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Abstract
Objective—Septic shock heterogeneity has important implications for clinical trial
implementation and patient management. We previously addressed this heterogeneity by
identifying 3 putative subclasses of children with septic shock based exclusively on a 100-gene
expression signature. Here we attempted to prospectively validate the existence of these gene
expression-based subclasses in a validation cohort.

Design—Prospective observational study involving microarray-based bioinformatics.

Setting—Multiple pediatric intensive care units in the United States.

Patients—Separate derivation (n=98) and validation (n=82) cohorts of children with septic
shock.

Interventions—None other than standard care.

Measurements and Main Results—Gene expression mosaics of the 100 class-defining genes
were generated for 82 individual patients in the validation cohort. Using computer-based image
analysis, patients were classified into 1 of 3 subclasses (“A”, “B”, or “C”) based on color and
pattern similarity relative to reference mosaics generated from the original derivation cohort. After
subclassification, the clinical database was mined for phenotyping. Subclass A patients had higher
illness severity relative to subclasses B and C, as measured by maximal organ failure, fewer ICU-
free days, and a higher PRISM score. Patients in subclass A were characterized by repression of
genes corresponding to adaptive immunity and glucocorticoid receptor signaling. Separate
subclass assignments were conducted by 21 individual clinicians, using visual inspection. The
consensus classification of the clinicians had modest agreement with the computer algorithm.
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Conclusions—We have validated the existence of subclasses of children with septic shock
based on a biologically relevant, 100-gene expression signature. The subclasses have relevant
clinical differences.
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INTRODUCTION
Septic shock is a heterogeneous syndrome with variable physiological and biological
manifestations across patient groups [1, 2]. A major challenge in critical care medicine is the
development of clinically feasible stratification strategies to manage this heterogeneity for
the design of more effective clinical trials and individualized patient management [3, 4]. We
are addressing the challenge of septic shock heterogeneity by leveraging the discovery
potential of whole-genome expression profiling [5].

Viewing septic shock as a syndrome implies the existence of septic shock subclasses
predicated on distinct biological processes leading to distinct clinical phenotypes. We
previously identified three putative subclasses of children with septic shock based
exclusively on differential gene expression patterns representing the first 24 hours of
admission to the pediatric intensive care unit (PICU) [6]. Further analyses of the subclasses
revealed important phenotypic differences, thus suggesting that the gene expression-based
subclasses are clinically relevant. In a subsequent cross validation study, we demonstrated
that clinicians could reliably assign patients to the putative subclasses based on 100 class-
defining genes depicted as visually intuitive gene expression mosaics [7].

We now seek to prospectively validate our subclassification strategy in a new cohort of
children with septic shock. We test the hypothesis that the differential expression patterns of
100 class-defining genes, depicted using visually intuitive expression mosaics, can be used
to allocate a validation cohort into septic shock subclasses having relevant clinical
differences and biologically relevant differential gene expression.

METHODS
Patients and data collection

The study protocol was approved by the Institutional Review Boards of each institution (n =
11) and is identical for both the derivation and validation cohorts. Children ≤10 years of age
admitted to the PICU and meeting pediatric-specific criteria for septic shock were eligible
[8]. Controls were recruited from the ambulatory departments of participating institutions
using published inclusion and exclusion criteria [9, 10]. The derivation cohort of 98 patients
with septic shock and 32 normal controls was previously published [6, 7]. The validation
cohort consists of 82 new patients with septic shock and 21 new controls (control median
age 2.9 years (1.3–5.6); 11 males and 10 females). The microarray data for both cohorts
have been deposited in the NCBI Gene Expression Omnibus (Accession numbers:
GSE26440 and GSE26378).

After informed consent from parents or legal guardians, blood samples were obtained within
24 hours of initial presentation to the PICU with septic shock. Clinical and laboratory data
were collected daily while in the PICU and stored using a web-based database. The
following variables were tracked as indicators of illness severity: organ failure, PRISM
score [11], PICU free days, and mortality. Organ failure was defined using pediatric-specific
criteria and tracked up to the first 7 days of PICU admission [8]. The calculation of PICU
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free days was based on the difference between a maximum PICU admission of 28 days and
the actual PICU days. Patients who died during the 28 day study period and patients that
remained in the PICU for ≥28 days were assigned zero PICU free days. Mortality was
tracked for 28 days after enrollment.

RNA extraction and microarray hybridization
Total RNA was isolated from whole blood using the PaxGene™Blood RNA System
(PreAnalytiX, Qiagen/Becton Dickson, Valencia, CA). Microarray hybridization was
performed as previously described using the Human Genome U133 Plus 2.0 GeneChip
(Affymetrix, Santa Clara, CA) [6, 9, 10, 12–14]. CEL files were preprocessed using Robust
Multiple-Array Average (RMA) normalization and GeneSpring GX 7.3 software (Agilent
Technologies, Palo Alto, CA). All signal intensity-based data were used after RMA
normalization [15]. All chips were normalized to the respective median values of controls.

Gene expression mosaics
In the aforementioned study (the derivation cohort), we used discovery-oriented expression
and statistical gene filters, and unsupervised hierarchical clustering, to identify 3 putative
subclasses of children with septic shock (subclasses “A”, “B”, and “C”) [6]. We
subsequently refined the subclass-defining signature to 100 genes using a 2 stage approach.
In stage 1 we used K-means clustering to identify coordinately regulated gene clusters
corresponding to signaling pathways related to inflammation and immunity. In stage 2 we
tested the genes identified in stage 1 for the ability to predict the putative subclass and
extracted the top 100 class-predictor genes [6]. These 100 class-predictor genes form the
basis of the current study (see Supplemental Table).

Expression mosaics representing the 100 class-defining genes were generated using the
Gene Expression Dynamics Inspector (GEDI) [16, 17]. The signature graphical outputs of
GEDI are expression mosaics that give microarray data a “face” that is intuitively
recognizable via human pattern recognition. The algorithm for creating the mosaics is a self-
organizing map. Additional technical details regarding GEDI can be found at:
http://www.childrenshospital.org/research/ingber/GEDI/gedihome.htm.

Computer-based classification
The reference mosaics representing the 100 class-defining genes are published [7], and
represent the average expression patterns of the individual patients within a given subclass
of the derivation cohort. For each patient in the validation cohort, the respective expression
data for the 100 class-defining genes were uploaded to GEDI and individual expression
mosaics were generated for each patient. Validation cohort patients were then subclassified
using a public image analysis platform (ImageJ, http://rsbweb.nih.gov/ij/). The reference and
the individual patient mosaics from the validation group were loaded onto ImageJ. The
absolute difference in RGB pixel to pixel intensity was calculated for each individual patient
mosaic in the validation cohort, relative to each of the three reference mosaics. Final
subclassification was based on the “least difference” between the individual patient mosaic
and one of the three reference mosaics.

Clinician-based subclassification
We also conducted clinician-based subclassification as previously described [7]. Twenty-
one pediatric intensivists participated as evaluators. Each evaluator was shown the 82
individual patient mosaics from the validation cohort, and asked to classify each patient as
subclass “A”, “B”, or “C”, based on color and pattern similarity relative to the reference
mosaics. The clinicians were not provided with any additional instructions and were blinded
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to clinical data. Clinician responses were catalogued and subsequently used to arrive at a
final consensus subclassification based on the “majority call” (i.e. ≥8 calls for a given class).

Clinical phenotyping and data analysis
After the patients in the validation cohort were subclassified, we mined the clinical database
to assess clinical differences between the 3 subclasses. Ordinal and continuous clinical
variables not normally distributed were analyzed via 3 group ANOVA on Ranks.
Dichotomous clinical variables were analyzed using a 2 by 3 contingency table and Chi-
square test (SigmaStat Software, Systat Software, Inc., San Jose, CA).

RESULTS
Baseline Data

The characteristics of the derivation and validation cohorts are provided in Table 1. The
validation cohort had a higher proportion of males, a lower proportion of patients with
immune suppression, and a lower proportion of patients with negative microbiological
cultures, compared to the derivation cohort. All other variables in Table 1 were not
significantly different between the two cohorts.

The reference mosaics for the subclassification protocol are shown in the upper panel of
Figure 1. The reference mosaics depict the average expression patterns of the same 100
class-defining genes and represent the 3 previously published derivation cohort septic shock
subclasses [6, 7]. Examples of individual patient mosaics in the validation cohort,
representing the same 100 class-defining genes, are shown in the lower panel of Figure 1.

Computer-Based Subclassification
Table 2 provides the characteristics of the validation cohort subclasses based on the
computer algorithm. Subclass A patients had higher illness severity than subclass B and C
patients, as measured by maximum number of organ failures and PRISM scores. Subclass A
patients also had higher illness severity than subclass B patients, as measured by fewer
PICU free days. There was a trend toward a higher mortality odds ratio in subclass A
patients, relative to subclass B and C patients. Subclass A patients were also younger, and
had a lower peripheral total white blood cell count and neutrophil count, compared to
subclass B patients. All other variables in Table 2 were not significantly different across the
3 septic shock subclasses in the validation cohort. These data demonstrate that computer-
based image analysis can allocate patients into gene expression-based septic shock
subclasses having relevant clinical differences.

Clinician-Based Subclassification
In this analysis the clinical evaluators conducted the subclassification as described in the
Methods. For 31 of the validation cohort patients (38%), all 21 evaluators provided the same
subclassification. The other potential majority calls (ranging from 8 to 20) were relatively
evenly distributed (Figure 2). Four patients received < 11 majority calls (i.e. less than 50%
of the evaluators agreed to the same classification). The individual expression mosaics of
these 4 patients and their respective 28 day outcomes are provided in Figure 3.

The κ coefficient to measure inter-evaluator agreement among the 21 evaluators was 0.633
(0 = no agreement; 1 = perfect agreement). Sixty-five of the validation cohort patients (79%)
were allocated to the same subclass by both the computer algorithm and the consensus
classification generated by the clinicians (κ coefficient = 0.688).
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Table 3 provides the characteristics of the validation cohort subclasses based on the
consensus classification of the 21 clinicians. Subclass A patients had higher illness severity
than subclass B and C patients, as measured by maximum number of organ failures and
PRISM score. Subclass A patients were also younger, and had a lower peripheral total white
blood cell count and neutrophil count, compared to subclass B patients. All other variables
in Table 3 were not significantly different across the 3 septic shock subclasses in the
validation cohort. These data validate that clinicians can allocate patients with septic shock
into gene expression-based subclasses having relevant clinical differences.

Clinical characteristics of the combined cohorts
Combined with our previous report [6], we have allocated a total of 180 patients into
expression-based subclasses. The major clinical characteristics of the respective subclasses
are consistent when comparing the current validation cohort and the original derivation
cohort [6]. Table 4 provides the major clinical differences between the 3 subclasses in this
combined cohort. Subclass A patients have a significantly higher mortality rate and
mortality odds ratio than patients in subclasses B and C. Subclass A patients also have a
higher number of organ failures, a higher PRISM score, and fewer PICU free days than
patients in subclasses B and C. Finally, subclass B patients are older and have a higher
proportion of females, compared to subclasses A and C.

Addressing potential confounding variables
Since we used whole blood-derived RNA it is possible that the class-defining gene
expression patterns reflect differential white blood cell counts. Accordingly, we analyzed
our expression data for the presence of previously published signature probe sets for
neutrophils, lymphocytes, and monocytes, respectively [18]. Signature probe “presence” was
defined using the following criteria: ≥100 raw expression value in a least one-half of the
subjects in each subclass. Table 5 provides the results from this analysis and demonstrates
that the signature probe sets were equally present across the 3 subclasses. Thus, the relative
contributions of the three major leukocyte subsets, to the whole blood transcriptomic
response, were relatively similar across the 3 subclasses. Accordingly, the differences in
gene expression between the 3 subclasses do not appear to be artifacts of differential
peripheral white blood cell counts.

The validation cohort had a significantly lower proportion of patients with negative cultures
compared to the derivation cohort. Accordingly, we conducted a 2 group ANOVA
(Benjamini-Hochberg False Discovery Rate = 5%) to determine if the 100 class-defining
genes were differentially expressed between patients with negative cultures (n = 25) and
patients with positive cultures (n = 57) in the validation cohort. This analysis revealed that
none of the 100 subclass-defining genes were differentially expressed between the two
groups, thus suggesting that microbiology culture status was unlikely to be a strong
confounder.

The validation cohort also had a higher proportion of males compared to the derivation
cohort. Accordingly, we conducted a 2 group ANOVA (Benjamini-Hochberg False
Discovery Rate = 5%) to determine if the 100 class-defining genes were differentially
expressed between males (n = 57) and females (n = 25) in the validation cohort. This
analysis revealed that none of the 100 subclass-defining genes were differentially expressed
between males and females, thus suggesting that gender was unlikely to be a strong
confounder.

Since patients were recruited from multiple centers, it is possible that center-specific effects
could confound the data. Table 6 provides the number of validation cohort patients in each
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gene expression-based subclass based on enrollment site. Thirty seven patients (45%) in the
validation cohort were recruited from Site 1. Also, site 1 contributed a smaller proportion of
subclass A patients, compared to subclass C patients. There were no other significant
differences regarding enrollment among the other sites. Thus, we cannot rule out the
possibility that the data are confounded, in part, by center-specific effects.

DISCUSSION
Tang et al. recently conducted a systematic review of microarray-based expression profiling
studies in human sepsis [19]. One conclusion from this review is that the transcriptomic
response is highly variable in human sepsis. Our previous data are consistent with this
conclusion by demonstrating the potential existence of 3 subclasses of children with septic
shock, as defined by variable gene expression. We have now prospectively validated that a
100-gene expression signature, depicted using visually intuitive mosaics, can be used to
allocate patients with septic shock into subclasses having clinically relevant phenotypic
differences and biologically relevant differential gene expression. While the
subclassification strategy needs to be further refined, and one would expect that computer-
based subclassification would be superior to that of clinician-based subclassification, we
have nonetheless demonstrated that clinically relevant subclasses of children with septic
shock can be identified via gene expression profiling.

The assertion that the subclasses have clinically relevant phenotypes is based on a higher
level of illness severity in the subclass A patients, as measured by mortality, maximal
number of organ failures, PRISM scores, and PICU free days. The profound negative impact
of multiple organ failure on outcomes in critical illness is well established [20-22], and is
therefore a clinically relevant measure. The reliance on PRISM scores could lead one to
conclude that it would be more straightforward to calculate PRISM scores as a means of
stratification. However, illness severity scores such as PRISM and APACHE are intended
for population-based predictions, rather than for individual patient stratification, and do not
provide biological information [23].

Patients in validation cohort subclass A had a trend toward higher mortality, which did not
reach statistical significance. However, when we combined both the derivation and
validation cohorts, the subclass A patients have a significantly higher mortality rate.
Notably, the mortality rates of the patients in subclasses B and C are consistent with current
estimates for the U.S. [24–26], whereas the mortality rate in subclass A patients is 3-fold
higher.

The assertion that the subclasses have biologically relevant differences in gene expression is
based on the functional significance of the 100 class-defining genes, which are enriched for
genes corresponding to adaptive immunity [6, 27]. The majority of these genes
corresponding to adaptive immunity are repressed in subclass A patients, relative to subclass
B and C patients [6]. It is unlikely that lymphopenia accounts for this observation because
the absolute lymphocyte counts were not significantly different between the 3 subclasses.
Recent literature indicates that enhancement of adaptive immune function may be a rational
therapeutic strategy in sepsis [28–33]. Optimization of such a strategy, however, will need to
take into account the potential existence of subclass A patients, characterized by a higher
illness severity and repression of adaptive immunity-related genes.

The 100 class-defining genes are also enriched for genes corresponding to glucocorticoid
receptor signaling [6, 27], and these genes are also repressed in subclass A patients, relative
to subclass B and C patients [6]. Glucocorticoid replacement therapy and the concept of
relative adrenal insufficiency in septic shock are highly controversial topics in critical care
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medicine [34–36]. The potential existence of a subclass of patients with septic shock (i.e.
subclass A) having a higher illness severity and repression of genes corresponding
glucocorticoid receptor signaling, may have important implications for future clinical trials
and may have been confounders in previous clinical trials.

Subclass A patients were significantly younger than subclass B patients in both our previous
study [6] and the current study. This observation is consistent with pediatric septic shock
epidemiology, which has identified young age as a risk factor for increased illness severity
[24–26]. However, subclass C patients are of a similar age to subclass A patients, but have a
lower illness severity in both studies. Thus, while younger age is a risk factor for illness
severity, the current data indicate that the expression pattern of the 100 class-defining genes
also impacts illness severity, independent of age.

Our subclassification strategy is focused on a single time point and therefore does not take
into account potential temporal shifts in patient status from one subclass to another.
However, the major goal of the strategy is to allocate patients into subclasses at a time point
that affords earlier clinical management decisions or early stratification for clinical trials [4,
37, 38].

In conclusion, we have addressed the challenges of septic shock heterogeneity and
stratification by prospectively validating the existence of septic shock subclasses based on a
100-gene expression signature. The subclasses can be identified at a clinically relevant time
point and have relevant clinical differences. Finally, the expression patterns of the 100 class
defining-genes may therapeutic implications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
GEDI-generated reference mosaics (top panel) and examples of GEDI-generated individual
patient mosaics from the validation cohort (bottom panel). The reference mosaics are
derived from the previously published derivation cohort (Refs. 6 and 7) and represent the
mean expression values for patients in the respective subclasses. Both the reference mosaics
and the individual validation cohort examples depict the expression levels of the same 100
class-defining genes. The color bar on the right provides the relative gene expression based
on the respective color intensities.
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Figure 2.
The distribution of potential majority calls (maximum = 21; minimum = 8) among the 21
clinical evaluators. These majority calls led to the final consensus classification for the 82
patients in the validation cohort.
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Figure 3.
The individual expression mosaics of the four patients in the validation cohort that received
< 11 majority calls by the clinical evaluators. Patient 1 (non-survivor) and Patient 2
(survivor) were allocated to subclass C by the computer algorithm. Patient 3 (non-survivor)
and Patient 4 (survivor) were allocated to subclass A by the computer algorithm.
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Table 1

Demographics and clinical characteristics of the derivation and validation cohorts.1

Derivation Cohort Validation Cohort P value

No. of patients 98 82 --

Median age in years (IQR)2 2.2 (1.0–5.0) 2.4 (0.8–6.5) 0.860

No. of males/females 52/46 57/25 0.036

No. of deaths (%) 18 (18) 12 (15) 0.639

Maximum # of organ failures (IQR) 3 2 (2–3) 2 (2–3) 0.859

Median PRISM score (IQR) 16 (11–21) 14 (9–19) 0.081

No. with co-morbidity (%)4 41 (42) 33 (40) 0.949

No. with immune suppression (%)5 23 (23) 7 (8) 0.013

No. receiving hydrocortisone (%)6 35 (36) 34 (42) 0.525

No. with gram pos. bacteria (%)7 23 (23) 24 (29) 0.477

No. with gram neg. bacteria (%) 20 (20) 26 (32) 0.119

No. with negative cultures (%) 45 (46) 25 (30) 0.050

Median WBC count × 103/mm3 (IQR) 13 (4–20) 14 (7–18) 0.446

Median neutrophil count × 103/mm3 (IQR) 7 (3–13) 10 (4–16) 0.110

Median lymphocyte count × 103/mm3 (IQR) 1.7 (0.8–3.1) 2.1 (0.9–3.8) 0.605

Median monocyte count × 103/mm3 (IQR) 0.5 (0.2–1.3) 0.5 (0.3–1.0) 0.878

1
Continuous variables are analyzed by ANOVA on Ranks, and proportions are analyzed by Chi-square.

2
Interquartile range (IQR).

3
Refers to the maximum number of organ failures during the initial 7 days of PICU admission.

4
Refers to patients having any major diagnosis in addition to septic shock (e.g. trauma, sickle cell disease, congenital heart disease, liver failure,

etc.)

5
Refers to patients with immune deficiency secondary to an intrinsic documented defect of the immune system, or patients receiving immune-

suppressive medications (e.g. calcineurin inhibitors or high dose corticosteroids).

6
For cardiovascular shock.

7
All bacterial culture data refer to samples obtained from bodily fluids that are normally sterile (i.e. blood, urine, cerebral spinal fluid, broncho-

alveolar lavage, and / or peritoneal fluid).
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Table 2

Demographics and clinical data for the validation cohort septic shock subclasses using computer-based image
analysis.1

Subclass A Subclass B Subclass C P value

No. of patients 27 24 31 --

Median age in years (IQR) 2 1.1 (0.3–3.4) 6.0 (1.6–8.6) 2.4 (1.2–5.3) 0.006

No. of males/females 20/7 14/10 23/8 0.933

No. of deaths (%) 6 (22)3 2 (8) 4 (13) 0.353

Maximum # of organ failures (IQR) 4 3 (2–4) 2 (2–3) 2 (2–3) 0.001

Median PRISM score (IQR) 17 (11–27) 10 (7–12) 14 (8–18) 0.003

Median PICU free days (IQR) 14 (0–20) 21 (18–23) 17 (7–24) 0.048

No. with co-morbidity (%)5 8 (30) 12 (50) 13 (42) 0.324

No. with immune suppression (%)6 2 (7) 2 (8) 3 (10) 0.953

No. receiving hydrocortisone (%)7 10 (37) 13 (54) 11 (35) 0.321

No. with gram pos. bacteria (%)8 9 (33) 7 (29) 8 (26) 0.821

No. with gram neg. bacteria (%) 11 (41) 6 (25) 9 (29) 0.445

No. with negative cultures (%) 5 (18) 8 (33) 12 (39) 0.234

Median WBC count × 103/mm3 (IQR) 9 (4–14) 15 (11–24) 16 (8–18) 0.009

Median neutrophil count × 103/mm3 (IQR) 7 (3–11) 14 (10–22) 10 (4–16) 0.010

Median lymphocyte count × 103/mm3 (IQR) 1.8 (0.9–4.3) 2.2 (0.9–3.2) 2.1 (1.0–3.9) 0.857

Median monocyte count × 103/mm3 (IQR) 0.5 (0.3–0.8) 0.7 (0.3–1.0) 0.5 (0.2–1.6) 0.899

1
Continuous variables are analyzed as 3 group comparisons using ANOVA on Ranks and 2 degrees of freedom. Proportions are analyzed as 3

group comparisons using a 2 by 3 contingency table and Chi-square with 2 degrees of freedom.

2
Interquartile range (IQR).

3
Odds ratio for mortality vs. Subclass B: 3.1 (0.6–17.3); vs. Subclass C: 1.9 (0.5–7.7).

4
Refers to the maximum number of organ failures during the initial 7 days of PICU admission.

5
Refers to patients having any major diagnosis in addition to septic shock (e.g. trauma, sickle cell disease, congenital heart disease, liver failure,

etc.)

6
Refers to patients with immune deficiency secondary to an intrinsic documented defect of the immune system, or patients receiving immune-

suppressive medications (e.g. calcineurin inhibitors or high dose steroids).

7
For cardiovascular shock.

8
All bacterial culture data refer to samples obtained from bodily fluids that are normally sterile (i.e. blood, urine, cerebral spinal fluid, broncho-

alveolar lavage, and/or peritoneal fluid).
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Table 3

Demographics and clinical data for the validation cohort septic shock subclasses based on the majority call of
21 clinical evaluators.1

Subclass A Subclass B Subclass C P value

No. of patients 25 28 29 --

Median age in years (IQR)2 1.0 (0.2–3.1) 5.7 (1.0–8.6) 2.0 (1.3–5.4) 0.005

No. of males/females 17/8 19/9 21/8 0.915

No. of deaths (%) 5 (20)3 4 (14) 3 (10) 0.520

Maximum # of organ failures (IQR) 4 3 (2–4) 2 (2–3) 2 (2–3) 0.032

Median PRISM score (IQR) 17 (11–28) 11 (7–14) 14 (9–17) 0.014

Median PICU free days (IQR) 15 (1–20) 21 (13–23) 17 (9–24) 0.191

No. with co-morbidity (%)5 7 (28) 16 (57) 10 (34) 0.071

No. with immune suppression (%)6 1 (4) 3 (11) 3 (10) 0.627

No. receiving hydrocortisone (%)7 7 (28) 16 (57) 11 (36) 0.088

No. with gram pos. bacteria (%)8 8 (32) 7 (25) 9 (31) 0.827

No. with gram neg. bacteria (%) 8 (32) 8 (29) 10 (34) 0.891

No. with negative cultures (%) 6 (24) 10 (36) 9 (31) 0.650

Median WBC count × 103/mm3 (IQR) 10 (4–14) 16 (11–24) 15 (6–18) 0.009

Median neutrophil count × 103/mm3 (IQR) 7 (1–11) 12 (8–21) 10 (4–16) 0.006

Median lymphocyte count × 103/mm3 (IQR) 1.8 (1.0–4.1) 2.4 (0.9–3.5) 1.6 (0.9–3.8) 0.945

Median monocyte count × 103/mm3 (IQR) 0.5 (0.4–1.0) 0.7 (0.3–1.0) 0.5 (0.2–1.2) 0.952

1
Continuous variables are analyzed as 3 group comparisons using ANOVA on Ranks and 2 degrees of freedom. Proportions are analyzed as 3

group comparisons using a 2 by 3 contingency table and Chi-square with 2 degrees of freedom.

2
Interquartile range (IQR).

3
Odds ratio for mortality vs. Subclass B: 1.5 (0.4–4.6); vs. Subclass C: 2.2 (0.5–10.2).

4
Refers to the maximum number of organ failures during the initial 7 days of PICU admission.

5
Refers to patients having any major diagnosis in addition to septic shock (e.g. trauma, sickle cell disease, congenital heart disease, liver failure,

etc.)

6
Refers to patients with immune deficiency secondary to an intrinsic documented defect of the immune system, or patients receiving immune-

suppressive medications (e.g. calcineurin inhibitors or high dose steroids).

7
For cardiovascular shock.

8
All bacterial culture data refer to samples obtained from bodily fluids that are normally sterile (i.e. blood, urine, cerebral spinal fluid, broncho-

alveolar lavage, and/or peritoneal fluid).

Crit Care Med. Author manuscript; available in PMC 2012 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wong et al. Page 16

Table 4

Major clinical characteristics of combined derivation and validation cohorts.1

Subclass A Subclass B Subclass C p value

No. of patients 55 69 56 --

Median age in years (IQR)2 0.7 (0.3–2.7) 5.2 (1.9–7.3) 2.2 (1.2–2.7) <0.001

No. of males/females 39/16 33/36 37/19 0.020

No. of deaths (%) 16 (29)3 7 (10) 7 (12) 0.012

Max. # of organ failures (IQR) 3 (2–4) 2 (2–3) 2 (2–2) <0.001

Median PRISM score (IQR) 19 (13–27) 11 (10–15) 12 (9–16) <0.001

Median PICU free days (IQR) 11 (0–18) 22 (17–24) 19 (16–24) 0.002

1
Continuous variables are analyzed as 3 group comparisons using ANOVA on Ranks and 2 degrees of freedom. Proportions are analyzed as 3

group comparisons using a 2 by 3 contingency table and Chi-square with 2 degrees of freedom.

2
Interquartile range (IQR).

3
Odds ratio for mortality vs. Subclass B: 3.6 (1.4– 9.6), p = 0.007; vs. Subclass C: 2.9 (1.1–7.7), p = 0.03.
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Table 5

Presence of leukocyte subset signature probes across the three gene expression-based subclasses. Data
presented as number of signature probes present (see text for presence criteria).

Neutrophil probes (n = 38) Lymphocyte probes (n = 50) Monocyte probes (n = 28)

Subclass A 33 43 20

Subclass B 33 43 21

Subclass C 33 44 20
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Table 6

Number of patients in each gene expression-based subclass based on enrollment site.

Subclass A Subclass B Subclass C Total

Site 1 81 11 18 37

Site 2 2 1 1 4

Site 3 1 1 4 6

Site 4 1 3 0 4

Site 5 4 4 2 10

Site 6 3 0 1 4

Site 7 1 1 2 4

Site 8 1 0 0 1

Site 9 3 0 1 4

Site 10 2 1 1 4

Site 11 1 2 1 4

1
p < 0.05 vs. subclass C (Chi-square with 2 degrees of freedom).
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