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Abstract
This paper reviews the literature on sparse high dimensional models and discusses some
applications in economics and finance. Recent developments of theory, methods, and
implementations in penalized least squares and penalized likelihood methods are highlighted.
These variable selection methods are proved to be effective in high dimensional sparse modeling.
The limits of dimensionality that regularization methods can handle, the role of penalty functions,
and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse
modeling are also briefly discussed.
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1 INTRODUCTION
1.1 High Dimensionality in Economics and Finance

High dimensional models recently have gained considerable importance in several areas of
economics. For example, vector autoregressive (VAR) model (Sims (1980), Stock &
Watson (2001)) is the key technique to analyze the joint evolution of macroeconomic time
series, and can deliver a great deal of structural information. Because the number of
parameters grows quadratically with the size of model, standard VARs usually include no
more than ten variables. However econometricians may observe hundreds of data series. In
order to enrich the model information set, Bernanke et al. (2005) proposed to augment
standard VARs with estimated factors (FAVAR) to measure the effects of monetary policy.
Factor analysis also plays an important role in forecasting using large dimensional data sets.
See Stock & Watson (2006) and Bai & Ng (2008) for reviews.

Another example of high dimensionality is large home price panel data. To incorporate
cross-sectional effects, price in one county may depend upon several other counties, most
likely its geographic neighbors. Since such correlation is unknown, initially the regression
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equation may include about one thousand counties in US, which makes direct ordinary least
squares (OLS) estimation impossible. One technique to reduce dimension is variable
selection. Recently, statisticians and econometricians have developed algorithms to
simultaneously select relevant variables and estimate parameters efficiently. See Fan & Lv
(2010) for an overview. Variable selection techniques have been widely used in financial
portfolio construction, treatment effects models, and credit risk models.

Volatility matrix estimation is a high dimensional problem in finance. To optimize the
performance of a portfolio (Campbell et al. (1997), Cochrane (2005)) or to manage the risk
of a portfolio, asset managers need to estimate the covariance matrix or its inverse matrix of
the returns of assets in the portfolio. Suppose that we have 500 stocks to be selected for asset
allocation. There are 125,250 parameters in the covariance matrix. High dimensionality here
poses challenges to estimate matrix parameters, since small element-wise estimation errors
may result in huge error matrix-wise. In the time domain, high frequency financial data also
provide both opportunities and challenges to high dimensional modeling in economics and
finance. On a finer time scale, the market microstructure noise may no longer be negligible.

1.2 High Dimensionality in Science and Technology
High dimensional data have commonly emerged in other fields of sciences, engineering, and
humanities, thanks to the advances of computing technologies. Examples include marketing,
e-commerce, and warehouse data in business; genetic, microarray and proteomics data in
genomics and heath sciences; and biomedical imaging, functional magnetic resonance
imaging, tomography, signal processing, high resolution images, functional and longitudinal
data, among many others. For instance, for drug sales collected in many geographical
regions, cross-sectional correlation makes the dimensionality increase quickly; the
consideration of 1000 neighborhoods requires 1 million parameters. In meteorology and
earth sciences, temperatures and other attributes are recorded over time and in many regions.
Large panel data over a short time horizon are frequently encountered. In biological
sciences, one may want to classify diseases and predict clinical outcomes using microarray
gene expression or proteomics data, in which tens of thousands of expression levels are
potential covariates but there are typically only tens or hundreds of subjects. Hundreds of
thousands of SNPs are potential predictors in genome-wide association studies. The
dimensionality of the feature space grows rapidly when interactions of such predictors are
considered. Large scale data analysis is also a common feature of many problems in
machine learning such as text and document classification and computer vision. See, e.g.,
Donoho (2000), Fan & Li (2006), and Hastie et al. (2009) for more examples.

All of the above examples exhibit various levels of high dimensionality. To be more precise,
relatively high dimensionality refers to the asymptotic framework where the dimensionality
p is growing but is of a smaller order of the sample size n (i.e., p = o(n)), moderately high
dimensionality to the asymptotic framework where p grows proportionately to n (i.e., p ~ cn
for some c > 0), high dimensionality to the asymptotic framework where p can grow
polynomially with n (i.e., p = O(nα) for some α > 1), and ultra-high dimensionality to the
asymptotic framework where p can grow non-polynomially with n (i.e., log p = O(nα) for
some α > 0), the so-called NP-dimensionality. The inference and prediction are based on
high dimensional feature space.

1.3 Challenges of High Dimensionality
High dimensionality poses numerous challenges to statistical theory, methods, and
implementations in those problems. For example, in linear regression model with noise
variance σ2, when the dimensionality p is comparable to or exceeds sample size n, the
ordinary least squares (OLS) estimator is not well behaved or even no longer unique due to
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the (near) singularity of the design matrix. Regression model built on all regressors usually
has prediction or forecast error of order (1 + p/n)1/2σ when p ≤ n rather than (1 + s/n)1/2σ
when there are only s intrinsic predictors. This reflects two well-known phenomena in high
dimensional modeling: the collinearity or spurious correlations and the noise accumulation.
The spurious correlations among the predictors is an intrinsic difficulty of high dimensional
model selection. There are two sources of collinearity: the population level and the sample
level. There can be high spurious correlation even for independent and identically
distributed (i.i.d.) predictors when p is large compared with n (see, e.g., Fan & Lv (2008),
Fan & Lv (2010), Fan et al. (2010)). In fact, conventional intuition might no longer be
accurate in high dimensions. Another example is the data piling problems in high
dimensional space shown by Hall et al. (2005). There are issues of overfitting and model
identifiability in presence of high collinearity.

Noise accumulation is a common phenomenon in high dimensional prediction. Although it
is well known in regression problems, explicit theoretical quantification of the impact of
dimensionality on classification was not well understood until the recent work of Fan & Fan
(2008). Fan & Fan (2008) showed that for the independence classification rule, classification
using all features has misclassification rate determined by a quantity , which trades
off between the dimensionality p and overall signal strength Cp. Although the signal
contained in the features increases with dimensionality, the accompanying penalty on
dimensionality  can significantly deteriorate the performance. They showed indeed that
classification using all features can be as bad as random guessing because of the noise
accumulation in estimating the population centroids in high dimensions. Hall et al. (2008)
considered a similar problem for distance-based classifiers and showed that the
misclassification rate converges to zero when , which is a specific result of Fan
& Fan (2008). See, e.g., Donoho (2000), Fan & Li (2006), and Fan & Lv (2010) for more
accounts of challenges of high dimensionality.

As clearly demonstrated above, variable selection is fundamentally important in high
dimensional modeling. Bickel (2008) pointed out that the main goals of high dimensional
modeling are

• to construct as effective a method as possible to predict future observations;

• to gain insight into the relationship between features and response for scientific
purposes, as well as, hopefully, to construct an improved prediction method.

Examples of the former goal include portfolio optimization and text and document
classification, and the latter is important in many scientific endeavors such as genomic
studies. In addition to the noise accumulation, the inclusion of spurious predictors can
prevent the appearance of some important predictors due to the spurious correlation between
the predictors and response (see, e.g., Fan & Lv (2008) and Fan & Lv (2010)). In such cases,
those predictors help predict the noise, which can be a rather serious issue when we need to
accurately characterize the contribution from each identified predictor to the response
variable.

Sparse modeling has been widely used to deal with high dimensionality. The main
assumption is that the p-dimensional parameter vector is sparse with many components
being exactly zero or negligibly small, and each nonzero component stands for the
contribution of an important predictor. Such assumption is crucial in ensuring the
identifiability of the true underlying sparse model especially given relatively small sample
size. Although the notion of sparsity gives rise to biased estimation in general, it has been
proved to be very effective in many applications. In particular, variable selection can
increase the estimation accuracy by effectively identifying the important predictors and
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improve the model interpretability. There has been a huge literature contributed to statistical
theory, methods, and implementation for high dimensional sparse models. Sparsity should
be understood in a wider sense as a reduced complexity. For example, we may want to apply
some grouping or transformation of the input variables guided by some prior knowledge and
to add interactions and higher order terms for reducing the model bias. These lead to
transformed or enlarged feature spaces. The notion of sparsity carries over naturally.
Another example of dimensionality reduction is to introduce a sparse representation to
reduce the number of effective parameters. For instance, Fan et al. (2008) used the factor
model to reduce the dimensionality for high dimensional covariance matrix estimation.

The rest of the article is organized as follows. In Section 2, we survey some developments of
the penalized least squares estimation and its applications to econometrics. Section 3
presents some further applications of sparse models in finance. We provide a review of more
general likelihood based sparse models in Section 4. In Section 5, we review some recent
developments of sure screening methods for ultra-high dimensional sparse inference.
Conclusions are given in Section 6.

2 PENALIZED LEAST SQUARES

Assume that the collected data are of the form , in which yi is the i-th observation
of the response variable and xi is the associated p-dimensional predictors vector. The data
are often assumed to be a random sample from the population (xT, y), where conditional on
the predictor vector x, the response variable y has mean depending on a linear combination
of predictors βTx with β = (β1, ⋯ , βp)T. In high dimensional sparse modeling, we assume
ideally that most parameters βj are exactly zero, meaning that only a few of the predictors
contribute to the response. The objective of variable selection is identifying all important
predictors having nonzero regression coefficients and giving accurate estimates of those
parameters.

2.1 Univariate PLS
We start with the linear regression model

(2.1)

where y = (y1, ⋯ , yn)T is an n-dimensional response vector, X = (x1, ⋯ , xn)T is an n × p
design matrix, and ε is an n-dimensional noise vector. Consider the specific case of
canonical linear model with rescaled orthonormal design matrix, i.e., XTX = nIp. The
penalized least squares (PLS) problem is

(2.2)

where ‖ · ‖2 denotes the L2 norm and pλ(·) is a penalty function indexed by the regularization
parameter λ ≥ 0. By regularizing the conventional least squares estimation, we hope to
simultaneously select important variables and estimate their regression coefficients with
sparse estimates.

In the above canonical case of XTX = nIp, the PLS problem (2.2) can be transformed into the
following componentwise minimization problem
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(2.3)

where β̂ = n−1XTy is the ordinary least squares estimator or more generally the marginal
regression estimator. Thus we consider the univariate PLS problem

(2.4)

For any increasing penalty function pλ(·), we have a corresponding shrinkage rule in the
sense that |θ̂(z)| ≤ |z| and θ ̂(z) = sgn(z)|θ ̂(z)| (Antoniadis & Fan (2001)). It was further shown
in Antoniadis & Fan (2001) that the PLS estimator θ̂(z) has the following properties:

1. sparsity if , in which case the resulting estimator automatically
sets small estimated coefficients to zero to accomplish variable selection and
reduce model complexity;

2. approximate unbiasedness if  for large t, in which case the resulting
estimator is nearly unbiased, especially when the true coefficient βj is large, to
reduce model bias;

3. continuity if and only if arg , in which case the resulting
estimator is continuous in the data to reduce instability in model prediction (see,
e.g., the discussion in Breiman (1996)).

Here pλ(t) is nondecreasing and continuously differentiable on [0, ∞), the function
 is strictly unimodal on (0, ∞), and  represents . Generally speaking,

the singularity of the penalty function at the origin, i.e., , is necessary to generate
sparsity for the purpose of variable selection and its concavity is needed to reduce the
estimation bias when the true parameter is nonzero. In addition, the continuity is to ensure
the stability of the selected models.

There are many commonly used penalty functions such as the Lq penalties pλ(|θ|) = λ|θ|q for

q > 0 and I(|θ| ≠ 0) for q = 0. The uses of L0 penalty  and L1 penalty in (2.4)
give the hard-thresholding estimator θ̂H(z) = zI(|z| > λ) and the soft-thresholding estimator
θ ̂S(z) = sgn(z)(|z| − λ)+, respectively. It is easy to see that the convex Lq penalty with q > 1
does not satisfy the sparsity condition, the convex L1 penalty does not satisfy the
unbiasedness condition, and the concave Lq penalty with 0 ≤ q < 1 does not satisfy the
continuity condition. Thus none of the Lq penalties simultaneously satisfies all the above
three conditions. As such, Fan (1997) and Fan & Li (2001) introduced the smoothly clipped
absolute deviation (SCAD) penalty, whose derivative is given by

(2.5)

where pλ (0) = 0 and a = 3.7 is often used. It satisfies the aforementioned three properties
and in particular, ameliorates the bias problems of convex penalty functions. A closely
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related minimax concave penalty (MCP) was proposed in Zhang (2010), whose derivative is
given by

(2.6)

It is easy to see that the SCAD meets the L1 penalty around the origin and then gradually
levels off, and MCP translates the flat part of the derivative of SCAD to the origin. In
particular, when a = 1,

(2.7)

is called the hard-thresholding penalty by Fan & Li (2001) and Antoniadis (1996), who
showed that the solution of (2.4) is the hard-thresholding estimator θ̂H(z). Therefore, the
MCP produces discontinuous solutions with potential of model instability.

2.2 Multivariate PLS
Consider the multivariate PLS problem (2.2) with general design matrix X. The goal is to
estimate the true unknown sparse regression coefficients vector β0 = (β0,1, ⋯ , β0,p)T in
linear model (2.1), where the dimensionality p can be comparable with or even greatly
exceed the sample size n. The L0 regularization naturally arises in many classical model
selection methods, e.g., the AIC (Akaike (1973,1974)) and BIC (Schwartz (1978)). It
amounts to the best subset selection and has been shown to have nice sampling properties
(see, e.g., Barron et al. (1999)). However, it is unrealistic to implement exhaustive search
over the space of all submodels in even moderate dimensions, not to mention in high
dimensional econometric endeavors. Such computational difficulty motivated various
continuous relaxations of the discontinuous L0 penalty. For example, the bridge regression
(Frank & Friedman (1993)) uses the Lq penalty, 0 < q ≤ 2. In particular, the use of the L2
penalty is called the ridge regression. The non-negative garrote was introduced in Breiman
(1995) for variable selection and shrinkage estimation. The L1 penalized least squares
method was termed as Lasso in Tibshirani (1996), which is also collectively referred to as
the L1 penalization methods in other contexts. Other commonly used penalty functions
include the SCAD (Fan & Li (2001)) and MCP (Zhang (2010)) (see Section 2.1). A family
of concave penalties that bridge the L0 and L1 penalties was introduced in Lv & Fan (2009)
for model selection and sparse recovery. A linear combination of L1 and L2 penalties was
called an elastic net in Zou & Hastie (2005), with the L2 component encouraging grouping
of variables.

What kind of penalty functions are desirable for variable selection in sparse modeling?
Some appealing properties of the regularized estimator were first outlined in Fan & Li
(2001). They advocate penalty functions that give estimators with three properties
mentioned in Section 2.1. In particular, they considered penalty functions pλ(|θ|) that are
nondecreasing in |θ|, and provided insights into these properties. As mentioned before, the
SCAD penalty satisfies the above three properties, whereas the Lasso (the L1 penalty)
suffers from the bias issue.

Much effort has been devoted to developing algorithms for solving the PLS problem (2.2)
when the penalty function pλ is folded-concave, although it is generally challenging to
obtain a global optimizer. Fan & Li (2001) proposed a unified and effective local quadratic
approximation (LQA) algorithm by locally approximating the objective function by a
quadratic function. This translates the nonconvex minimization problem into a sequence of
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convex minimization problems. Specifically, for a given initial value , the
penalty function pλ can be locally approximated by a quadratic function as

(2.8)

With quadratic approximation (2.8), the PLS problem (2.2) becomes a convex PLS problem
with weighted L2 penalty and (2.8) admits a closed-form solution. To avoid numerical
instability, it sets the estimated coefficient β̂j = 0 if  is very close to 0, that is, deleting the
j-th covariate from the final model. One potential issue of LQA is that the value 0 is an
absorbing state in the sense that once a coefficient is set to zero, it remains zero in
subsequent iterations. Recently, the local linear approximation (LLA)

(2.9)

was introduced in Zou & Li (2008), after the LARS algorithm (Efron et al. (2004)) was
proposed to efficiently compute LASSO. Both LLA and LQA are convex majorats of
concave penalty function pλ (·) on [0, ∞), but LLA is a better approximation since it is the
minimum (tightest) convex majorant of concave function on [0, ∞). For both
approximations, the resulting sequence of target values is always nonincreasing, which is a
specific feature of minorization-maximization (MM) algorithms (Hunter & Lange (2000))
and Hunter & Li (2005).. This can easily be seen by the following argument. If at the kth
iteration Lk(β) is a convex majorant of the target function Q(β) such that Lk(βk) = Q(βk) and
βk+1 minimizes Lk(β), then

For Lasso (L1 PLS), there are powerful algorithms for convex optimization. For example,
Osborne et al (2000) cast the L1 PLS problem as a quadratic program. Efron et al. (2004)
proposed a fast and efficient least angle regression (LARS) algorithm for variable selection,
which, with a simple modification, produces the entire LASSO solution path {β̂(λ) : λ > 0}.
It uses the fact that the LASSO solution path is piecewise linear in λ (see also Rosset & Zhu
(2007) for more discussions on piecewise linearity of solution paths). The LARS algorithm
starts with a sufficiently large λ which picks only one predictor that has the largest
correlation with the response and decreases the λ value until the second variable is selected,
at which the selected variables have the same absolute correlation with the current working
residual as the first one, and so on. By the Karush-Kuhn-Tucker (KKT) conditions, a sign
constraint is needed for obtaining the Lasso solution path. See Efron et al. (2004) for more
details. Zhang (2010) extended the idea of LARS algorithm and introduced the PLUS
algorithm for computing the PLS solution path when the penalty function pλ(·) is a quadratic
spline such as the SCAD and MCP.

With linear approximation (2.9), the PLS problem (2.2) becomes a PLS problem with
weighted L1 penalty, say, the weighted Lasso

(2.10)
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where the weights are . Thus algorithms for Lasso can easily be adapted to solve
such problems. Different penalty functions give different weighting schemes, and in
particular, Lasso gives a constant weighting scheme. In this sense, the nonconvex PLS can
be regarded as an iteratively reweighted Lasso. The weight function is chosen adaptively to
reduce the biases due to penalization. The adaptive Lasso proposed in Zou (2006) uses the
weighting scheme  for some γ > 0. However, zero is an absorbing state. In contrast,
penalty functions such as SCAD and MCP do not have such an undesirable property. In fact,
if the initial estimate is zero, then wj = λ and the resulting estimate is the Lasso estimate. Fan
& Li (2001),Zou (2006), and Zou & Li (2008) suggested to use a consistent estimate such as
the un-penalized estimator as the initial value, which implicitly assumes that p ≪ n. When
dimensionality p exceeds n, it is not applicable. Fan & Lv (2008) recommended using ,
which is equivalent to using the LASSO estimate as the initial estimate. The SCAD does not
stop here. It further reduces the bias problem of LASSO by assigning an adaptive weighting
scheme. Other possible initial values include estimators given by the stepwise addition fit or
componentwise regression. They put forward the recommendation that only a few iterations
are needed.

Coordinate optimization has also been widely used for solving regularization problems. For
example, for the PLS problem (2.2), Fu (1998), Daubechies et al. (2004), and Wu & Lang
(2008) proposed a coordinate descent algorithm that iteratively optimizes (2.2) one
component at a time. Such algorithm can also be applied to solve other problems such as in
Meier et al. (2008) for the group LASSO (Yuan & Lin (2006)), Friedman et al. (2008) for
penalized precision matrix estimation, and Fan & Lv (2009) for penalized likelihood(see
Section 4.1 for more details).

There have been many studies of the theoretical properties of PLS methods in the literature.
We give here only a very brief sketch of the developments due to the space limitation. A
more detailed account can be found in, e.g., Fan & Lv (2010). In a seminal paper, Fan & Li
(2001) laid down the theoretical framework of nonconcave penalized likelihood and
introduced the oracle property which means that the estimator enjoys the same sparsity as
the oracle estimator with asymptotic probability one and attains an information bound
mimicking that of the oracle estimator. Here the oracle estimator β̂O means the infeasible

estimator knowing the true subset S ahead of time, namely, the component  and  is
the least-squares estimate using only the variables in S. They showed that for certain
penalties, the resulting estimator possesses the oracle property in the classical framework of
fixed dimensionality p. In particular, they showed that such conditions can be satisfied by
SCAD, but not the Lasso, which suggests that the Lasso estimator generally does not have
the oracle property. This has indeed been shown in Zou (2006) in the finite parameter
setting. Fan & Peng (2004) later extended the results of Fan & Li (2001) to the diverging
dimensional setting of p = o(n1/5) or o(n1/3). Recently, extensive efforts have been made to
study the properties with NP-dimensionality.

Another L1 regularization method that is related to Lasso is the Dantzig selector recently
proposed by Candes & Tao (2007). It is defined as the solution to

(2.11)

where λ ≥ 0 is a regularization parameter. Under the uniform uncertainty principle (UUP) on
the design matrix X, which is a condition on the bounded condition number for all
submatrices of X, they showed that, with large probability, the Dantzig selector β̂ mimics
the risk of the oracle estimator up to a logarithmic factor log p, specifically
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(2.12)

where β0 = (β0,1, ⋯ , β0,p)T is the true regression coefficients vector, C > 0 is some constant,
and . The UUP condition can be stringent in high dimensions (see, e.g., Fan
& Lv (2008) and Cai & Lv (2007) for more discussions). The oracle inequality (2.12) does
not tell the sparsity of the estimate. In a seminal paper, Bickel et al. (2009) presented a
simultaneous theoretical comparison of the LASSO and the Dantzig selector in a general
high dimensional nonparametric regression model

(2.13)

where f = (f(x1), ⋯ , f(xn)T with f an unknown function of p-variates, and y, X = (x1, ⋯ ,
xn)T, and ε are the same as in (2.1). Under a sparsity scenario, Bickel et al. (2009) derived
parallel oracle inequalities for the prediction risk for both methods, and established the
asymptotic equivalence of the LASSO estimator and the Dantzig selector. They also
considered the specific case of linear model (2.1), i.e., (2.13) with true regression function f
= Xβ0, and gave bounds under the Lq estimation loss for 1 ≤ q ≤ 2.

For variable selection, we are concerned with the model selection consistency of
regularization methods in addition to the estimation consistency under some loss. Zhao &
Yu (2006) gave a characterization of the model selection consistency of the LASSO by
studying a stronger but technically more convenient property of sign consistency: P(sgn(β̂) =
sgn(β0)) → 1 as n → ∞. They showed that the weak irrepresentable condition

(2.14)

(assume covariates have been standardized) is a necessary condition for sign consistency of
the LASSO, and the strong irrepresentable condition stating that the left-hand side of (2.14)
is uniformly bounded by a constant 0 < C < 1, is a sufficient condition for sign consistency
of the LASSO, where β1 is the subvector of β0 on its support supp(β0), and X1 and X2
denote the submatrices of the n × p design matrix X formed by columns in supp(β0) and its
complement, respectively. However, the irrepresentable condition is very restrictive in high
dimensions. It requires the L1-norm of all regression coefficients of all variables in X2
regressed on X1 bounded by 1. See, e.g., Lv & Fan (2009) and Fan & Song (2010) for a
simple illustrative example. This demonstrates that in high dimensions, the LASSO
estimator can easily select an inconsistent model, which explains why the LASSO tends to
include many false positive variables in the selected model. The latter is also related to the
bias problem in Lasso, which requires a small penalization λ whereas the sparsity requires
choosing a large λ.

Three questions of interest naturally arise for regularization methods. What limits of the
dimensionality can PLS methods handle? What is the role of penalty functions? What are
the statistical properties of PLS methods when the penalty function pλ is no longer convex?
As mentioned before, Fan & Li (2001) and Fan & Peng (2004) provided answers via the
framework of oracle property for fixed or relatively slowly growing dimensionality p.
Recently, Lv & Fan (2009) introduced the weak oracle property, which means that the
estimator enjoys the same sparsity as the oracle estimator with asymptotic probability one
and has consistency, and established regularity conditions under which the PLS estimator
given by folded-concave penalties has nonasymptotic weak oracle property when the
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dimensionality p can grow non-polynomially with sample size n. They considered a wide
class of concave penalties including SCAD and MCP, and the L1 penalty at its boundary. In
particular, their results show that concave penalties can be more advantageous than convex
penalties in high dimensional variable selection. Later, Fan & Lv (2009) extended the results
of Lv & Fan (2009) to folded-concave penalized likelihood in generalized linear models
with ultra-high dimensionality. Fan & Lv (2009) also characterized the global optimality of
the regularized estimator. See, e.g., Kim et al. (2008) and Kim & Kwon (2009), who showed
that the SCAD estimator equals the oracle estimator with probability tending to 1. Other
work on PLS methods includes Donoho et al. (2006), Meinshausen & Bühlmann (2006),
Wainwright (2006), Huang et al. (2008), Koltchinskii (2008), and Zhang (2010), among
many others.

2.3 Multivariate Time Series
High-dimensionality arises easily from vector AR models. A p-dimensional time series with
d lags gives dp2 autoregressive parameters. As an illustration, we focus on an application of
PLS to home price estimation and forecasting.

The study of housing market and its relation to broader macroeconomic environment has
received considerable interest, especially during the past decade. The empirical relationship
between property price and income, interest rate, unemployment, size of labor force, and
other variables are widely examined. Iacoviello & Neri (2010) report strong effect of
monetary policy on house prices in the more recent periods using a DSGE model. Leamer
(2007) noted the importance of housing sector in U.S. business cycles. Bernanke (2010)
argues direct linkage between accommodative fed policy rate and home price appreciation is
weak, though they coexisted during 2001–2006. Instead, exotic mortgages and deteriorating
lending standards contributed much more to the housing bubble.

Forecasting housing prices locally is important, because price dynamics over regions, states,
counties, ZIPs behave quite differently, especially for the past two decades. First, prices in
the “bubble” states, such as California, Florida and Arizona, experience more appreciation
during the booming period of 2001–2006 than other states, and subsequently much more
decline during 2007–2009. For some non-bubble states, e.g. northeast states like
Massachusetts and New Jersey experience solid price increase during boom, but only
moderate decline afterwards, whereas Texas and Ohio have calm markets throughout the
period. Second, the seasonality variation across states are different. In all northeast and west
coast states, seasonality is pronounced, whereas in most southern states and southwestern
inland states, such as NV and AZ, the seasonality amplitude is weak. Most econometric
analysis on housing market is based on state-level panel data. Calomiris et al. (2008)
performs panel VAR regression to reveal the strong effect of foreclosure on home prices.
Stock & Watson (2008) use a dynamic factor model with stochastic volatility to examine the
link between housing construction and the decline in macro volatility since mid-1980s.
Rapach & Strass (2007) consider combination of individual VAR forecasts, with each
equation consisting of only one macroeconomic variable, in forecasting home price growth
in several states. Ng & Moench (2010) perform a hierarchical factor model consisting of
regions and states to draw a linkage between housing and consumption.

An issue of factor models in forecasting local housing prices is that it cannot explicitly
model cross-sectional correlation. For example, to predict the home price appreciation
(HPA) in Nevada, the 2-factor equation contains only a national factor component and a
state-specific component. It does not include house prices in California and Arizona, both of
which can also provide predicting power. In finer scales such as county and ZIP level, local
effect can be more pronounced and heterogeneous. For instance, suburbs are sensitive to
price changes in city centers, but not vise versa. In a sense, lags variables of other equations
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may contribute additional predicting power even conditioning on national or aggregated
state factors.

Adding neighborhoods variables into regression equation results the problem of high-
dimensionality, and standard regression techniques often fail to estimate. Let  be the HPA
in county i, an s-period ahead county-level forecast model writes

where Xt are observable factors,  are the HPA of other counties, and bij and βi are
regression coefficients. Since p is large (around 1000 counties in US), such model cannot be
estimated by OLS simply because of not long enough time series. On the other hand, we
expect that conditional on national factors, only a small number of counties are useful for
prediction, which gives rises to the notion of sparsity. Penalized least-squares can be used to
estimate bij and obtain sparse solutions (and hence neighborhood selection) at the same time.
A simple solution is to minimize for each given target region i the following object:

where the weights wij are chosen according to the geographical distances between counties i
and j. Counties far away from the target county receive larger penalty, and the lag variable
of target county gets zero penalization and will be included in the estimated equation. This
choice of penalty reflects the intuition that if two counties are far away, their correlation is
more naturally explained by national factors, which are already included in X.

We use monthly HPA data in 352 largest counties of US in terms of monthly repeated sales
from January 2000 to December 2009 to fit the model. The measurements of HPAs are more
reliable for those counties. As an illustration, the market factor is chosen to be national
HPA. Therefore it is a reduced-form forecasting model of county level HPA, taking national
HPA forecast as an input. Figure 1 shows how cross-county correlation is captured by a
sparse VAR. The top-left panel is the sample correlation of 352 HPA data series, showing
heavy spatial-correlation. Top-right panel depicts the residual correlation of an OLS using
only the national factor, without using neighboring HPAs. While spatial-correlation is
reduced significantly in the residuals, the national factor can not fully capture the local
dependence. The bottom left panel shows correlations of residuals using penalized least-
squares after considering neighborhood effects. The residual correlations look essentially
white noise, indicating that the national HPA along with the neighborhood selection captures
the cross-dependence of regional HPAs. Bottom-right panel highlights the selected
neighborhood variables. For each county, only 3–4 neighboring counties are chosen on
average. The model achieves both parsimony and in-sample estimation accuracy.

The sparse cross-sectional modeling translates into more forecasting power. This is
illustrated by an out-of-sample test. Periods 2000.1–2005.12 are now used as training
sample, and 2006.1–2009.12 are testing periods. We propose the following scheme to carry
out prediction throughout next 3 years. For the short-term prediction horizons s from 1 to 6
months, each month is predicted separately using a sparse VAR with only lag s variables.
For moderate time horizon of 7–36 months, we forecast only the average HPA over 6
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months, instead of individual months, due to stability concerns. We use discounted
aggregated squared error as a measure of overall performance for each county:

The results shows that over 352 counties, the sparse VAR with neighborhood information
performs on average 30% better in terms of prediction error than the model without using
the neighborhood information. Details of improvements are seen from the top panel of
Figure 2. The bottom panel compares backtest forecasts using OLS with only the national
HPA (blue) and PLS with additional neighborhood information (red) for the largest counties
with the historical HPAs (black).

2.4 Benchmark of Prediction Errors and Spurious Correlation
How good is a prediction method? The ideal prediction is to use the true model and the
residual variance σ2 provides a benchmark measure of prediction errors. However, in high
dimensional econometrics problems, as mentioned in Section 1.3, the spurious correlations
among realized random variables are high and some predictors can easily be selected to
predict the realized noise vector. Therefore, the residual variance can substantially
underestimate σ2, since the realized noises can be predicted well by these predictors.
Specifically, let 𝒮 ̂ and 0 be the sets of selected and true variables, respectively. Fan et al.

(2010) argued that the variables in  are used to predict the realized noise. As a
result, in the linear model (2.1), the residual sum of squares substantially underestimates the
error variance. Thus it is important and necessary to screen variables that are not truly
related to the response and reduce their influences.

One effective way of handling spurious correlations and their influence is to use the refitted
cross-validation (RCV) proposed by Fan et al. (2010). The sample is randomly split into two
equal halves, and a variable selection procedure is applied to both subsamples. For each
subsample, a variance estimate is obtained by regressing the response on the set of
predictors selected based on the other subsample. The average of those two estimates gives a
new variance estimate. Specifically, let Ŝ1 be the selected variables using the first half of the
data, then refit the regression coefficients of variables in Ŝ1 using the second half data and
compute the residual variance . A similar estimate  can be obtained and the final
estimate is simply  or its weighted version using the degrees of freedom in
the computation of two residual variances. Fan et al. (2010) showed that when the variable
selection procedure has the sure screening property: S0 ⊂ Ŝ1 ∩Ŝ2 (see Section 5.1 for more
discussion), the resulting estimator can perform as well as the oracle variance estimator,
which knows S0 in advance. This is because that the probability that a spurious predictor has
high correlation with the response in two independent samples is very small, and hence the
spurious predictors in the first stage have little influence on the second stage of refitting.
This idea of RCV can be applicable to the variance estimation and variable selection in more
general high dimensional sparse models.

As an illustration, we consider the benchmark one-step forecasting errors σ2 in San
Francisco and Los Angeles, using the HPA data from January 1998 to December 2005 (96
months). Figure 3 shows the estimates as a function of the selected model size s. Clearly, the
naive estimates of directly computing residual variances decrease steadily with the selected
model size s due to spurious correlation, whereas the RCV gives reasonably stable estimates
for a range of selected models. The benchmark for both regions are about .53%, whereas the
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standard deviations of month over month variations of HPAs are respectively 1.08% and
1.69% in San Francisco and Los Angeles areas. To see how penalized least-squares method
works in comparison with the benchmark, we compute rolling one-step prediction errors
over 12 months in 2006. The prediction errors are respectively .67% and .86% for San
Francisco and Los Angeles areas, respectively. They are clearly larger than the benchmark
as expected, but considerably smaller than the standard deviations, which use no variables to
forecast.

The penalized least-squares with SCAD penalty selects 7 predictors for both areas. National
HPA and 1-month lag HPA for each area are selected in both equations. All other predictors
are based in California, though the pool of regressors contains all county-level areas in
United States. In Los Angeles equation, for example, other selected areas are: Ventura,
Riverside-San Bernardino, Tuolumne, Napa, and San Diego. Among them Ventura,
Riverside-San Bernardino and San Diego are southern California areas which are
geographically adjacent/close to Los Angeles. Other two areas lie in Bay area/inner northern
CA and are likely to be spurious predictors.

3 SPARSE MODELS IN FINANCE
In this section, we consider some further applications of PLS methods with focus on sparse
models in finance.

3.1 Estimation of High-dimensional Volatility Matrix
Covariance matrix estimation is a fundamental problem in many areas of multivariate
analysis. For example, an estimate of covariance matrix Σ is required in financial risk
assessment and longitudinal studies, whereas an inverse of the covariance matrix, called the
precision matrix Ω = Σ−1, is needed in optimal portfolio selection, linear discriminant
analysis, and graphical models. In particular, estimating a p × p covariance or precision
matrix is very challenging when the number of variables p is large compared with the
number of observations n as there are p(p + 1)/2 parameters in the covariance matrix that
need to be estimated. The traditional covariance matrix estimator, the sample covariance
matrix, is known to be unbiased and is invertible when p is no larger than n. The sample
covariance matrix is a natural candidate when p is small, but it no longer performs well for
moderate or large dimensionality (see, e.g., Lin & Perlman (1985) and Johnstone (2001)).
Additional challenges arise when estimating the precision matrix when n < p.

To deal with high dimensionality, two main directions have been taken in the literature. One
is to remedy the sample covariance matrix estimator using approaches such as eigen-method
and shrinkage (see, e.g., Stein (1975) and Ledoit & Wolf (2004)). The other one is to impose
some structure such as the sparsity, factor model, and autoregressive model on the data to
reduce the dimensionality. See, for example, Wong et al. (2003), Huang et al. (2006), Yuan
& Lin (2007), Bickel & Levina (2008a), Bickel & Levina (2008b), Fan et al. (2008), Bai &
Ng (2008), Levina et al. (2008), Rothman et al. (2008), Lam & Fan (2009), and Cai et al.
(2010). Various approaches have been taken to seek a balance between the bias and variance
of covariance matrix estimators (see, e.g., Dempster (1972), Leonard & Hsu (1992), Chiu et
al. (1996), Diggle & Verbyla (1998), Pourahmadi (2000), Boik (2002), Smith & Kohn
(2002), and Wu & Pourahmadi (2003)).

The PLS and penalized likelihood (see Section 4.1) can also be used to estimate large scale
covariances effectively and parsimoniously (see, e.g., Huang et al. (2006), Li & Gui (2006),
Yuan & Lin (2007), Levina et al. (2008), and Lam & Fan (2009)). Assuming the covariance
matrix has some sparse parametrization, the idea of variable selection can be used to select

Fan et al. Page 13

Annu Rev Econom. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nonzero matrix parameters. Lam & Fan (2009) gave a comprehensive treatment on the
sparse covariance matrix, sparse precision matrix, and sparse Cholesky decomposition.

The negative Gaussian pseudo-likelihood is

(3.1)

where S is the sample covariance matrix. Therefore, the sparsity of the precision matrix can
be explored by the penalized pseudo-likelihood

(3.2)

penalizing only the off-diagonal elements ωi,j of the precision matrix Ω, since the diagonal
elements are non-sparse. This allows us to estimate the precision matrix even when p > n.
Similarly, the sparsity of the covariance matrix can be explored by minimizing

(3.3)

again penalizing only the off-diagonal elements σi,j of the covariance matrix Σ. Various
algorithms have been developed for optimizing (3.2) and (3.3). See, for example, Friedman
et al. (2008) and Fan et al. (2009). A comprehensive theoretical study of properties of these
approaches has been given in Lam & Fan (2009). They showed that the rates of convergence
for these problems under the Frobenius norm are of order (s log p/n)1/2, where s is the
number of nonzero elements. This demonstrates that the impact of dimensionality p is
through a logarithmic factor. Their also studied the sparsistency of the estimates, which is a
property that all zero parameters are estimated as zero with asymptotic probability one, and
showed that the L1 penalty is restrictive in that the number of nonzero off-diagonal elements
s′ = O(p), whereas for fold-concave penalties such as SCAD and hard-thresholding penalty,
there is no such a restriction.

Sparse Cholesky decomposition can be explored similarly. Let w = (W1, ⋯ , Wp)T be a p-
dimensional random vector with mean zero and covariance matrix Σ. Using the modified
Cholesky decomposition, we have LΣLT = D, where L is a lower triangular matrix having
diagonal elements 1 and off-diagonal elements −ϕt,j in the (t, j) entry for 1 ≤ j < t ≤ p, and

 is a diagonal matrix. Denote by e = Lw = (e1, ⋯ , ep)T. Since D is
diagonal, e1, ⋯ , ep are uncorrelated. Thus, for each 2 ≤ t ≤ p,

(3.4)

This shows that the Wt is an autoregressive (AR) series, which gives an interpretation for
elements of matrices L and D and enables us to use the PLS for covariance selection.
Suppose that wi = (Wi1, ⋯ , Wip)T, i = 1, ⋯ , n, is a random sample from w. For t = 2, ⋯ , p,
covariance selection can be accomplished by solving the following PLS problems:
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(3.5)

With estimated sparse L, the diagonal elements can be estimated by the sample variance of
the components of L̂wi. Hence, the sparsity of loadings in (3.4) is explored.

When the covariance matrix Σ admits sparsity structure, other simple methods can be
exploited. Bickel & Levina (2008b) and El Karoui (2008) considered the approach of
directly applying entrywise hard thresholding on the sample covariance matrix. The
thresholded estimator has been shown to be consistent under the operator norm, where the
former considered the case of (log p)/n → 0 and the latter considered the case of p ~ cn. The
optimal rates of convergence of such covariance matrix estimation were derived in Cai et al.
(2010). Bickel & Levina (2008a) studied the methods of banding the sample covariance
matrix and banding the inverse of the covariance via the Cholesky decomposition of the
inverse for the estimation of Σ and Σ−1, respectively. These estimates have been shown to
be consistent under the operator norm for (log p)2/n → 0, and explicit rates of convergence
were obtained. Meinshausen & Bühlmann (2006) proved that Lasso is consistent in
neighborhood selection in high dimensional Gaussian graphical models, where the sparsity
in the inverse covariance matrix Σ−1 amounts to the conditional independency between the
variables.

3.2 Portfolio Selection
Markowitz (1952, 1959) laid down the seminal framework of mean-variance analysis. In
practice, a simple implementation is to construct the mean-variance efficient portfolio using
sample means and sample covariances matrix. However, due to accumulation of estimation
errors, the theoretical optimal allocation vector can be very different from the estimated one,
especially when the number of assets under consideration is large. As a result, such
portfolios often suffer poor out-of-sample performance, although they are optimal in-
sample. Recently a number of works focus on improving the performance of Markowitz
portfolio using various regularization and stabilization techniques. Jagannathan & Ma
(2003) consider the minimum variance portfolio with no short sale constraints: They show
that such a constrained minimum variance portfolio outperforms the global minimum
variance portfolio in practice when unknown quantities are estimated. They try to explain
the puzzle why no short-sale constraints help. To bridge the no-short constraints on one
extreme and no constraints on short sales on the other extreme, Fan et al. (2008) introduce a
gross-exposure parameter c and examine the impact of c on the performance of the
minimum portfolio. They show that with gross-exposure constraint the empirically selected
optimal portfolios based on estimated covariance matrices have similar performance to the
theoretical optimal portfolios, and there is little error accumulation effect from estimation of
vast covariance matrices when c is modest.

The portfolio optimization problem is

where Σ is the true covariance matrix. The side constraints Aw = a can be on the expected
returns of the portfolio, as in the Markowitz (1952, 1959) formulation. They can also be the
constraints on the allocations on sectors or industries, or the constraints on the risk
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exposures to certain known risk factors. They make the portfolio even more stable.
Therefore, they can be removed from theoretical studies. Let

be the theoretical and empirical portfolio risk with allocation w, where Σ̂ is an estimator of
covariance matrix with sample size n. Let

The following theorem shows the theoretical minimum risk R(wopt) (also called the oracle
risk), the actual risk R(ŵopt) and empirical risk Rn(ŵopt) are approximately the same for a
moderate c and a reasonable covariance matrix estimator.

Theorem 1 Let an = ‖Σ̂ − Σ‖∞. Then, we have

Theorem 1, due to Fan et al. (2008), gives the upper bounds on the approximation errors of
risks. The following result further controls an.

Theorem 2 Let σij and σ ̂ij be the (i, j)th element of the matrices Σ and Σ̂, respectively. If for
a sufficiently large x,

for two positive constants a and C, then

(3.6)

Fan et al. (2008) give further elementary conditions under which Theorem 2 holds. The
connection between portfolio minimization with gross exposure constraint and L1
constrained regression problem enables fast statistical algorithms. The paper uses least-angle
regression, or LARS-LASSO algorithm to solve for optimal portfolio under various gross
exposure limits c. When c = 1, it is equivalent to no short sale constraint; as c increases the
constraint becomes less stringent and becomes the global minimum variance problem when
c = ∞. Empirical studies find when c is around 2 the portfolio achieves best out of sample
performance in terms of variance and Sharpe ratio, when low-frequency daily data are used.

Another important feature of gross exposure constraint is that it yields sparse portfolio
selection, meaning that there are only a fraction of active positions, while most other assets
receive exactly zero position. This greatly reduces transaction cost, research and tracking
cost. This feature is also noted in Brodie et al. (2009). DeMiguel et al. (2009) consider other
norms to constrain portfolio; Carrasco & Noumon (2010) propose generalized cross-
validation to optimize the regularization parameters.
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3.3 Factor Models
In Section 3.1, we discussed large covariance matrix estimation via penalization methods. In
this section, we focus on a different approach of using a factor model, which provides an
effective way of sparse modeling. Consider the multi-factor model

(3.7)

where Yi is the excess return of the i-th asset over the risk-free asset, f1, ⋯ , fK are the excess
returns of K factors that influence the returns of the market, bij’s are unknown factor
loadings, and ε1, ⋯ , εp are idiosyncratic noises that are uncorrelated with the factors. The
factor models have been widely applied and studied in economics and finance. See, e.g.,
Engle & Watson (1981), Chamberlain (1983), Chamberlain & Rothschild (1983), Bai
(2003), and Stock & Watson (2005). Famous examples include the Fama-French three-
factor model and five-factor model (Fama & French (1992, 1993)). Yet, the use of factor
models on volatility matrix estimation for portfolio allocation was poorly understood until
the work of Fan et al. (2008).

Thanks to the multi-factor model (3.7), if a few factors can completely capture the cross-
sectional risks, the number of parameters in covariance matrix estimation can be
significantly reduced. For example, using the Fama-French three-factor model, there are 4p
instead of p(p + 1)/2 parameters. Despite the popularity of factor models in the literature, the
impact of dimensionality on the estimation errors of covariance matrices and its applications
to optimal portfolio allocation and portfolio risk assessment were not well studied until
recently. As is now common in many applications, the number of variables p can be large
compared to the size n of available sample. It is also necessary to study the situation where
the number of factors K diverges, which makes the K-factor model (3.7) better approximate
the true underlying model as K grows. Thus, it is important to study the factor model (3.7) in
the asymptotic framework of p → ∞ and K → ∞.

Rewrite the factor model (3.7) in matrix form

(3.8)

where y = (Y1, ⋯ , Yp)T, B = (b1, ⋯ , bp)T with bi = (bi1, ⋯ , biK)T, f = (f1, ⋯ , fK)T, and ε =
(ε1, ⋯ , εp)T. Denote by Σ = cov(y), X = (f1, ⋯ , fn), and Y = (y1, ⋯ , yn), where (f1, y1), ⋯ ,
(fn, yn) are n i.i.d. samples of (f, y). Fan et al. (2008) proposed a substitution estimator for Σ,

(3.9)

where B̂ = YXT(XXT)−1 is the matrix of estimated regression coefficients,  is the
sample covariance matrix of the factors f, and Σ̂0 = diag(n−1ÊÊT) is the diagonal matrix of
n−1ÊÊT with Ê = Y–B̂X the matrix of residuals. With true factor structure, the substitution
estimator Σ̂ is expected to perform better than the sample covariance matrix estimator Σ̂sam.
They derived the rates of convergence of the factor-model based covariance matrix
estimator Σ̂ and the sample covariance matrix estimator Σ̂sam simultaneously under the
Frobenius norm ‖ · ‖ and a new norm ‖ · ‖Σ, where ‖A‖Σ = p−1/2 ‖Σ−1/2AΣ−1/2‖ for any p × p
matrix A. This new norm was introduced to better understand the factor structure. In
particular, they showed that Σ̂ has a faster convergence rate than Σ̂sam under the new norm.
The inverses of covariance matrices play an important role in many applications such as
optimal portfolio allocation. Fan et al. (2008) also compared the convergence rates of Σ̂−1
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and , which illustrates the advantage of using the factor model. Furthermore, they
investigated the impacts of covariance matrix estimation on some applications such as
optimal portfolio allocation and portfolio risk assessment. They identified how large p and K
can be such that the error in the estimated covariance is negligible in those applications.
Explicit convergence rates of various portfolio variances were established.

In many applications, the factors are usually unknown to us. So it is important to study the
factor models with unknown factors for the purpose of covariance matrix estimation.
Constructing factors that influence the market itself is a high dimensional variable selection
problem with massive amount of trading data. One can apply, e.g., the sparse principal
component analysis (PCA) (see Johnstone & Lu (2004) and Zou et al. (2006)) to construct
the unobservable factors. It is also practically important to consider dynamic factor models
where the factor loadings as well as the distributions of the factors evolve over time. The
heterogeneity of the observations is another important aspect that needs to be addressed.

4 LIKELIHOOD BASED SPARSE MODELS
Sparse models arise frequently in the likelihood based models. Penalization methods provide
an effective approach to explore the sparsity. This section gives a brief overview on the
recent development.

4.1 Penalized Likelihood
The ideas of the AIC (Akaike (1973, 1974)) and BIC (Schwartz (1978)) suggest a common
framework for model selection: choose a parameter vector β that maximizes the penalized
likelihood

(4.1)

where ℓn(β) is the log-likelihood function and λ ≥ 0 is a regularization parameter. The
computational difficulty of the combinatorial optimization in (4.1) stimulated many
continuous relaxations of the discontinuous L0 penalty, leading to a generalized form of
penalized likelihood

(4.2)

where ℓn(β) is the log-likelihood function and pλ(·) is a penalty function indexed by the
regularization parameter λ ≥ 0 as in PLS (2.2). It produces sparse solution when λ is
sufficiently large.

It is nontrivial to maximize the penalized likelihood (4.2) when the penalty function pλ is
folded concave. In such case, it is also generally difficult to study the global maximizer
without the concavity of the objective function. As is common in the literature, the main
attention of theory and implementations has been on local optimizers that have nice
statistical properties. Many efficient algorithms have been proposed for optimizing
nonconcave penalized likelihood when pλ is a folded concave function. Fan & Li (2001)
introduce the LQA algorithm by using the Newton-Raphson method and a quadratic
approximation in (2.8) and Zou & Li (2008) propose the LLA algorithm by replacing the
quadratic approximation with a linear approximation in (2.9). See Section 2.2 for more
detailed discussions on those and other algorithms. Consider the SCAD as an example. The
use of the trivial zero initial value for LLA gives exactly the Lasso estimate. In this sense,
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the folded-concave regularization methods such as SCAD and MCP can be regarded as
iteratively reweighted Lasso.

Coordinate optimization has gained much interest recently for implementing regularization
methods for high dimensional variable selection. It is fast to implement when the univariate
optimization problem has an analytic solution, which is the case for many commonly used
penalty functions such as Lasso, SCAD, and MCP. For example, Fan & Lv (2009)
introduced the iterative coordinate ascent (ICA) algorithm, a path-following coordinate
optimization algorithm, for maximizing the folded concave penalized likelihood (4.2)
including PLS (2.2). It maximizes one coordinate at a time with successive displacements
for the penalized likelihood (4.2) with regularization parameters λ in decreasing order. More
specifically, for each coordinate within each iteration, it uses the second order
approximation of ℓn(β) at the current p-vector along that coordinate and maximizes the
univariate penalized quadratic approximation

(4.3)

where Λ > 0. It updates each coordinate if the maximizer of the above univariate penalized
quadratic approximation makes the penalized likelihood (4.2) strictly increasing. Thus the
ICA algorithm enjoys the ascent property that the resulting sequence of values of the
penalized likelihood is increasing for a fixed λ. Fan & Lv (2009) demonstrated that the
coordinate optimization works equally well and efficiently for producing the entire solution
paths for concave penalties.

A natural question is what the sampling properties of penalized likelihood estimation (4.2)
are when the penalty function pλ is not necessarily convex. Fan & Li (2001) studied the
oracle properties of folded concave penalized likelihood estimators in the finite-dimensional
setting, and Fan & Peng (2004) generalized their results to the relatively high dimensional

setting of p = o(n1/5) or o(n1/3). Let  be the true regression coefficients vector
with β1 and β2 the subvectors of nonsparse and sparse elements, respectively, and s = ‖β0‖0.
Denote by  and , where ○ denotes the the Hadamard
(componentwise) product. Under some regularity conditions, they showed that with

probability tending to 1 as n → ∞, there exists a  consistent local maximizer

 of (4.2) satisfying the following

a. (Sparsity) β̂2 = 0;

b. (Asymptotic normality)

(4.4)

where An is a q × s matrix with , a q × q symmetric positive definite matrix, I1 =
I(β1) is the Fisher information matrix knowing the true model supp(β0), and β̂1 is a
subvector of β̂ formed by components in supp(β0). In particular, the SCAD estimator
performs as well as the oracle estimator knowing the true mode in advance, whereas the
Lasso estimator generally does not since the technical conditions are incompatible.

A long-lasting question in the literature is whether the penalized likelihood methods possess
the oracle property (Fan & Li (2001)) in ultra-high dimensions. Fan & Lv (2009) recently
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addressed this problem in the context of generalized linear models (GLMs) with NP-
dimensionality: log p = O(na) for some a > 0. With a canonical link, the conditional
distribution of y given X belongs to the canonical exponential family with the following
density function

(4.5)

where β = (β1, ⋯ , βp)T is an unknown p-dimensional vector of regression coefficients, {f0(y;
θ) : θ ∈ R} is a family of distributions in the regular exponential family with dispersion
parameter ϕ ∈ (0, ∞), and (θ1, ⋯ , θn)T = Xβ. Well-known examples of GLMs include the
linear, logistic, and Poisson regression models. They proved that under some regularity

conditions, there exists a local maximizer  of the penalized likelihood (4.2) such
that β̂2 = 0 with probability tending to 1 and , where β̂1 is a subvector
of β̂ formed by components in supp(β0) and s = ‖β0‖0. They also established asymptotic
normality and thus the oracle property. Their studies demonstrate that the technical
conditions are less restrictive for folded concave penalties such as SCAD. A natural and
important question is when the folded concave penalized likelihood estimator is a global
maximizer of the penalized likelihood (4.2). Fan & Lv (2009) gave characterizations of such
a property from two perspectives: global optimality (for p ≤ n) and restricted global
optimality (for p > n). In addition, they showed that the SCAD penalized likelihood
estimator can meet the oracle estimator under some regularity conditions. Other work on
penalized likelihood methods includes Meier et al. (2008) and van de Geer (2008), among
many others.

4.2 Penalized Partial Likelihood
Credit risk is a topic that has been extensively studied in finance and economics literature.
Various models have been proposed for pricing and hedging credit risky securities. See
Jarrow (2009) for a review of credit risk models. Cox (1972, 1975) introduced the famous
Cox’s proportional hazards model

(4.6)

to accommodate the effect of covariates in which h(t|x)is the conditional hazard rate at time
t, h0(t) is the baseline hazard function, and β = (β1, ⋯ , βp) is a p-dimensional regression
coefficients vector. This model has been widely used in survival analysis for modeling the
time-to-event data, in which censoring occurs because of the termination of the study. Such
a model can naturally be applied to model credit default. Lando (1998) first addressed the
issue of default correlation for pricing credit derivatives on baskets, e.g., collateralized debt
obligation (CDO), by using the Cox processes. The default correlations are induced via
common state variables that drive the default intensities. See Section 4 of Jarrow (2009) for
more detailed discussions of the Cox model for credit default analysis.

Identifying important risk factors and quantifying their risk contributions are crucial aims of
survival analysis. Thus variable selection in the Cox model is an important problem,
particularly when the dimensionality of the feature space p is large compared to sample size
n. It is natural to extend the regularization methods to the Cox model. Tibshirani (1997)
introduced the Lasso method (L1 penalization method) to this model. To overcome the bias
issue of convex penalties, Fan & Li (2002) extended the nonconcave penalized likelihood in
Fan & Li (2001) to the Cox model for variable selection. The idea is to use the partial
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likelihood introduced by Cox (1975). Let  be N ordered observed failure times
(assuming no common failure times for simplicity). Denote by x(k) the covariates vector of
the subject with failure time  and  the risk set right before time . Fan & Li
(2002) considered the penalized partial likelihood

(4.7)

They proved the oracle properties for folded concave penalized partial likelihood estimator.
Later, Zhang & Lu (2007) introduced the adaptive Lasso for Cox’s proportional hazards
model, and Zou (2008) proposed a path-based variable selection method by using
penalization with adaptive shrinkage (Zou (2006)) for the same model, both of which papers
have shown the asymptotic efficiency of the methods.

5 SURE SCREENING METHODS
Ultra-high dimensional modeling is a more common task than before due to the emergence
of ultra-high dimensional data sets in many fields such as economics, finance, genomics and
health studies. Existing variable selection methods can be computationally intensive and
may not perform well — the conditions required for those methods are very stringent when
the dimensionality is ultrahigh. How to develop effective procedures and what are their
statistical properties?

5.1 Sure Independence Screening
A natural idea for ultra-high dimensional modeling is applying a fast, reliable, and efficient
method to reduce the dimensionality p from a large or huge scale (say, log p = O(na) for
some a > 0) to a relatively large scale d (e.g., O(nb) for some b > 0) so that well-developed
variable selection techniques can be applied to the reduced feature space. This powerful tool
enables us to approach the problem of variable selection in ultrahigh dimensional sparse
modeling. The issues of computational cost, statistical accuracy, and model interpretability
will be addressed when the variable screening procedures retain all the important variables
with asymptotic probability one, the so-called sure screening property introduced in Fan &
Lv (2008).

Fan & Lv (2008) recently proposed the sure independence screening (SIS) methodology for
reducing the computation in ultra-high dimensional sparse modeling, which has been shown
to possess the sure screening property. It also reduces the correlation requirements among
predictors. The SIS uses independence learning with the correlation ranking that ranks
features by the magnitude of its sample correlation with the response variable. More
generally, the independence screening means ranking features with marginal utility, i.e.,
each feature is treated as an independent predictor for measuring its effectiveness for
prediction. Independence learning has been widely used in dealing with large-scale data sets.
For example, Dudoit et al. (2003), Storey & Tibshirani (2003), Fan & Ren (2006), and Efron
(2007) apply two-sample tests to select significant genes between the treatment and control
groups in microarray data analysis.

Assume that the n × p design matrix X has been standardized to have mean zero and
variance one for each column and let ω = (ω1, ⋯ , ωp)T = XT y be a p-dimensional vector of
componentwise regression estimator. For each dn, Fan & Lv (2008) defined the submodel
consisting of selected predictors as
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(5.1)

This reduces the dimensionality of the feature space from p ≫ n to a (much) smaller scale
dn, which can be below n. This correlation learning screens variables that have weak
marginal correlations with the response and retains variables having stronger correlations
with response. The correlation ranking amounts to selecting features by two-sample t-test
statistics in classification problems with class labels Y = ±1 (see Fan & Fan (2008)). It is
easy to see that SIS has computational complexity O(np) and thus is fast to implement. To
better understand the rationale of SIS (correlation learning), Fan & Lv (2008) also
introduced an iteratively thresholded ridge regression screener (ITRRS), which is an
extension of the dimensionality reduction method SIS. ITRRS provides a very nice technical
tool for understanding the sure screening property of SIS and other methods.

To demonstrate the sure screening property of SIS, Fan & Lv (2008) provided a set of
regularity conditions. Denote by ℳ* = {1 ≤ j ≤ p : βj ≠ 0} the true underlying sparse model
and s = |ℳ*| the nonsparsity size. The other p – s noise variables are allowed be correlated
with the response through links to the true predictors. Fan & Lv (2008) studied the ultra-
high dimensional setting of p ≫ n with log p = O(na) for some a ∈ (0, 1 – 2κ) (see below for
the definition of κ) and Gaussian noise ε ~ N(0, σ2). They assumed that var(Y) = O(1), and
that λmax(Σ) = O(nτ),

(5.2)

in which Σ = cov(x), κ, τ ≥ 0, and c > 0 is a constant. One technical condition is that the p-
dimensional covariates vector x has an elliptical distribution and the random matrix XΣ−1/2

has a concentration property, which they proved to hold for Gaussian distributions. Under
those regularity conditions, Fan & Lv (2008) showed that as long as 2κ + τ < 1, there exists
constant θ ∈ (2κ + τ, 1) such that when dn ~ nθ, we have for some C > 0,

(5.3)

This shows that SIS has the sure screening property even in ultra-high dimensions. Such a
property also entails the sparsity of the model: s ≤ dn. With SIS, we can reduce
exponentially growing dimensionality to a relatively large scale dn ≪ n, while all the
important variables are contained in the reduced model ℳ̂d with a significant probability.

The above results have been extended by Fan & Song (2010) to cover non-Guassian
covariates and/or non-Gaussian response. In the context of generalized linear models, they
showed that independence screening by using marginal likelihood ratio or marginal
regression coefficients possesses a sure screening property with the selected model size
explicitly controlled. In particular, they do not impose elliptical symmetry of the distribution
of covariates nor conditions on the covariance Σ of covariates. The latter is a huge advantage
over the penalized likelihood method, which requires restrictive conditions on the
covariates.

There are other related methods of marginal screening. Huang et al. (2008) introduced
marginal bridge regression, Hall & Miller (2009) proposed a generalized correlation for
feature ranking, and Fan et al. (2010) developed nonparametric screening using B-spline
basis. All of these need to choose a thresholding parameter. Zhao & Li (2010) proposed
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using an upper quantile of marginal utilities for decoupled (via random permutation)
responses and covariates, called PSIS, to select the thresholding parameter in the context of
the Cox proportional hazards model. The idea is to randomly permute the covariates and
response so that they have no relation and then to compute the marginal utilities based on
the permuted data and to select the upper α quantile of the marginal utilities as the
thresholding parameter. The choice of α is related to the false selection rate. A stringent
screening procedure would take α = 0, namely, the maximum of the marginal utilities for the
randomly decoupled data. Hall et al. (2009) presented independence learning rules by tilting
methods and empirical likelihood, and proposed a bootstrap method for assessing the
accuracy of feature ranking in classification.

5.2 A Two Scale Framework
When the dimensionality of the feature space is reduced to a moderate scale d with a sure
screening method such as SIS, the well-developed variable selection techniques, e.g., the
PLS and penalized likelihood methods, can be applied to the reduced feature space. This
provides a powerful tool of SIS based variable selection methods for ultra-high dimensional
variable selection. The sampling properties of such methods can easily be derived by
combining the theory of SIS and those penalization methods. This suggests a two scale
learning framework, that is, large scale screening followed by moderate scale selection.

By its nature, the SIS only uses the marginal information of predictors without looking at
their joint behavior. Fan & Lv (2008) noticed three potential issues of the simple SIS that
can make the sure screening property fail to hold when the technical assumptions are not
satisfied. First, it may miss an important predictor that is marginally uncorrelated or very
weakly correlated but jointly correlated with the response. Second, it may select some
unimportant predictors that are highly correlated with the important predictors and exclude
important predictors that are relatively weakly related to the response. Third, the issue of
collinearity among predictors is an intrinsic difficulty of the variable selection problem. To
address these issues, Fan & Lv (2008) proposed an iterative SIS (ISIS) which iteratively
applies the idea of large-scale screening and moderate-scale selection. This idea was
extended and improved by Fan et al. (2009) as follows.

Suppose that we wish to find a sparse β to minimize the objective

(5.4)

where L is the loss function which can be the quadratic loss, robust loss, log-likelihood, or
quasi-likelihood. It is usually convex in β. The first step is to apply the marginal screening,
using the marginal utilities

(5.5)

or the magnitude |β̂j| of the minimizer of (5.5) itself (assuming covariates are standardized in
this case) to rank the covariates. This results in the active set 1. The thresholding
parameter can be selected by using the permutation method of Zhao & Li (2010) mentioned
in Section 5.1. Now, apply a penalized likelihood method
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(5.6)

to further select a subset of active variables, resulting in ℳ1. The next step is the conditional
screening. Given the active set of covariates ℳ1, what are the conditional contributions of
those variables that were not selected in the first step? This leads to define the conditional
marginal utilities:

(5.7)

Note that for the quadratic loss, when βℳ1 is fixed at the minimizer from (5.6), such method
reduces to the residual based approach in Fan & Lv (2008). The current approach avoids the
generalization of the concept of residuals to other complicated models and uses fully the
conditional inference, but it involves more intensive computation in the conditional
screening. Recruit additional variables by using the marginal utilities Lj|ℳ1 or the magnitude
of the minimizer (5.7). This is again a large-scale screening step giving an active set 2 and
the thresholding parameter can be chosen by the permutation method. The next step is then
the moderate-scale selection. The potentially useful variables are now in the set ℳ1 ∪ 2.
Apply the penalized likelihood technique to the problem:

(5.8)

This results in the selected variables ℳ2. Note that some variables selected in the previous
step ℳ1 can be deleted in this step. This is another improvement of the original idea of Fan
& Lv (2008). Iterate the conditional large-scale screening followed by the moderate-scale
selection until ℳℓ−1 = ℳℓ or the maximum number of iterations is reached. This takes
account of the joint information of predictors in the selection and avoids solving large scale
optimization problems. The success of such a two-scale method and its theoretial properties
are documented in Fan & Lv (2008),Fan et al. (2009),Fan & Song (2010),Zhao & Li (2010)
and Fan et al. (2010)

6 CONCLUSIONS
We have briefly surveyed some recent developments of sparse high dimensional modeling
and discussed some applications in economics and finance. In particular, the recent
developments in ultra-high dimensional variable selection can be widely applicable to
statistical analysis of large-scale economic and financial problems. Those sparse modeling
problems deserve further studies both theoretically and empirically. We have focused on
regularization methods including penalized least squares and penalized likelihood. The role
of penalty functions and the impact of dimensionality on high dimensional sparse modeling
have been revealed and discussed. Sure independent screening has been introduced to reduce
the dimensionality and the problems of collinearity. It is a fundamental element of the
promising two-scale framework in ultrahigh dimensional econometrics modeling.

Sparse models are ideal and generally biased. Yet, they have been proved to be very
effective in many large-scale applications. The biases are typically small since variables are
selected from a large pool to best approximate the true model. High dimensional statistical
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learning facilitates undoubtedly the understanding and derivation of the often complex
nature of statistical relationship among the explanatory variables and the response. In
particular, the key notion of sparsity which helps reduce the intrinsic complexity at little cost
of statistical efficiency and computation provides powerful tools to explore relatively low-
dimensional structures among huge amount of candidate models. It expects to have huge
impact on econometric theory and practice, from econometric modeling to fundamental
understanding of economic problems. New novel modeling techniques are needed to address
the challenges in the frontiers of economics and finance, and other social science problems.
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Figure 1.
Top left: Spatial-correlation of HPAs. Top right: Spatial-correlation of residuals using only
national HPA as the predictor. Bottom left: Spatial-correlation of residuals with national
HPA and neighborhood selection. Bottom right: Neighborhoods with non-zero regression
coefficients.
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Figure 2.
Top: Forecast error comparison over 352 counties. For each dot, the x-axis represents error
by OLS with only national factor, y-axis error by PLS with additional neighborhood
information. If the dot lies below the 45 degree line, PLS outperforms OLS. Bottom:
Forecast comparison for the largest counties during test period. Blue: OLS. Red: PLS.
Black: Acutal. Thickness: Proportion to repeated sales.

Fan et al. Page 31

Annu Rev Econom. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Estimated standard deviation as a function of selected model size s in both San Francisco
(top panel) and Los Angeles (bottom panel) using both naive (left panel) and RCV (right
panel) methods.
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