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Abstract
Endothelial nitric oxide (NO) plays important roles in the vascular system. Animal models that
show vascular dysfunction demonstrate the protective role of endothelial NO dependent pathways.
This review focuses on the role of endothelial NO in the regulation of cerebral blood flow and
vascular tone. We will discuss the importance of NO in cerebrovascular function using animal
models with altered endothelial NO production under normal, ischemic and reperfusion
conditions, as well as in hyperoxia. Pharmacological and genetic manipulations of the endothelial
NO system demonstrate the essential roles of endothelial NO synthase in maintenance of vascular
tone and cerebral perfusion under normal and pathological conditions.
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Introduction
Cerebral blood flow (CBF) regulated by perfusion pressure, by functional, metabolic and
hormonal activity, by gases carried in the blood, and by neurogenic stimulation. NO is
gaseous molecule produced by endothelial (eNOS), neuronal (nNOS) and inducible nitric
oxide (iNOS) synthases. NO is involved in CBF regulation under normal conditions, due to
production by endothelial cells [1], neurons [2, 3], and nitrergic perivascular nerves [2]. eNOS
and nNOS are involved in constitutive basal and stimulated NO production [4], and iNOS
generates NO when induced by pathophysiologic and inflammatory conditions [5].

1. eNOS regulation
Endothelial NO, constitutively produced by eNOS, participates in various processes,
including maintenance of blood pressure, vascular reactivity, angiogenesis, inhibition of
platelet adhesion and aggregation, suppression of smooth muscle cell proliferation, and
antioxidative processes. eNOS is localized in caveolae. It binds to caveolin1 and migrates
intracellulary in response to elevated concentration of calcium [6]. eNOS produces NO from
L-arginine in the presence of oxygen and co-factors nicotinamide adenine dinucleotide
phosphate (NADPH), tethrahydrobiopterin (BH4), heme, flavin adenine dinucleotide (FAD),
flavin mononucleotide (FMN) and calmodulin [1]. eNOS activity is regulated by protein-
protein interactions with hsp90 and caveolin, posttranslational myristoylation and
palmitoylaytion and S-nitrosylation [1, 7–9]. eNOS is activated by increased transmembrane
and intracellular Ca2+ influx and by phosphorylation at several sites in eNOS, including
serine (S1177, S617, S635) and threonine (T497) [9]. Molecular mechanisms of enhanced
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activity of eNOS phosphorylated at S1177 inlcude increased electron flux through the
reductase domain and decreased dissociation with calmodulin. Phosphorylation of eNOS
induces a conformational shift of the FMN-binding domain to allow enhanced transfer of
electrons, activating the synthase. Estrogens [10], statins [11, 12], leptin [12], adiponectin [13],
shear stress, vascular endothelial growth factor (VEGF) and insulin all promote S1177
eNOS phosphorylation [14]. S1177 is phosphoryalted by various kinases, including Akt [6],
5′ adenosine monophosphate-activated protein (AMP) kinase [15] and protein kinases A and
G [16]. eNOS uncoupling, caused by insufficiency of BH4, leads to production of superoxide
anion, resulting in hypertension and contributing to the pathophysiology of
hyperlipidamemia, atherosclerosis, diabetes[17] and complications of hypoxic-ischemic brain
injury [18].

2. Endothelial NO/cGMP signaling pathway
Endothelial NO functions are mediated by soluble guanylyl cyclase (sGC) and its
intracellular second messenger cyclic guanosine monophosphate (cGMP). NO activates the
heme-containing heterodimer sGC, resulting in cGMP synthesis, and downstream activation
of potassium channels in smooth muscle cells [19]. Several cGMP-independent mechanisms
of NO-induced vasorelaxation have also been identified, including S-glutathiolation,
activation of sacroendoplasmic reticulum calcium adenosine triphosphatase [20], and calcium
dependent activation of potassium channels [21] on vascular muscle.

3. Basal eNOS and CBF
3.1. Rats

CBF attenuation was observed in parallel with downregulation of eNOS expression in
spontaneously hypertensive rats [22]. Head-down tail suspension of rats, inducing headward
fluid shifts and arterial blood pressure elevation was associated with diminished middle
cerebral artery eNOS protein levels, lower CBF and higher cerebral vascular resistance [23].
Intracisternal administration of adenovirus with the bovine eNOS gene resulted in transient
CBF augmentation [24].

3.2. Mice (eNOS knockouts and nNOS knockout)
The relative contributions of endothelial and neuronal NO to CBF responses have been
difficult to establish because nNOS is the dominant form of NOS in neurons in the brain,
while eNOS is found in cerebrovascular endothelial cells. NOS inhibitors lack adequate
selectivity between the NOS isoforms, limiting pharmacologic approaches to distinguish
between the two. The development of eNOS and nNOS knockout mice deficient in eNOS or
nNOS isoforms provided an opportunity to specifically evaluate the role of the isoforms in
CBF regulation. Brain distribution of NOS in eNOS knockout and nNOS knockout mice
was quantitated using (3H)L-NG-nitro-arginine binding [25]. The density of the binding was
significantly reduced in nNOS knockout mice, but there were no differences in the binding
between wild-type (WT) and eNOS deficient mice at baseline. This demonstrates that nNOS
is major source of NO in brain.

N-methyl-D-aspartate stimulated glutamate release was attenuated in the cortex of nNOS
knockout mice, while N-methyl-D-aspartate-stimulated GABA release was attenuated in
brain of eNOS knockout mice [26]. These results suggest that eNOS and nNOS contribute
differently to the modulation of inhibitory and excitatory neurotransmission in brain.

Resting regional CBF (rCBF), as measured by hydrogen clearance method in absolute
values in caudate putamen nucleus (striatum) and parietal cortex of urethane-anesthetized
artificially breathing mice, was not significantly different between WT, eNOS knockout and
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nNOS knockout animals. Normal basal rCBF values in the knockout mice indicate the
involvement of compensatory mechanisms of CBF regulation that maintain CBF in the
physiologic range after eNOS gene deletion.

3.3. eNOS inhibition
3.3.1. Rats—In rats, injected with the non-specific NOS inhibitor NG-nitro-L-arginine
methyl ester (L-NAME), absolute CBF was decreased to 25–35% of control level in parallel
with decrease in brain PO2, demonstrating significant role of NO in maintaining of CBF
resting level [27].

3.3.2. Mice (eNOS knockout and nNOS knockout)—To assess the contribution of
eNOS and nNOS in regulating absolute resting rCBF, blood flow was measured in mice
treated with L-NAME. 30 minutes after L-NAME injection, absolute rCBF was significantly
attenuated in WT and nNOS knockout, but not in eNOS knockout mice [28]. These data are
consistent with results obtained using laser-Doppler flowmetry and a closed cranial window
technique [29]. In these experiments laser Doppler probe was attached to the scull of
anesthetized with urethane mice and resting blood flow was measured in relative values
under physiological temperature and arterial blood pressure conditions. Resting cortical CBF
decreased by approximately 25 % after NG-nitro-L-arginine (L-NNA) superfusion in WT,
but not in eNOS knockout mice, suggesting a key role for eNOS in baseline CBF
maintenance.

So, cerebrovascular effects of NOS inhibitors were observed in rats, nNOS knockout and
WT mice due to inhibition of eNOS. The results indicate that basal endothelial NO
production influences cerebral vascular tone and maintains resting CBF regulation.

3.4. NO donors
3.4.1. Mice—The sensitivity of smooth muscle cells to exogenous NO depends on eNOS
activity. The endothelial NO contribution to cerebrovascular reactivity to exogenous NO
was studied with the NO donor [1-propamine, 3-(2 hydroxy-2-nitroso-1-propylhydrazine)]
(PAPA NONOate). PAPA NONOate increased absolute rCBF in WT, eNOS and nNOS
deficient mice, but the CBF responses in eNOS knockout mice were significantly
attenuated 28. These results indicate reduced responsiveness to NO in brain vessels in eNOS
knockout mice. Chronic eNOS deficiency may reduce NO sensitivity of cerebral
vasculature, possible due to changes in downstream guanylate cyclase effector mechanisms.

3.5. Acetylcholine (ACh)
The endothelium-dependent vasorelaxation to acetylcholine (ACh) is a physiologic vascular
response to stimuli that activate NO signaling. The endothelial NO contribution to
cerebrovascular reactivity was studied using a physiologic stimulator of endothelium, ACh.

3.5.1. Mice (eNOS knockout and nNOS knockout)
3.5.1.1. Ex vivo experiments on isolated vessels: In myograph experiments, vessels were
isolated and mounted onto wires or pressurized cannulas in physiological saline aerated with
95 % oxygen and 5% CO2 at 37°C. Vessels were constricted with phenylephrine and
vascular relaxation was measured in response to increasing concentrations of ACh. The
isolated aorta and carotid arteries from the eNOS deficient mice did not relax in response to
ACh [30, 31] and the mice are hypertensive [30].

3.5.1.2. In vivo experiments: ACh significantly increased absolute CBF in WT and nNOS
knockout mice, but not in eNOS deficient mice [28, 32]. These results agree with previous
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cranial window experimental results, which showed that arteriolar dilation to ACh
superfusion was greater in nNOS deficient mice as compared with eNOS mutant mice [33].
The arterioral relaxation of eNOS knockout mice was partially NOS dependent and
attenuated by tetrodotoxin, an inhibitor of voltage-dependent sodium channels, and the NOS
inhibitor L-NNA, suggesting that nNOS-dependent mechanism compensates for the
deficiency of eNOS in eNOS knockout mice. Superfusion with the nNOS specific inhibitor
7-nitroindazole (7-NI) attenuated the ACh response in eNOS deficient mice, while the sGC
inhibitor 1H-(1,2,4) oxadiazolo (4,3-a) qinoxalin-1-one (ODQ) attenuated the ACh
relaxation in eNOS, nNOS and WT mice. These results indicate that nNOS-cGMP-
dependent pathways dilate pial arterioles as compensatory mechanism after eNOS gene
disruption [34]. Neuronal NO, produced by nNOS in nerves innervating blood vessels, also
causes smooth muscle relaxation, vasodilation and increase of blood flow [2].

These data have been confirmed by mathematical models of contributive role of eNOS and
nNOS in vascular tone. Computational models show significant effect of the nNOS on the
NO levels in smooth muscle [35, 36]. Experimental results demonstrated that NO can be
synthesized around arterioles by endothelial and neuronal NOS [37, 38, 39]. The
computational models demonstrated that NO produced by nNOS in the perivascular nerve
fibers and interstitial cells have the potential to play a significant role into the smooth
muscle cells, and sGC reactions in arterioles [40].

3.6. Superoxide dismutase (SOD)
3.6.1. Rats and other studies—Superoxide directly contracts smooth muscle in cerebral
arteries [41] and mediates constriction of cerebral blood vessels in models of
vasospasm [42–45] and Alzheimer’s disease [46, 47]. These effects may be due to direct effects
on vascular muscle, the interaction of superoxide with NO, or other unknown mechanisms.
NO bioavailibility in cerebral vasculature depends upon its interaction with superoxide
anion, which reacts with and inactivates NO[48]. eNOS may produce superoxide and lead to
hydrogen peroxide -dependent dilations to ACh in isolated mouse cerebral arteries [49].
eNOS-derived hydrogen peroxide mediates flow-dependent dilation [50]. Superoxide-
mediated impairment of cerebrovascular reactivity to endothelium-dependent relaxation
without significant changes in resting vascular diameter observed in models of diabetes,
alcoholism, hyperhomocysteinemia, and genetic deficiency in SOD [51–55].

The interaction of superoxide with endothelial NO results in peroxynitrite production, which
also can alter vascular tone. The peroxynitrite dilates cerebral arterioles in vivo via ATP-
sensitive potassium channels [56]. Peroxynitrite also dilates cerebral arteries in vitro by
endothelium independent [57] mechanisms. Peroxynitrite produces contraction of cerebral
arteries in vitro via an inhibitory effect of basal activity of calcium-activated potassium
channels [58].

Cu, Zn-SOD (SOD1) is located in the cytoplasm and nucleus, inactivating superoxide at the
surface of the vascular endothelium. SOD1 significantly increases rCBF in rats after
intravenous infusion [59].

Extracellular superoxide dismutase (SOD3) is located in the intercellular medium and
prevents inactivation of NO by superoxide anion in the intercellular space of the brain,
between the endothelium and smooth muscle cells. Under normal conditions, SOD3
minimized superoxide anion levels, protecting endogenous NO at a sufficient level to
maintain cerebral vascular tone and reactivity 60.

3.6.2. Mice (eNOS knockout and nNOS knockout)—SOD1 significantly increases
absolute CBF in WT and nNOS knockout mice, but not in eNOS knockout mice [28]. The
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results indicate that the endothelial NO plays a key role in regulation of cerebrovascular tone
in baseline conditions. By scavenging superoxide, SOD1 increases activity of NO and
augments CBF in WT and nNOS knockout mice. Because eNOS knockout mice lack
endothelial NO, enhanced scavenging of superoxide by SOD1 does not increase vascular
relaxation [59]. These observations also indicate that bioavailability of endothelial NO may
be regulated by superoxide anion in the cerebral vessels [61].

3.7. CBF autoregulation
CBF autoregulation is the ability of the brain vasculature to maintain constant perfusion and
blood flow despite arterial blood pressure changes [62].

3.7.1. Rats and other studies—Rat cerebral arterioles demonstrated increased diameter
and concentration of NO at reduced periarteriolar oxygen tension when arterial pressure was
decreased 63. After selective inhibition of nNOS with N-(4S)-(4-amino-5-
[aminoethyl]aminopentyl)-N′-nitroguanidine, resting NO, oxygen tension and vessel
diameters decreased, and the increase in NO during hypotension was absent. Flow-mediated
dilation during occlusion of a collateral arteriole was intact after nNOS blockade and NO
concentration in the vessel wall was elevated. Taken together, the results suggest that nNOS
increased NO concentration during decreased periarteriolar oxygen tension during
hypotension, but eNOS was the main source of NO production for flow shear
mechanisms [63].

Laser Doppler flowmetry study of autoregulation in rats with a superfused closed cranial
window demonstrates that NOS inhibition depressed the autoregulatory pattern. The results
suggest that NO elevates CBF near the lower limit and increases the hypotensive portion of
the autoregulatory curve [64].

Most studies with cortical NOS inhibition and regional CBF methods [65–69] support
important roles of NO in extending the lower limit of autoregulation. 7-NI, a specific nNOS
inhibitor, was ineffective in changing autoregulation [69] and the lower limit [68].

3.7.2. Mice (eNOS knockout and nNOS knockout)—CBF was relatively constant
during controlled hemorarhagic hypotension until 40 mm Hg. nNOS knockout mice show no
change in autoregulation [70]. At low blood pressure, the autoregulation curve of eNOS
knockout mice was shifted to the right, suggesting higher resistance of brain vessels in
eNOS knockout mice as compare with WT mice at lower perfusion pressure. CBF was
attenuated at arterial pressure near the lower limit in eNOS knockout compared with WT
mice [71].

Taken together, these studies suggest that endothelial NO is responsible for the effects of
cerebral autoregulation.

3.8. Functional hyperemia (whisker stimulation, CO2 reactivity)
3.8.1. Rats—The NOS inhibitors L-NAME and L-NNA attenuate resting CBF and
hypercapnia-induced vasorelaxation. The nNOS inhibitor 7-NI significantly reduced cortical
CBF and hypercapnic CBF response [72] without effects on resting CBF or on eNOS.

3.8.2. Mice (eNOS knockout and nNOS knockout)—Physiological compensation by
non-cGMP-dependent mechanisms was described for CBF responses of eNOS knockout
mice to hypercapnia [73] and for whisker stimulation [29, 74]. Hypercapnia (5% CO2)
augmented CBF in both WT and eNOS deficient mice. L-NNA superfusion inhibited this
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increase in both strains [29]. These results suggest that the CBF response to hypecapnia
depends on nNOS generated NO.

Whisker stimulation increased rCBF by similar level in WT and nNOS deficient mice in
experiments with closed cranial window. L-NNA inhibited rCBF response in WT mice,
whereas there was no inhibition in nNOS deficient mice. Endothelium-dependent relaxation
of pial vessel in response to ACh and inhibition by L-NNA, was the same in both groups.
The results suggest that endothelial NO production no mediates the rCBF coupling to
neuronal activity without nNOS. NO-independent mechanisms couple rCBF and metabolism
during whisker stimulation in nNOS deficient mice [29].

rCBF increased during whisker stimulation in both WT and eNOS knockout mice. The
attenuation of CBF during the whisker stimulation was inhibited by nitro-L-arginine (L-NA)
superfusion using closed cranial window method. That suggests that CBF coupling with
increased functional activity caused by vibrissa stimulation is nNOS, but not eNOS-
dependent process in cortical barrel brain areas of the mice [74].

4. Hyperbaric oxygen (HBO) and CBF regulation by eNOS
4.1. Rats

Studies on conscious rats with inhibition of NOS were used to assess the dynamics of CBF
during hyperbaric oxygenation (HBO). Oxygen at a pressure of 4 ATA induced cerebral
vasoconstriction in intact animals and decreased blood flow without oxygen convulsions. At
5 ATA, convulsive activity appeared and brain blood flow decreased significantly during the
first 20 min, but the blood flow was significantly increased before HBO convulsions. NOS
pretreatment by prior inhibition of NOS by L-NAME, or inhibition only of nNOS with 7-NI
prevented the hyperemia and paroxysmal spikes on the EEG during hyperbaric oxygenation
at 5 ATA. These results show that hyperbaric oxygen changes CBF and modulates oxygen
neurotoxicity via eNOS and nNOS [75].

CBF decreases during HBO due to inactivation of NO by superoxide anion. SOD increased
CBF in rats breathing air, but was ineffective after previous inhibition of NOS76. HBO
induced CBF decreases, though prior SOD prevented hyperoxic vasoconstriction and
increased CBF under HBO in rats. The vasodilator effect of SOD in HBO was not observed
in rats pretreated with NOS inhibitor. These results suggest inactivation of NO by
superoxide anion as a mechanism of hyperoxic vasoconstriction [76].

SOD3 increased the cerebrovascular relaxation by endogenous NO, neutralized superoxide
anions and maintains basal NO levels in normobaric hyperoxia [60].

4.2. Mice (eNOS knockout and nNOS knockout)
eNOS and nNOS deficient mice were used to study the contributive roles of the NOS
isoforms in mediating changes in cerebral vascular tone in response to hyperoxia. HBO at 5
ATA decreases rCBF over 30 minutes in WT and nNOS deficient mice, but not in eNOS
knockout mice. After 60 minutes HBO, rCBF increased significantly more in WT mice than
in both mutant mice. Brain NO-metabolites nitrite and nitrate (NOx) decreased in WT and
eNOS knockout mice within 30 minutes of HBO. NOx rose above control levels in WT and
eNOS deficient mice after 45 minutes of HBO, whereas they did not change in nNOS
knockout mice. Brain 3-nitrotyrosine increased during HBO in WT and eNOS knockout
mice but not in nNOS deficient mice. These results demonstrate that under HBO, eNOS-
derived NO is responsible for the early vasoconstriction, whereas late HBO-induced
vasodilation depends upon both eNOS and nNOS [28].
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5. Stroke and CBF regulation by eNOS
Endothelial NO plays protective roles in vascular function during ischemia and reperfusion.

5.1. Rats
Reversible occlusion of the middle cerebral artery in rats is followed by augmented
expression of eNOS in rat brain [77]. Selective eNOS inhibition in rats demonstrated
worsened water maze performance in rats subjected to chronic brain hypoperfusion (CBH)
as compared with rats after selective nNOS (7-NI) or iNOS (aminoguanidine) inhibition [78].
The results suggest that endothelial NO plays an important role in spatial memory function
during CBH optimizing the cerebral perfusion through microvascular tone regulation and
CBF.

5.2. Mice
Endothelial caveolin-1 and caveolin-2 and level of eNOS protein increased after middle
cerebral artery occlusion (MCAO) in WT mice [79]. Adiponectin-deficient mice
demonstrated attenuated eNOS phosphorylation in ischemic brain, decreased plasma NO
metabolites, compromised CBF during ischemia and increased cerebral infarct after
ischemia and reperfusion. These results suggest that adiponectin exerts a cerebroprotective
action through an eNOS-dependent mechanism [80].

5.2.1. eNOS knockout mice and nNOS knockout mice—Physical exercise on
treadmill apparatus and on running wheels results in attenuated cerebral infarct size and
neurological deficit, improved endothelium-dependent vascular reactivity and increased
CBF in WT, but not in eNOS knockout mice [81], suggesting that enhanced eNOS activity
can protect against stroke injury.

eNOS deficient mice developed larger infarcts than the WT mice 24 h after permanent
MCAO by filament [71]. Relative CBF in the MCA territory, measured by laser-Doppler
flowmetry, was more severely reduced during occlusion and was significantly attenuated
during hemorrhagic hypotension in autoregulation study. The nitro-L-arginine superfusion
dilates pial arterioles of eNOS knockout mice in a closed cranial window experiments.
Systemic administration of nitro-L-arginine decreased infarct size in eNOS deficient but not
in the WT mice. Infarct volume did not change in eNOS knockout mice after hydralazine
administration to normalize arterial blood pressure of the knockouts. These results show that
endothelial NO protects brain tissue after stroke by hemodynamic mechanisms.

CBF was more severely decreased after MCAO in eNOS knockout as compare with nNOS
knockout mice [70]. Infarction volume was increased when nitro-L-arginine was
administrated to nNOS knockout mice, expressing only eNOS isoform. eNOS deficiency led
to more severe hemodynamic deficits after focal cerebral ischemia. Hemodynamic deficit,
measured by functional computer tomography scanning method in the peri-ischemic area of
eNOS knockout mice was more pronounced as compare with WT mice [82]. WT and eNOS
knockout mice were subjected to MCAO under halothane anesthesia and functional CT
scanning was preformed to measure the cerebral transit profiles of contrast agents. The core
areas were larger in eNOS knockout mice as compare with WT mice. The hemodynamic
penumbra was smaller in eNOS mutant mice than in WT mice.

NO is required for ischemic preconditioning [28]. Cerebral ischemic preconditioning is
neuroprotection induced by pretreatment with brief ischemic episodes. Although WT mice
showed protection from ischemic preconditioning, neither eNOS nor nNOS knockout mice
showed protection. Laser Doppler measurements indicated that the relative CBF decreases
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in core ischemic areas were the same in all groups. Neither eNOS nor nNOS knockout mice
show protection from rapid ischemic preconditioning, suggesting that both of constitutive
nitric oxide may play a role in the molecular mechanisms of protection.

5.2.1.1. Rho kinase inhibitors: Rho-kinase is a serine threonine kinase and upstream
negative regulator of eNOS activity. Rho-kinase negatively regulates eNOS via
transcriptional and post-transcriptional mechanisms [83], subcellular translocation of eNOS
due to actin cytoskeleton reorganization, and phosphorylation of eNOS at serine 1177 via
Akt pathway [84]. Rho-kinase is expressed in most brain cells [85]. Hypoxic and ischemic
conditions downregulate activity of eNOS via activation of Rho-kinase [86, 87, 88]. Rho-
kinase down regulates eNOS activity during cerebral ischemia, worsening the CBF
insufficiency [89]. Rho-kinase is activated after cerebral ischemia [90], increasing the
sensitivity of smooth muscle contraction to intracellular calcium by enhancing
phosphorylation of myosin light chain [91] and reducing activity of eNOS [84]. Rho-kinase
activity is increased in penumbral cerebrovasculature during MCAO [92].

Rho-kinase inhibitors regulate vasomotor tone, reduce inflammation [93], NADPH oxidase
and superoxide production in neutrophils [94] and activate ATP dependent potassium
channels in cardiac myocytes [95], improve CBF in ischemic areas and penumbra in an
eNOS-dependent fashion [89].

Inhibition of Rho-kinase decreases stroke size in WT, but not in eNOS deficient mice89.
Rho-kinase inhibition induces vasodilation and increase CBF in ischemic brain inhibiting of
smooth muscle cells contractility and activating eNOS. Because Rho-kinase inhibition by
hydroxyfasudil did not improve CBF in eNOS knockout mice, it was suggested, that eNOS
plays an obligatory role in this effect89. Because CBF increases rapidly after Rho-kinase
inhibition, nontranslational eNOS activity upregulation is likely to account for this, such as
S1177 phosphorylation [96].

Rho-kinase inhibitors increase CBF in ischemic cortex, but not in nonischemic brain [89].
Resting CBF decreased in non-ischemic brain due to hypotensive effect of hydroxyfasudil
and Y-27632. In contrast, fasudil and hydroxyfasudil augment CBF in canine cortex [93].

Changes in the actin cytoskeleton of endothelium affect eNOS expression [97] and are
mediated by guanosine-5′-triphosphate binding (GTP-binding) proteinRho [98]. The
inhibition of Rho-mediated endothelial actin cytoskeleton changes ameliorates expression
and activity of eNOS, increases CBF, and reduced stroke injury following cerebrovascular
occlusion [97]. eNOS deficient mice do not demonstrated the neuroprotection after
pretreatment with Rho inhibitor C3 transferase or the actin cytockeleton disrupter
cytochalasin D. Rho modulates the actin cytockeleton, but Rho inhibition is not sufficient to
up-regulate eNOS, because cytochalasin D improve eNOS expression despite increased
compensatory activation of vascular Rho [97]. The similar results of the Rho inhibitor and 3-
hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors suggest that eNOS
expression increased with affected endothelial actin cytoskeleton integrity. The actin
cytoskeleton regulates eNOS expression by post-transcriptional stabilization of eNOS
mRNA. Rho may stabilize eNOS mRNA by regulation of the cytoskeletal localization of the
eNOS mRNA. Results with cytochalasin D suggest that Rho induces phosphorylation of
myosin light chain and mediates eNOS expression up-regulation by focal adhesion assembly
and reorganization of actin cytoskeleton.

5.2.1.2. Statins: The statins, including simvastatin, lowastatin, pravastatin, and atorvastatin,
decrease serum cholesterol and the incidence of stroke. Statins elevate CBF by eNOS
upregulation and NO generation [99, 100]. Statin treatment improves endothelial function
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even without changes in serum cholesterol levels [101, 102]. The statins upregulate eNOS
expression in vitro under cholesterol-clamped conditions [83, 88, 103].

Prophylactic pretreatment with statins increases CBF, decreases cerebral infarct volume, and
improves neurological function in WT mice. These hemodynamic and neuroprotective
effects were absent in eNOS knockout mice, indicating that eNOS activation by HMG-CoA
reductase inhibitors is the major protective mechanism against stroke injury [99]. In addition,
inhibition of platelet aggregation and leukocyte adhesion may also contribute to
neuroprotection by statins. Neuroprotection by statins in WT mice lasted for up to 72 hours
after MCAO.

CBF measured by laser-Doppler flowmetry was increased after L-arginine infusion in WT,
but not in eNOS knockout mice. Chronic simvastatin treatment upregulates eNOS. L-
arginine infusion after simvastatin treatment amplified the hyperemia, and increased
absolute CBF. Simvastatin enhanced CBF within ischemic cerebral tissue. These results
suggest that eNOS activity is critical for enhanced CBF during L-arginine infusion, and L-
arginine administration during chronic upregulation of eNOS elevates CBF in the normal
and ischemic brain [100].

Another statin, mevastatin, administered 7, 14 or 28 days before an ischemic event,
upregulates eNOS and augments absolute CBF in the absence of changes in serum
cholesterol levels. Mevastatin pretreatment resulted in neuroprotection after 2 hours MCAO
reperfusion injury by filament and 22 hours of reperfusion [104]. eNOS deficient mice did
not demonstrate neuroprotection after mevastatin treatment. Interestingly, simvastatin and
atorvastatin have neuroprotective effects after embolic cerebral ischemia [105], increasing
both eNOS and tissue plasminogen activator (tPA), but not plasminogen activator inhibitor
type 1(PAI-1) mRNA levels. These effects are eNOS independent because eNOS knockout
mice demonstrated reduced ischemic injury and improved neurological outcome after
embolic blood clot stroke.

Thus, statins effect increase eNOS expression and protein level, CBF and protect against
stroke injury. Vascular mechanisms of statins neuroprotective effect predominate as
compare with neuronal mechanisms. Statins may also protect against myocardial infarction
and attenuate tissue plasminogen activator activity in endothelium [101, 106]. The difference
between statins effects depends on lipophilicity, when highest lipophilicity provides the
greatest degree of eNOS upregulation and neuroprotection [104].

5.2.2. eNOS S1177 mutant mice—Modulation of the eNOS serine 1177 (S1177)
phosphorylation site determines vascular reactivity and infarct size. Substitution of serine
for alanine on position 1177 (S1177A) produces an eNOS unphosphorylated form, because
it lacks the hydroxyl group on the side chine of the serine. Substitution of aspartate on the
position (S1177D) mimics the attenuated catalytic activity caused by the
phosphorylation [107]. Mutant mice expressing a phosphomimetic (S1179D) form of eNOS
show better vascular reactivity, less severe stroke damage, and improved CBF during the
middle cerebral artery occlusion than mice expressing an unphosphorylatable (S1179A)
form [31]. Importantly, mice with increased eNOS activity on serine 1179 (S1179D mice)
show better isolated carotid artery relaxation as compare to eNOS deficient mice and to
mice, inactive on eNOS serine 1179 (S1179A mice [31].

Conclusion
Endothelial NO plays important roles in CBF regulation under basal resting conditions, and
more importantly, under conditions of pathology and stress. The precise contributions of
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endothelial and neuronal produced NO are still being defined, specifically the roles of the
isoforms in resting CBF and its autoregulation.
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