and

implementations described below. A total of 27 sequence

homologues for ALK1EC domain and sequence alignments were

from the Pfam database [51]. Alignments were calculated with

Mcoffee [78], MAFFT [79], Promals [80], Clustalw [81] and

Muscle [82], and visualized using MultiDisp [52] and ConSeq

[53] for illustration of conserved amino acids in the sequence. The

default parameters were applied in all methods.

The evolutionary conservation of the sequences was studied, in

addition to the visualization programs, by ProCon, a program for

calculating mutual information and entropy in amino acid

sequences [54]. Conservation indices were calculated with the

ConSurf server [53].

Structural disorder in the protein and the effects of mutations

were studied using seven methods, Disopred [83], IUPred [84],

PrDOS [85] Ronn [86], Pondr [87], Poodle-S [88], Spritz [89].

The effects of mutations on aggregation propensities were studied

by TANGO [90], PASTA [91], Waltz [92], AGGRESCAN [93].

The pathogenic effects of point mutations were analyzed using

SIFT [94], PolyPhen [95], Pmut [96], and PhD-SNP [97]. The

effects of mutations on protein stability were predicted by Scpred

[60], Scide [59], Sride [61], PoPMuSiC [98], FoldX [99],

Dmutant [100], Cupsat [101], Imutant [102], Mupro [103],

Iptree-STAB [104] and Eris [105]. Instead of modelling the

mutations manually as described by Thusberg and Vihinen [22],

the BuildModel option of FoldX version 3.0 beta, whose force field

is detailed in [99], was used. The BuildModel command reads the

PDB and duplicates it internally. Then, it mutates the selected

position in one molecule to itself and, in the other, to the variant
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selected, while moving the neighbouring side chains. The moving

side chains and the rotamer set for them are the same in both

cases, such that artefactual changes in energy due to the release,

for example, of a clash in a neighbouring side chain in the mutant

are prevented. The effect of the mutation is then computed by

subtracting the energy of the self-mutated wild-type from that of

the mutant, obtaining DDG values that are provided in kilocalories

per mole of ALK1EC [99].

Amino acid contact analysis was performed with Sting [64] and

PyMol [106]. By analyzing the wild-type protein, we could

determine structurally important amino acids, which contribute to

the stability of the protein, or amino acids with strong contacts that

may be important for functional specificity. The analysis of

changes in the contact energies for mutant structures provided

hypotheses for the roles of the mutated amino acids. Electrostatic

surface potentials were calculated and visualised with the PyMOL

program [106] using the absolute electrostatic potential in a

vacuum. Accessible surface area was calculated with Areimol [63].

Docking
Docking analysis was performed by ClusPro [72]. In this

software, a rigid body docking is performed, using ZDOCK [107]

based on the fast Fourier transform correlation techniques.

ZDOCK uses a scoring function based on shape complementar-

ities, electrostatic potentials, and desolvation terms. Second,

filtering is performed using empirical free energy functions and

pairwise root mean square deviation clustering. The ligand with

the most neighbours is the cluster center, which is then minimized

by the CHARMM algorithm in the presence of the receptor. For

ALK1EC, the homology model we generated was used, and, for

BMP9 structure, the dimeric form of BMP9 (PDB ID: 1zkz) was

docked.

Visualisation of models and interface analysis
Visual inspection of the models and structures, and preparation

of the figures was carried out using the program Pymol [106].

Interface analysis was performed with PISA [108].

Supporting Information

Figure S1 Local Qmean scores of ALK1EC models.
Cartoon representation of (A) superposed ALK1EC models

generated by Pcons [29-31], Genesilico [35], I-Tasser [37] and

RaptorX [38], (B) final model generated by MODELLER [40].

Molecules were coloured with a blue (low Qmean score) to red

(high Qmean score) gradient.

(TIF)
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