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Abstract

Genetic mapping of hippocampal shape, an under-explored area, has strong potential as a
neurodegeneration biomarker for AD and MCI. This study investigates the genetic effects of top
candidate single nucleotide polymorphisms (SNPs) on hippocampal shape features as quantitative
traits (QTs) in a large cohort. FS+LDDMM was used to segment hippocampal surfaces from MRI
scans and shape features were extracted after surface registration. Elastic net (EN) and sparse
canonical correlation analysis (SCCA) were proposed to examine SNP-QT associations, and
compared with multiple regression (MR). Although similar in power, EN yielded substantially
fewer predictors than MR. Detailed surface mapping of global and localized genetic effects were
identified by MR and EN to reveal multi-SNP-single-QT relationships, and by SCCA to discover
multi-SNP-multi-QT associations. Shape analysis identified stronger SNP-QT correlations than
volume analysis. Sparse multivariate models have greater power to reveal complex SNP-QT
relationships. Genetic analysis of quantitative shape features has considerable potential for
enhancing mechanistic understanding of complex disorders like AD.

1 Introduction

Recent advances in brain imaging and high throughput genotyping techniques enable new
approaches to study the influence of genetic variation on brain structure and function.
Existing imaging genetics studies employ summary statistics (e.g., volume, thickness) [7]
and detailed voxel-wise measures [8] as phenotypes to discover genetic risk factors. Genetic
mapping of hippocampal shape, an under-explored area, has strong potential as a
neurodegeneration biomarker for Alzheimer’s disease (AD) and mild cognitive impairment
(MCI). The present study investigates genetic effects of top candidate single nucleotide
polymorphisms (SNPs) on hippocampal shape features in a large cohort.

Massive univariate analyses are often used in imaging genetics [7, 8], and can quickly
identify important associations between individual SNPs and imaging quantitative traits
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(QTs). However, it treats SNPs and QTs as independent units, and overlooks relationships in
which multiple SNPs jointly effect multiple QTs. In this work, two multivariate sparse
models, the elastic net and sparse canonical correlation analysis, are used to study genetic
effects on hippocampal shape and are expected to have greater power to reveal complex
SNP-QT relationships. These models could enable discovery of a small set of relevant
features which may provide potential surrogate biomarkers for therapeutic trials.

2 Materials and Methods

Magnetic resonance imaging (MRI) and genotype data were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database [7]. ADNI is a landmark investigation
sponsored by the NIH and industrial partners designed to collect longitudinal neuroimaging,
biological and clinical information from over 800 participants that will track the neural
correlates of memory loss from an early stage. Further information can be found at
www.adni-info.org. 582 non-Hispanic Caucasian participants (166 Healthy Control (HC),
287 MCI, 129 AD participants) with segmented hippocampal data and quality controlled
(QC) genotype data were included in this study (Table 1).

Hippocampal Shape

Hippocampi were segmented from the baseline MRI scans by applying probabilistic-based
FreeSurfer and Large Deformation Diffeo-morphic Metric Mapping (FS+LDDMM) [3].
This fully-automated segmentation pipeline first uses FreeSurfer subcortical labeling to
provide information for initialization, and then employs LDDMM to generate a
diffeomorphic transformation so that anatomical structures can be mapped consistently and
smoothly. To remove size effect, total intracranial volume (ICV) was adjusted to a constant
(i.e., mean ICV of all HCs) and each hippocampus was scaled accordingly. Rigid body
transformation was then applied to register each hippocampus to a template (defined as the
mean of all HCs) in a least square fashion. Surface signals were extracted as the deformation
along the surface normal direction of the template, and were adjusted for baseline age,
gender, education, and handedness using the regression weights derived from the HC
participants (Table 1).

Candidate SNPs

The SNP data were genotyped using the Human 610-Quad BeadChip (Illumina, Inc., San
Diego, CA). We focused on top AD genetic risk factors, including top 23 SNPs from the
AlzGene database [1] as of 09/01/2010, and a SNP from the TOMM40 gene adjacent to the
APOE gene. The TOMMA40 SNP was included because it was unclear whether the SNP
played a unique role in AD or served solely as an APOE marker. Four SNPs were excluded
due to failed imputation or quality check. Among the remaining 20 SNPs (Fig. 1(a)), 10
SNPs were available from the ADNI data and 10 SNPs were successfully imputed using
MACH v1 [4] and IMPUTE v2 [6] software packages. The QC criteria for the SNP data
include (1) call rate check per subject and per SNP marker, (2) gender check, (3) sibling pair
identification, (4) the Hardy-Weinberg equilibrium test, (5) marker removal by the minor
allele frequency and (6) population stratification. The selected 20 SNPs were numerically
coded to test additive genetic effect, i.e., dose dependent effect of the minor allele.

Overall Strategy

For comparative analysis, multiple regression models were fit using all 20 SNPs to predict
the hippocampal volume (mean of left and right, covaried for age, gender, education,
handedness and ICV) and, in addition, the surface signal at each location or vertex on the
hippocampal surface. The elastic net regression was then applied to identify a small set of
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relevant SNPs for each surface location. Finally, sparse canonical correlation analysis was
used to examine more complex relationships between SNP sets and surface regions.

Multiple Regression

Under the additive model, the surface signals are linearly related to the number of minor
alleles. This implies, assuming no interactions between SNPs, the multiple regression model
Sij = Bo,j+ P1jSNPj1 + ... + f20SNP;j 20 + & j, where S j is the surface signal at vertex j for
subject i. The model utility F test was used to test the null hypothesis of no relationship
between Sj and the 20 SNPs for the j = 1, ..., 13222 vertices. Gaussian random field theory
(RFT) methods [13], implemented in SurfStat [12], were used to ensure the family-wise
error rate did not exceed 0.05. While this procedure can detect any linear relationship
between Sj and the SNPs this flexibility comes at the cost of reduced power to detect a
relationship between a specific SNP and S;. Sparse regression methods, which seek to
accurately predict the response variable using a minimal number of predictors, address this
and other regression shortcomings by integrating variable selection and model estimation.

Elastic Net Regression

The ability of sparse regression methods to detect and model genetic relationships was
investigated by estimating the above model at each hippocampal location using elastic net
(EN). EN produces sparse solutions by adding a coefficient magnitude penalty to the least
squares objective function [14]. More specifically, the EN coefficient estimates minimize
the penalized least squares objective function

n —~ 2 B
EINet;(B0.B1, . . . ,;320)22’.:](5[.]‘ =Sij) +APo (B ... B20), in which S;j = Boj + B1,jSNPi 1

_— 20 20

+ ... + 20 jSNP; 50 and the penalty Po(B1 - - ’BZO):O’ZA:I Brl+(1 — a)zk:ﬁz is a convex
combination of the L lasso and L, ridge penalties. This objective function has two
parameters: 4 controls the amount of shrinkage; and a adjusts the trade-off between lasso
and ridge to capitalize on their strengths and minimize their weaknesses. The preceding
regression analysis was duplicated using the GImnet [2, 9] implementation of EN with o =
0.5 and 4 chosen using 10-fold cross-validation.

Sparse Canonical Correlation Analysis

The surface signals represent samples of a smooth function defined on the hippocampus.
Methods which capitalize on the resulting correlation between surface signals at neighboring
vertices by modeling the joint relationship between multiple surface signals and SNPs
should provide increased power to detect any relationships present [10]. To investigate this
possibility for linear relationships, sparse canonical correlation analysis (SCCA) was used.
Let X; = (SNPj 1, SNP; 5, ..., SNP; 20)" be the vector of the 20 SNPs for subject i and Y; =
(Si1, Si2s ..., Sim)' be the vector consisting of the surface signals at the m = 13, 222 vertices.
Canonical correlation analysis (CCA) produces linear combinations (canonical variates)

Uj=A'jY and Vj=B;X,j =1, ..., 20, such that the correlation between Uj and Vj is maximized
subject to orthogonality constraints. Two major weaknesses of CCA are that it requires the
number of observations n to exceed the combined dimension of Y and X (here 13,242) and
that it produces nonsparse A;j and Bj which are difficult to interpret. The SCCA method
employed here ameliorates these weaknesses using the penalized matrix decomposition
approach [11]. This method maximizes the correlation between U and V subject to the
coefficient vector constraints P1(A) < ¢; and P,(B) < cy. Here the L penalty

‘D -
P(A)=Zk:]IA(k)| was used for both P; and P,. Values for ¢; and ¢, were chosen using
Witten and Tibshirani’s permutation tuning procedure. The SCCA analyses were computed
using the R package PMA (Penalized Multivariate Analysis v.1.0.7.1).
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In the volumetric analysis of 20 SNPs, only APOE SNP (rs429358) has a significant (p <
0.0004) effect on the hippocampal volume. The Pearson correlation coefficient between the
APOE SNP and hippocampal volume was —0.159.

Fig. 2(a) shows the map of F-statistics of multiple regression (MR). Regions with F > 3.0
and spatial extent > 2.4 resels have a random field theory adjusted p-value < 0.05. Fig. 2(b)
shows the mean of the absolute residuals (fitted errors) over all subjects. The residual map
of elastic net (EN) is almost identical to Fig. 2(b), showing similar predictive power between
EN and MR.

However, the predictors selected by EN are much more sparse than those of MR (see Fig.
1(a—c)). Combining Fig. 1(c) with (a) and (b), we can extract the coefficient map for a
specific SNP and examine localized genetic effects on the surface. Shown in Fig. 1(d-g) are
examples of the APOE and TOMM40 SNPs, which elucidate the benefit of sparsity
achieved in EN compared to MR. While MR indicates a global effect on the surface (f,g),
EN identifies localized regional effects (d,e) and yields useful information for biomarker
discovery.

Fig. 3 shows the results of SCCA. Weights of 20 canonical vectors for vertex-based surface
signals (a) and SNPs (b) were color-coded as heatmaps. The top three rows in (a) were
mapped onto the hippocampal surface and shown in (c—e€), respectively. In (a—b), canonical
vector pairs (i.e., corresponding rows in (a—b)) were ordered by descending correlation
between surface signals and SNPs; and the correlation coefficients of all 20 pairs ranged
from 0.26 to 0.17 in descending order. This clearly demonstrated the increased power of
shape analysis, since the strongest correlation between each of 20 SNPs and hippocampal
volume in our volumetric analysis was between the APOE SNP and hippocampal volume
with a magnitude of 0.159. This was corroborated by the fact that the maximum absolute
correlation between the surface signal and APOE SNP was 0.20 among all vertices and was
0.19 among the vertices with F > 3.0.

In addition, the parameters for SCCA were automatically tuned by 100 permutations to
increase the sparsity and smoothness. As a result, the identified surface locations, correlated
with each SNP were more sparse than those for the same SNP from EN (see Fig. 3(a—b) vs
Fig. 1(a)). Interestingly, the sparsity was maximized for SNPs, since each canonical SNP
vector selected exactly one SNP (Fig. 3(b)), yielding a simple model easy to interpret (i.e.,
multi-SNP-multi-location associations became single-SNP-multi-location ones).

Fig. 3(c—d) show surface regions related with the APOE SNP (rs429358) at different
correlation levels. The correlated vertices in Fig. 3(c—d) have non-zero weights as in Fig.
1(d,f), but they are localized to smaller regions in Fig. 3(c—d). Fig. 3(e) shows surface
regions related with the TOMMA40 SNP (rs2075650). All vertices with non-zero weights in
Fig. 3(e) also have non-zero weights in Fig. 1(e,g). However, compared to Fig. 1(e,q),
vertices with non-zero weights in Fig. 3(e) are highly sparse and spatially localized to
smaller areas. These two types of patterns are complimentary: the associations derived from
EN are multi-SNP-single-location, while those found in SCCA are single-SNP-multi-
location.

Five-fold cross-validation of SCCA yielded equally sparse SNP-QT patterns. The most
consistent canonical component identified in all five trials is similar to the top finding using
the entire data: the genetic vector contains only APOE, and the phenotype vector shows a
pattern like Fig. 3(c). Training and testing correlation coefficients are 0.279+ 0.017 (mean *
SD) and 0.175+ 0.068, respectively, while the magnitudes of correlation coefficients
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between APOE and hippocampal volume in the same data are 0.159 + 0.012 and 0.163
0.056, respectively.

4 Discussion

Detailed surface mappings of localized genetic effects were identified from our hippocampal
shape analysis. Different from existing massive univariate analyses [7, 8], this study is
among the first to simultaneously use multiple response variables with multiple predictors
for analyzing real neurogenomic data [5, 10] and may be the first for studying genetic
influences on hippocampal morphom-etry using this paradigm. In our analyses, we
combined two promising sparse multivariate models with a typical morphometric method.
Investigation of other statistical models (e.g., [10]) and surface metrics, coupled with
pathway analyses, will be important future topics to potentially yield new discoveries. As
the best known AD genetic risk factor, APOE was the most prominent signal in all of our
analyses, which to some extent validated the efficacy of our methods. Replication in
independent large samples will be important to confirm the imaging genetic findings.
Genetic analysis of quantitative shape features has considerable potential for examining
disease mechanisms from a novel perspective that can inform selection of imaging
biomarkers for early detection and therapeutic trials.
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(a—c) Heat maps of regression coefficients for elastic net (a) and multiple regression (b),
where the hippocampal surface location (bottom row in (a,b)) is color-coded and mapped in
(c). (d—e) Surface map of genetic effects of the APOE and TOMM40 SNPs estimated by
elastic net (d,e) and multiple regression (f,g).
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(a—b) Weights of canonical vectors ordered by descending correlations between surface
signals (a) and SNPs (b). (c—e) Surface maps of the top three canonical vectors: the first
three rows in (a) are mapped onto the surface.
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Table 1
Participant characteristics
Category HC MCI AD p-value
Gender (M/F) 91/75 184/103 68/61 0.041

Baseline Age (years; Mean+STD)  76.18+4.91 74.99+7.21 75.36+7.78 0.198
Education (years; Mean+STD) 16.20+2.63 15.71+2.98 15.07+3.04 < 0.005
Handedness (R/L) 155/11 260/27 121/8 0.411
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