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Abstract

RNA-seq is a powerful tool for comprehensive characterization of whole transcriptome at both gene and exon levels and
with a unique ability of identifying novel splicing variants. To date, RNA-seq analysis of HBV-related hepatocellular
carcinoma (HCC) has not been reported. In this study, we performed transcriptome analyses for 10 matched pairs of cancer
and non-cancerous tissues from HCC patients on Solexa/Illumina GAII platform. On average, about 21.6 million sequencing
reads and 10.6 million aligned reads were obtained for samples sequenced on each lane, which was able to identify .50%
of all the annotated genes for each sample. Furthermore, we identified 1,378 significantly differently expressed genes
(DEGs) and 24, 338 differentially expressed exons (DEEs). Comprehensive function analyses indicated that cell growth-
related, metabolism-related and immune-related pathways were most significantly enriched by DEGs, pointing to a complex
mechanism for HCC carcinogenesis. Positional gene enrichment analysis showed that DEGs were most significantly enriched
at chromosome 8q21.3–24.3. The most interesting findings were from the analysis at exon levels where we characterized
three major patterns of expression changes between gene and exon levels, implying a much complex landscape of
transcript-specific differential expressions in HCC. Finally, we identified a novel highly up-regulated exon-exon junction in
ATAD2 gene in HCC tissues. Overall, to our best knowledge, our study represents the most comprehensive characterization
of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the
power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at
system-wide levels.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies worldwide with an annual incidence of about

600,000 cases, 55% of which are in China [1]. The 5-year overall

survival rate of individuals with HCC is relatively low, which has

barely been improved over the past two decades. A better

understanding of the molecular pathways that are active in HCC

using a more comprehensive approach would potentially provide

new strategies for clinical prevention and therapy.

Currently, several global approaches including array-based

comparative genomic hybridization (CGH) [2], expression profil-

ing based on DNA microarrays [3], proteomics based on 2D

electrophoresis (2DG) and/or mass spectrometry (MS) [4] have

been used to detect the changes at different molecular levels

(DNA, RNA, or protein) in HCC, such as chromosomal

imbalance and genetic instability, epigenetic alteration, gene

expression, and gene regulation and translation. In particular,

microarray-based gene profiling is the most commonly used

method for studies on HCC including comparative analysis of

cancer vs. non-cancerous samples [3], early stage vs. late stage [5],

good prognosis vs. poor prognosis [6], and HCC patients with

HBV vs. those with HCV infection [7]. However, array-based

expression profiling has several limitations including incapability

of detecting gene fusions and novel alternative splicing. Array

analysis is further complicated by inconsistencies largely caused by

differences in the platforms and compromised by its limited

sensitivity in detecting lowly expressed genes [8,9].

With the advance of the next-generation sequencing technol-

ogies, RNA-seq has become a useful tool in defining the

transcriptomes of cells with the advantage of analyzing expression

at exon levels as well as delineating novel splicing variants [10,11].

Early application of RNA-seq included expression profiling of

yeast [12], mouse brain, liver and skeletal muscle tissues [13],
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human embryonic kidney and a B cell line [14]. RNA-seq has

several advantages over other expression profiling technologies

including higher sensitivity, ability to detect splicing isoforms and

somatic mutations [11]. For cancer expression profiling, Berger

et al. [15] applied RNA-seq to expression profiling of melanoma.

They identified 11 novel melanoma gene fusions and 12 novel

read-through transcripts, providing an example of novel avenues

for target discovery in cancers. To date, the RNA-seq analysis of

HBV-related HCC has not been published. We therefore applied

RNA-seq technology to analyze 10 matched pairs of HCC tissues

and their adjacent non-cancerous tissues.

Methods

Ethics
This study was approved by the institutional review boards of

the Forth Military Medical University. Written informed consent

with a signature was obtained from each patient.

Patients and Tissue Specimens
A total of 80 paired fresh-frozen tissue samples (cancer and

matched adjacent non-cancerous tissue) were collected from

Chinese HBV-related HCC patients undergoing surgery during

the period of August 2009 to March 2010 in the Eastern

Hepatobiliary Surgery Hospital of Shanghai, China. Diagnosis of

all HCC cases was histologically confirmed by two independent

pathologists and all tumor tissues was assessed by HE staining and

only those with the percentage of tumor cells more than 90% and

without necrosis were used for the analysis. Among HCC cases, 10

paired samples were randomly selected for RNA-sequencing. All

these 10 patients were HBV positive. The clinical features of the

patients were listed in Table S1.

RNA preparation and sequencing
Total RNAs were extracted, according to the manufacturer’s

instruction, from about 60 mg of tissues for each of the 10 paired

samples using the mirVanaTM miRNA Isolation Kit (Ambion

Inc.), which is also suitable for total RNA extraction. The RNA

yields were quantified by NanoDrop ND1000 (Thermo- Fisher

Scientific, Waltham, MA) and the RNA quality was assessed by

the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). The

RNA integrity number (RIN) of every RNA sample used for

sequencing was more than 8. The cDNA libraries for 10 paired

samples were constructed using mRNA-Seq Sample Prep Kit

based on the Illumina Inc.’s guide. In brief, polyA-containing

mRNA was purified using oligo-dT beads from 10 ug of total

RNAs for each sample and fragmented into small fragments using

divalent cations under elevated temperature. The cleaved RNA

fragments were reverse-transcribed into first strand cDNA using

random primers (Invitrogen Inc.), followed by second-strand

cDNA synthesis. After end-repair processing, a single ‘A’ base was

added to cDNA fragments at 39 end. The cDNAs were then

ligated to adapters, purified by 2% agrose gel, and then enriched

by PCR to create the final cDNA library. Finally, RNA single-end

sequencing was performed using Solexa/Illumina Genome

Analyzer II using the standard protocol. The cDNA library of

each sample was loaded to a single lane of an Illumina flow cell.

The image deconvolution and calculation of quality value were

performed using Goat module (Firecrest v.1.4.0 and Bustard

v.1.4.0 programs) of Illumina pipeline v.1.4. For the 10 paired

samples, 8 pairs were sequenced using one lane, one pair using two

lanes and another pair using three lanes to assess the sequencing

depth. Sequenced reads were generated by base calling using the

Illumina standard pipeline. Each lane produced an average 20

million of 36-mer raw sequence reads.

Alignment of sequenced reads
All alignments were performed using a tool package SOAP2

[16], which was developed professionally for short oligonucleotide

analysis, allowing up to 2 mismatches with the references.

Sequenced reads were aligned to human transcript reference

sequences from the ENSEMBL database (Homo_sa-

piens.GRCh37.55.cdna.all.fa) for the expression analysis at

gene/transcript levels, and were aligned to genome sequence

and known exon-exon junction database from ENSEMBL for the

expression analysis at exon level. Reads that were unable to be

mapped to transcriptome were also aligned to novel exon-exon

junction database that was previously developed by our group for

detection of new alternative splicing events [17].

Evaluation of data quality and sequencing depth
To test the reproducibility of sequencing, the correlation of gene

expression between replicates of one sample was determined by

Pearson correlation coefficient (PCC). Similar analyses were also

performed to investigate the disparity of cancer and adjacent non-

cancerous tissues. To assess the effect of sequencing depth for

transcriptome analysis, we also determined the ability of increased

sequencing raw reads for the identification of additional genes

using a random sampling approach. Firstly, all raw reads of each

repeat sequencing runs were pooled together for samples A39C

and A39P. Then, 13 different bins of raw reads ranging from 5 to

65 million (using a step increase of 5 million) were randomly

selected from pooled A39C or A39P, which were sequenced using

three lanes in a flow cell. Each bin of random selected reads was

mapped to transcriptome and the number of matched genes was

tabulated for each bin and plotted.

Differential expression analysis of gene, exon and novel
exon-exon junction

After alignment to the transcriptome, the expression level of

genes was determined based on the value of RPKM (reads per

kilobase per million), which was calculated as the number of reads

mapped to the transcripts of one gene divided by the transcript

length and the number of total mapped reads in one sample [13].

For reads with multiple alignments, we arbitrarily assigned them to

the transcript with the highest expression levels (read counts) under

the assumption that the probability that the read is coming from

the more abundantly expressed gene is higher than from the less

abundant genes. For exon level expression analysis, reads were

aligned onto genome firstly, and then unaligned reads were

aligned onto the known exon-exon junction database from

ENSEMBL. The expression level of each exon or exon-exon

junction was also evaluated by RPKM, similarly calculated as the

number of reads mapped to unique exon divided by the exon

length and the number of total mapped reads in one sample. For

reads with multiple alignments, we assigned the reads to every

mapped exons if the read has #30 genome hits, while we

discarded them if the alignment hits more than 30 exons. The

number 30 was chosen to allow reads from gene families, of which

are quite big (e.g. olfactory receptor family), to be counted while

removing those highly abundant repeat sequence reads. For the

reads mapped to exon-exon junction, we added counts to each

junctional exon.

We performed principle component analysis of the RNA-seq

data using RPKM values of all genes for all samples. The first

principle component accounts for more than 86.5% of the
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variation. Furthermore, a heat map generated from unsupervised

clustering analysis for the expression of all genes revealed that our

HCC samples had no obvious heterogeneous classes or major

subtypes (data not shown). Therefore, paired difference tests

including the paired t-test and the paired wilcoxon signed rank test

were applied to estimate the significance of expression difference

based on RPKM value. In addition, edgeR [18], a recently

developed software package specifically designed for analyzing

RNA-seq data, was also used. A difference with P,0.05 for paired

t-test and paired wilcoxon signed rank test and FDR (false

discovery rate) ,0.05 for edgeR was considered as significant. To

assess the distribution of differentially expressed genes (DEGs) at

different expression abundance levels, MA-plot was made based

on the log2-transformed fold change (FC) of expression between

HCC and adjacent non-cancerous tissues and log2-transformed

average expression level for each gene across all samples.

Comparison between RNA-seq and public microarray
data

A public microarray dataset (GSE22058) was retrieved from the

GEO database. The reason why we chose this dataset is that it is

the most recent and the only large-scale dataset for the comparison

of 96 HBV-related HCC and 96 adjacent non-cancerous liver

tissues from Chinese patients [19], which are comparable to our

data derived from HBV-infected Chinese populations. The log2-

transformed average gene expression levels for common genes

(mapped by common refseq IDs) were used to calculate the PCC

values between the HCC tissues and the adjacent non-cancerous

tissues. The scatter diagram was also plotted to assess the dynamic

range of the gene expression level for both platforms.

Functional annotation and positional gene enrichment
analysis

The top 30 DEGs were analyzed with the gene annotation

database at NCBI and the PubMed literature for their relationship

with tumorigenesis. Additionally, three public databases of HCC,

OncoDB.HCC (http://oncodb.hcc.ibms.sinica.edu.tw), HCCnet

(http://www.megabionet.org/hcc/index.php), and EHCO (Ency-

clopedia of Hepatocellular Carcinoma genes Online, http://ehco.

iis.sinica.edu.tw) were used to assess the differential expression of

the DEGs in HCC-related datasets. Positional Gene Enrichment

[20] (PGE, http://homes.esat.kuleuven.be/,bioiuser/pge/), a

tool for the identification of over-represented chromosomal

regions in a given gene set., was used to survey the chromosomal

regions that are significantly enriched by differentially expressed

genes (DEGs). Statistical significance was evaluated by an FDR

value of ,0.001. The Ingenuity Pathways Analysis (IPA) software

package (Ingenuity Systems, www.ingenuity.com) was used to

identify enriched bio-function terms and canonical pathways using

gene symbols. Fisher’s exact test of P,0.05 was considered

significant. GSEA (Gene Set Enrichment Analysis) [21] was also

used to identify enriched gene sets. To investigate the relationship

of differential expressions at gene and exon levels, we plotted the

average read counts for each exon of 5,288 DEE-containing genes

in HCC tissues and adjacent non-cancerous tissues. Based on the

plots of read coverage, the exon expression pattern was empirically

classified.

Identification of novel differentially expressed exon-exon
junctions

We explored the possibility of RNA-seq in identifying novel

spliced transcripts consisting of novel splicing events of known

annotated exons. Several programs were available for such types

of analysis including QPALMA [22], Splicemap [23], Mapsplice

[24], TopHat [25], GSNAP [26] and PALMapper [27].

QPALMA used a machine learning algorithm to predict splice

junctions from a training set of positive controls [22]. SpliceMap

used flanking bases of splice site to locate potential splice sites [23],

but the Mapsplice algorithm detects splice junctions without any

dependence on splice site features [24]. The TopHat algorithm

pairs candidate exons and evaluates the alignment of reads to such

candidates [25]. GSNAP has the advantage of detecting both

short- and long-distance splicing, including interchromosomal

splicing [26]. PALMapper combines the read mapper Genome-

Mapper with the spliced aligner QPALMA [27]. In this study, we

took a similar approach to TopHat. However, instead of pairing

all potential exons, we only used exon-pairs that are compatible in

phases. A phase indicates the position within a codon where an

exon ends or starts [17]. Phase 0 indicates that an exon ends and

starts after a codon ends or starts; phase 1 indicates that an exon

ends and starts between the first and second base of a codon; and

phase 2 indicates that an exon ends and starts between the second

and third bases of a codon. Only combinations of exons that are in

phase would not create any frame-shift after translation. In

addition, in order to only identify those novel splicing events, we

built a putative novel exon-exon junctional databases excluding all

known exon-exon junctions annotated in all public domains

including NCBI and EC genes [17]. Aligning of sequenced reads

to this dataset would allow us to identify only novel splicing events

that were not previously reported in EST sequencing or annotated

in the public domains. Reads overlapping at least 8 base stretches

from either side of junctions were considered putative splicing

events. Furthermore, we restricted ourselves in identifying only

those differentially expressed novel splicing events. The expression

level of identified novel exon-exon junctions was evaluated by

TPM (Tag per million) value. The aforementioned statistical

methods were used to determine the expression difference of novel

exon-exon junctions between HCC tissues and adjacent non-

cancerous tissues.

Validation of differentially expressed genes, exons and
novel exon-exon junctions

Quantitative reverse transcription polymerase chain reaction

(qRT-PCR) was used for the validation of differentially expressed

genes, exons and novel exon-exon junctions. Seventy-six pairs of

samples including 6 used for sequencing were applied for

validation of DEG, while 20 pairs of samples were used for the

validation of differentially expressed exons and novel exon-exon

junctions. First, total RNA was extracted from tissue samples using

E.Z.N.A. Mag-Bind Total RNA Kit I (Omega Bio-Tek, USA)

following the protocol of manufacturer and then cDNA were

synthesized from the total RNA using PrimeScript RT reagent kit

(Takara, Japan). For the validation of DEGs, six genes were

randomly picked from top 100 DEG list. They are ANLN (Anillin,

actin binding protein), GTSE1 (G-2 and S-phase expressed 1),

KIF14 (Kinesin family member 14), MARCO (Macrophage

receptor with collagenous), PTIGS (prostaglandin I2 (prostacyclin)

synthase), and TFPI2 (Tissue factor pathway inhibitor 2). For the

validation of differently expressed exons, 3 representative genes

(CFTR of pattern 1, CCDC50 of pattern 2, SIGLEC11 of pattern 3)

were chosen to illustrate 3 relationship patterns between DEEs and

DEGs. The expression level of one pair of exons for each

representative gene was compared between HCC tissues and

adjacent non-cancerous tissues. The expression ratio for both

exons of the same representative gene was also determined in

HCC and adjacent non-cancerous tissues. For the validation of

differently expressed novel exon-exon junction, the candidate list

Transcriptomic Sequencing of HCC
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was first manually checked to investigate the read coverage and

sequence overlaps at the novel exon-exon junctions. Six novel

exon-exon junctions with best read coverage and sequence

overlaps were selected, among which 4 were up-regulated and 2

were down-regulated in HCC tissues compared with adjacent

tissues. For the validation of DEGs, Taqman assay approach

(Premix Ex TaqTM kit) (Takara, Japan) was used. For the

validation of DEEs, SYBR Green-based qRT-PCR approach

was used with the SYBR Premix Ex TaqTM II kit (Takara, Japan).

MX3005P QPCR System (Stratagene, USA) was used for

quantitative RT-PCR according to the manufacturer’s instruc-

tions. The primers and probes for Taqman approach were

custom-designed and synthesized by Genecore Inc. (Shanghai,

China). The PCR primers for SYBR Green-based approach were

designed using Primer Premier 5.0 software (PREMIER Biosoft

International, Palo Alto, CA, USA) and synthesized by Invitrogen

Inc. (shanghai, China). The sequences of primers and probes, and

the conditions of qRT-PCR reactions were listed in Table S2. The

HPRT1 gene was used as internal control. The relative expression

level was determined using delta-delta CT method as previously

described [28].

Results

RNA-seq analysis of 10 matched pairs of HCC and
adjacent non-cancerous tissues

We performed RNA-seq on 10 pairs of matched HCC and

adjacent non-cancerous tissues from Chinese HCC patients using

the Illumina platform. The characteristics of the data were

summarized in Table 1. On average, about 21.6 million

sequencing reads and 10.6 million aligned reads were obtained

for samples sequenced on one lane. It was commonly reported in

the RNA-seq papers that a significant percentage of the sequence

reads could not be mapped to the transcribed database [29].

There are several reasons for this, including 1) SNPs or other types

of genetic variations; 2) repetitive elements and tandem repeats. 3)

novel isoforms, splicing events or novel transcripts. Additionally,

the transcript database that we used does not contain some RNA

species such as U6 RNAs, small nucleolar RNAs, long non-coding

RNA (lncRNAs) etc. Finally, there could be unspliced RNAs or

genomic DNA contaminations. The average numbers of mapped

genes, mapped transcripts or mapped exons were 24,356, 45,787

and 224,289, respectively. For each individual sample, we were

able to identify about 64% of all the annotated genes that are

expected to be almost equal to all detectable expressed genes in a

given tissue. In the ENSEMBL database, the human database

(Homo_sapiens.GRCh37.55.cdna.all.fa) includes 37,874 gene

entries (ENSEMBL genes) and 95,605 transcript entries (EN-

SEMBL transcripts). In total from the 10 pair samples, we

generated about 269 million (268,557,458) of aligned reads, which

to our knowledge is the largest database representing transcripts

expressed in HCC tissues. Combining all 10 paired samples, we

were able to identify 33,262 genes (87.8% of all ENSEMBL genes)

with one or more tags (Table S3). Furthermore, we calculated the

average number of sequence tags that a gene has for the 20

samples, and we found that 17017 genes (51.2% of all ENSEMBL

genes) have more than 10 mapped tags per kilobase (kb) of the

transcript length and 24,062 genes (63.5%) with more than 3

RPKM. For the transcripts, we were able to identify 81.87% of

(78,273 of 95,605, total entries in Homo-sapiens.GRCh37.55.cd-

na.all.fa) transcripts.

To assess the depth of sequencing coverage required for

transcriptome analysis, we re-sequenced one paired samples

(A13C and A13P) on two lanes and another paired samples

(A39C and A39P) on three lanes. Correlation analysis showed a

good reproducibility between replicates with all Pearson Correla-

tion coefficient (PCC) values.0.99 (Table S4). Our results

indicated that the number of mapped genes or exons for paired

samples (A39C and A39P) was not significantly increased for

sequenced samples on 2 or 3 sequencing lanes, compared with

those on one sequencing lane (Fig. 1A). In addition, because of the

random sampling nature of the next-generation sequencing

technology, we sought to use a random sampling approach to

determine how many millions of sequence reads were sufficient to

identify almost all genes expressed in a given tissue. The random

sampling process was done using the raw reads, not mapped reads.

We randomly sampled 5 to 65 million (using a step increment of 5

million) reads from the total raw reads that we have accumulated

for sample A39P or A39C, and found that about 15 million raw

reads were sufficient to identify more than 50% (21,170 genes,

56%, i.e. 21,170/37,874) of the annotated genes, which is almost

equal to all detectable expressed genes in a given human tissue

based on estimation from two large scale transcriptome studies

[30,31]. The gene coverage increased much slowly when the read

size was larger than 15 million (Fig. 1B), suggesting that using a

single sequencing lane (which can generate about 20 million raw

Table 1. Summary of sequencing data for 10 paired HCC samples.

Patients
ID

Sequencing
lanes(T/NT) Total reads(T/NT) Aligned reads(T/NT)

Number of mapped
Genes(T/NT)

Number of mapped
Transcripts(T/NT)

Number of mapped
Exons(T/NT)

A05 1/1 20996588/22432079 10249035/12311804 25526/24104 46128/45190 237072/242629

A19 1/1 23586239/20834934 11485721/8843629 22127/22053 41210/39098 225402/205872

A31 1/1 23563690/21130309 11100731/10055694 25083/23924 47350/44033 250004/234018

A35 1/1 23060264/21127532 12602425/9179290 23447/22013 44553/38503 238811/195939

A57 1/1 21205625/20862092 10696149/13342966 23525/23676 43603/44300 237896/239578

A60 1/1 23315039/23481219 14396820/13525402 22706/23695 43207/44239 238530/241133

A63 1/1 20584096/20932296 11021167/8609693 21846/26041 41333/47528 226128/251622

A82 1/1 21068533/20378488 9967105/8401477 23354/25311 42401/45469 226371/220435

A13 2/2 39690126/40643375 13109377/18295444 29700/26164 57579/52158 267445/264099

A39 3/3 64805390/64921421 30429840/30933689 26891/25943 55220/52655 265052/256931

Notes: T/NT, tumor/non-tumor; Aligned reads were defined as those mapped to reference transcripts.
doi:10.1371/journal.pone.0026168.t001
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reads) for each sample is sufficient for the transcriptome analysis

when considering cost and benefit.

RNA-seq data were comparable to the array data for
Chinese HCC

To assess the quality of RNA-seq data and see whether it has

advantages over array-based approaches, our RNA-seq data was

compared with the public microarray data (GSE22058). We

performed correlation analysis of log2-transformed average gene

expression level for common genes between the RNA-seq data and

the microarray data. We found that the PCC was 0.8557 and

0.8620 for the pooled HCC tissues and pooled adjacent non-

cancerous tissues, respectively, suggesting a high correlation

between the two platforms. This observation was consistent with

previous report that RNA-seq data is comparable to the array data

[9]. In addition, we found that RNA-seq data captured a much

wider dynamic range of expression level (tumor: 29.0737 to

14.2033; non-tumor: 210.4580 to15.6266) than array data

(tumor: 2.0721 to 14.7653; non-tumor: 2.0358 to 14.6850) in log

scales (Fig. 2A and 2B).

Identification of differential expression at gene levels
We identified a total of 1,378 significantly differently expressed

genes (DEGs) with 808 up-regulations and 570 down-regulations

in HCC, when compared with non-cancerous adjacent tissues

(Table S5). The numbers of DEGs seem to be evenly distributed at

different expression abundance levels (Fig. 3A). The top 30 DEGs,

which were identified based on descending ranking of FDR from

the edgeR program, were listed in Table S6. A more systematic

comparison of these 30 DEGs in 3 public HCC databases revealed

that 22 DEGs (73.3%) were identified to be DEGs in at least one

of the three databases. Validation analysis using quantitative RT-

PCR for randomly picked six DEGs demonstrated the consistent

over-expression for ANLN, GTSE1 and KIF14 and the consistent

under-expression for MARCO, PTGIS and TFPI2 in HCC (Fig. 3B).

Interestingly, we found that the average PCC (0.9083) for any two

adjacent non-cancerous tissues was significantly higher than that

(0.7218) for any two cancer tissues or that (0.7336) for any cancer

and non-cancerous tissue pairs, suggesting a higher degree of

biological heterogeneity in HCC tissues compared with non-

cancerous adjacent tissues (Fig. 4A.)

The chromosome regions enriched by DEGs were analyzed

using PGE software. Using a much stringent FDR value of

,0.001), up-regulated genes or down-regulated genes in tumor

tissues were significantly enriched at 18 or 9 chromosome regions

respectively. In 14 non-redundant enriched regions (4 of the 18 are

redundant) that were enriched by the up-regulated genes in HCC

(Table S7), eleven of them (about 73%) were reported to be

amplified in HCCs and four of them were not reported in the

literature. A similar literature searches identified 6 out of 9 regions

enriched by down-regulated genes in HCC tissues showed allele

loss or rearrangement that could explain the down-regulation of

genes. Three of the 9 regions did not have literature report of allele

losses (Table S8). The most significant enrichment was located at

chromosome 8q21.3–24.3 (90839173–141714827) with up-regu-

Figure 1. Assessment of sequencing depth required for transcriptome analysis. (A) Gene coverage of three sequential runs for sample
A39P and A39C. (B) Gene coverage for 13 different bin size of million reads randomly chosen from the total sequenced reads of sample A39P or A39C.
doi:10.1371/journal.pone.0026168.g001
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lation of 44 genes among a total of 156 in this region, which could

be further refined to chromosome 8q24.1 (120812196–

126448543) with up-regulation of 18 genes among 30 (Fig. 4B).

Additionally, we also found that 1q22–23 was significantly

enriched by over-expressed genes in HCC, with 9 of 37 genes in

this region up-regulated. A smaller region within 1q22–23

Figure 2. Correlation analysis of log2-transformed gene expression level between RNA-seq data and public microarray data
(GSE22058) in (A) pooled tumor tissues and (B) non-tumor tissues. Red line stands for the best fit line, and the black line stands for the 45
degree reference line.
doi:10.1371/journal.pone.0026168.g002

Figure 3. The distribution of differentially expressed genes in MA plot (A) and their validation by qRT-PCR (B). Fold change (T/NT) of
the expression level for a given gene was defined as the read counts of the gene in the tumor sample (T)/the read counts in the non-tumor sample
(NT); Concentration for a given gene was defined as the read counts of gene/the total read counts in HCC sample+the read counts of the gene/the
total read counts in non-cancerous samples. Each dot represents a gene. Yellow dots represent the genes with no counts in either HCC tumor or non-
cancerous tissues. Red dots represent the genes with significantly differential expression. Red rings represent those samples also used for RNA-seq
analysis.
doi:10.1371/journal.pone.0026168.g003
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Figure 4. Functional annotation of DEG. (A) Analysis of homogeneity for HCC and adjacent non-cancerous tissues using PCC values. The PCC
values of gene expression between different samples were represented by different colors: bigger value corresponding to darker color. AVE: Average
raw reads number for each gene from re-sequenced sample. The character C represents cancerous tissue sample and P for peri-cancerous tissue
sample. (B) Enrichment regions of up-regulated genes on Chromosome 8. (C)Top 10 bio-function terms enriched by DEGs and (D) top 10 canonical
pathways enriched by DEGs. Percentage represents the ratio of the number of mapped genes to all genes in a pathway from IPA. Threshold was set
(P,0.05 or 2log (p).1.3) by Fisher’s Exact Test.
doi:10.1371/journal.pone.0026168.g004
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included 5 up-regulated genes out of 10 in total. These regions

were also identified as chromosome aberrations in previously study

[32,33]. Furthermore, we found many novel potential chromo-

some aberrations including 15q15.1 that was enriched with up-

regulated genes, and 10q23 and 9q34 that were enriched with

down-regulated genes in tumors. These regions were not found in

previous array-CGH analysis of HCC [2].

Using the IPA software package, we identified 54 significant

bio-function terms and 41 significant canonical pathways (Fisher’s

Exact Test, P,0.05) (Table S9 and Table S10). The top 10

significant bio-function terms and canonical pathways were shown

in Fig. 4C and 4D, with cancer and G2/M DNA damage

checkpoint regulation in cell cycle ranking the highest. Most of

other bio-function terms and pathways were also closely related to

tumorigenesis, such as cell cycle, cell growth and proliferation,

lipid metabolism, DNA replication and repair.

Finally, we analyzed the DEGs using a tool GSEA and found

that the top enriched set is the targets of miR199A and B

(P = 0.002) when using C3.all.v2.5 gene sets (C3 represents all

motif gene sets including microRNA targets and transcriptional

factor targets). The genes of BCAM (basal cell adhesion molecule),

NCOA2 (nuclear receptor coactivator 2) and NPAS2 (neuronal PAS

domain protein 2) were listed in this gene set that were up-

regulated in HCC tissues when compared with the adjacent non-

cancerous tissues. When C2.all.v.2.5 gene sets (C2 represents all

curated genes) were used, the top gene sets enriched by up-

regulated DEGs in cancer is the SMITH_LIVER_CANCER gene

set (P = 0.0039), which contains potential marker genes specifically

up-regulated in the majority of HCV-related HCC [34]. Other

enriched gene sets with P value,0.05 were listed in Table S11.

Complex pattern of gene regulation revealed by RNA-seq
coupled with exon-level analysis

We analyzed differential expression at exon levels by mapping

sequenced reads to each individual exon of genes. Totally, about

85.66% of (329891/385122) all annotated exons in the human

genome were mapped when combining the 10 pairs of samples.

Using the same statistical analysis procedures aforementioned for

DEGs, we obtained a total of 24, 338 differentially expressed exons

(DEEs) between HCC and adjacent non-cancerous tissues (data

available when required), which correspond to 5288 genes. Among

these, 1274 of these genes were also identified by the gene level

analysis (1378 DEGs genes identified at gene levels). However,

4014 of these genes showing differential expression at the exon

levels were not found in the DEGs that were identified at the gene

levels, suggesting that RNA-seq data combined with exon level

analysis might capture a much more complex landscape of

differential gene expressions. A Venn diagram illustrating the

overlaps was shown in Fig. 5. Since the length of the tag sequence

we used for the alignment is 36 base pair, and we allowed up to

two mismatches (2/36, i.e. 5.56%), unless the HCC cancer

transcriptome has a mutation rate greater than 5.56%, there

would not be any bias of exon-level expression caused by the

sequence differences in the tumor and normal tissues. We have

checked the mutation rate of HCC and found that it is similar to

other types of cancers. We found that there are 743 to 3050 SNPs

per transcriptome among the 20 samples and there is no

significant difference in the number of SNPs between the HCC

and the adjacent tissue group (Data not shown). Assuming that we

covered about 2% of the genome (about 2% of the genome are

exons), then the polymorphism (including somatic mutation) rate

would be around 0.0012–0.0051%.

To gain detailed understanding of the differential expression at

exon levels and the relationship of differential expression analysis

between gene level and exon level, we plotted the read counts for

each exon of 5288 genes. Several patterns emerged. Representa-

tive expression patterns were illustrated in Fig. 6. The most

common pattern (pattern 1) (Fig. 6A) showed consistent differential

patterns for all exons of DEGs. These genes would be identified as

differentially expressed by either exon-level or gene-level analytical

approaches. A more interesting pattern is illustrated by pattern 2

(Fig. 6D) where selected exons were differentially expressed while

the rest of the exons were not differentially expressed. However,

the direction of expression changes (up or down regulation) is the

same for the differentially expressed exons (DEEs). Finally, there

are more complex patterns (pattern 3) (Fig. 6G) where both up-

and down-regulated DEEs exist for the same gene, suggesting a

complex regulation mechanism. We have retrieved mapped reads

from the exon-exon junction alignments for 3 exampled genes. We

did observe the sequence reads that mapped to the exon-exon

junctions and found different junction alignments for 3 exampled

genes in HCC and non-cancerous tissues. These results were in

consistence with corresponding DEEs and evidently support the

alternative splicing as the explanation for the exon expression

difference (data not shown).

We further confirmed the existence of all these patterns by

quantitative RT-PCR using 20 HCC patients (Fig. 6B, C, E, F, H,

I). CFTR (cystic fibrosis transmembrane conductance regulator)

represents pattern 1 of DEGs. We found that the two DEEs

(ENSE00000718634, ENSE00000718704) of this gene were both

significantly down-regulated to similar extent in tumor tissues

when compared to non-tumor tissues (both P,0.001) (Fig. 6B).

However, the ratio of these two DEEs showed no difference

(P = 0.185) between tumor and non-tumor tissues (Fig. 6C). The

gene CCDC50 (coiled-coil domain containing 50) represents

pattern 2. One DEE (ENSE00001334610) of CCDC50 in pattern

2 was significantly down-regulated in tumor tissue (P,0.001),

while another DEE (ENSE00001552245) exhibited no significant

expression difference between tumor and non-tumor tissues

(P = 0.9496) (Fig. 6E). The ratios of expression level of two exons

in CCDC50 were clearly higher in tumor tissues than that in non-

tumor tissues [median (range): 25.2775(27.045, 22.335) vs.

21.8725(23.175, 20.97) P,0.001] (Fig. 6F). Finally, the gene

SIGLEC11 (sialic acid binding Ig-like lectin 11) represents pattern

3. One DEE (ENSE00001756179) of SIGLEC11 was significantly

up-regulated in tumor tissue (P,0.001), while another DEE

Figure 5. Venn diagram of intersection between 1378 DEGs
and 5288 DEE-contained genes.
doi:10.1371/journal.pone.0026168.g005
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(ENSE00001616306) was significantly down-regulated (P,0.001)

(Fig. 6H). The ratios of expression level of two DEEs in SIGLEC11

were considerably different between tumor and non-tumor tissues

[median (range): 0.8475(0.1, 2.875) vs. 21.3025(23.610, 20.185)

P,0.001] (Fig. 6I).

Identification of novel differently expressed splicing
variants

We explored the possibility of RNA-seq in identifying novel

spliced transcripts consisting of novel splicing events of known

annotated exons using a similar approach to TopHat. Finally, we

identified 61 differently expressed novel exon-exon junctions

between HCC and adjacent non-cancerous tissues in 29 genes

(Table S12). We selected six novel junctions for validation in 20

HCC patients using qRT-PCR and agrose gel electrophoresis.

However, we were only able to confirm one novel junction in

ATAD2 (ATPase family, AAA domain containing 2) gene in the

samples. Furthermore, the novel splicing variant of ATAD2 was

detected to be with significantly higher frequency and abundance

in HCC compared to adjacent non-cancerous tissues (in only 5

adjacent non-cancerous tissues but in all 20 HCC tissues,

p,0.001) (Fig. 7B). PCR confirmation analysis showed that the

novel splicing event was only found in tumor samples but not in

adjacent tissues (Fig. 7C).

Discussion

In this study, we conducted the comprehensive transcriptome

sequencing for 10 HCC and 10 non-cancerous adjacent liver

tissues (matched pairs). An analysis using repeated sequencing runs

and random sampling simulations showed that about 15 million

raw reads were sufficient to cover 50% (21,170) of all the

annotated genes. Jongeneel et al. [31] comprehensively analyzed

Figure 6. Analysis and validation of DEEs. (A), (D) and (G): Schematic diagrams of 3 representative genes (CFTR, CCDC50, SIGLEC11) illustrating 3
relationship patterns between DEEs and DEGs. The structure of genes, together with all annotated exons and transcripts, were shown at the bottom.
The DEEs were highlighted in red on annotated exons of transcripts showing at the bottom. Red curve represents the normalized read counts for
HCC tissues and blue curve represents the normalized read counts for adjacent non-cancerous tissues. (B), (E) and (H): Comparison of expression
levels of DEEs in three representative genes between HCC and adjacent non-cancerous tissues. (C), (F) and (I): Comparison of expression ratio for
different DEEs of the same representative gene in HCC and adjacent non-cancerous tissues. T: tumor NT: Non-tumor.
doi:10.1371/journal.pone.0026168.g006
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the expression of mRNAs using massively parallel signature

sequencing (MPSS) in human tissues and concluded that about

50% of genes in the human genome are expressed in a given

tissue. Sugarbaker et al. [35] showed that about 15000 genes could

be detected by one or more reads using about 2.5–3 millions reads

and they demonstrated that the slope of gene coverage reaches a

plateau after 5 million sequence reads. Since not all genes are

expressed at given tissues, our ability to sequence 17K genes at

sequence depth of .10 tags per gene was quite good. We believe

that this sequence depth allowed meaningful comparison of at least

51.2% of the genes. Therefore, our sequencing reads of .20

million for each sample should be sufficient for transcriptome

analysis considering cost and benefit. Furthermore, a comparison

between our RNA-seq data and the public microarray data

illustrated that deep sequencing could detect a much wider

dynamic range of gene expression than microarrays. Expression

profiling analysis by arrays is limited by its low sensitivity due to

background hybridization and sometimes reduced specificity due

to cross-hybridization of probes and targets [8,9]. RNA-seq is a

more sensitive technology and it is thus not surprising to see that

we identified additional novel DEGs. To the best of our

knowledge, this represents the most comprehensive characteriza-

tion of the transcriptome of liver tissues, which is critical to

understand the disease at system-wide levels as any missing data

will create biased view of the system.

We first analyzed the expression difference at gene levels

between HCC and matched non-cancerous adjacent tissues and

identified 1378 differentially expressed genes (DEGs), many of

which were identified as differentially expressed in previous studies

such as GPC3 (glypican 3) [36], TERT (telomerase reverse

transcriptase) [37], SPINK1 (serine peptidase inhibitor, Kazal type

1) [38] and ESM1(endothelial cell-specific molecule 1) [39]. Many

additional novel and un-annotated genes were identified, suggest-

ing the power and sensitivity of the RNA-seq based approach for

expression profiling. Functional analyses indicated that 1378

DEGs were mostly enriched in the 54 bio-function terms and 41

canonical pathways, which provided important clues for under-

standing the molecular mechanisms of HCC pathogenesis. Among

these pathways, most of them have been previously characterized

as onco-signal pathways in HCC pathogenesis like cell cycle

pathway, molecular signaling pathways of MAPK, p53, BRCA1,

although several pathways were only indicated previously on the

basis of very few mapped genes [3,40]. Actually, comparing to

previous reports, we have identified more mapped genes with

significant expression changes in several pathways (data not

shown). For example, more members of cyclin family and MAPK

(Mitogen-Activated Protein Kinase)-related family were found to

be up-regulated in HCC tissues compared with adjacent non-

cancerous tissues.

Figure 7. Analysis and confirmation of a differently expressed novel exon-exon junction identified for the ATAD2 gene. (A) A
schematic diagram of the differently expressed novel junction in ATAD2. Red line represents tumor tissues and blue line represents adjacent non-
cancerous tissues. The structure of gene was plotted at the bottom. The connecting lines below exons represent all known annotated junctions. The
red connecting line above exons represents the predicted novel exon-exon junction. (B) Relative expression of the novel junction of ATAD2 in HCC
and non-cancerous tissues. (C) RT-PCR analysis on agrose gel electrophoresis for the novel junction in HCC and non-cancerous tissues from 2 HCC
patients. HPRT1 was used as the internal control. (D) A schematic diagram of amino acid sequence for exon 6–8 in ATAD2 gene.
doi:10.1371/journal.pone.0026168.g007
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The DEGs were also significantly enriched for a number of

fundamental and conserved metabolism processes, such as

biosynthesis of steroids, retinol and fatty acid. Particular

interestingly is the observation that many members of cytochrome

P450 (CYP450) family were significantly down-regulated in HCC

tissues, which is consistent with reported data on reduced activities

and down-regulated expression of various P450 molecules in the

liver [41]. This is not surprising because liver cancer could cause

the loss of normal hepatic cells that produce P450 enzymes.

Another noteworthy finding was the down-regulation of many

immune-related genes in HCC tissues, such as heavy and light

chain genes of immunoglobulin and immunoglobulin receptor

genes. This could be caused by the fact that the tumor tissues

might have fewer lymphocytes than the adjacent non-cancerous

liver tissues as HCC often have lymphocyte infiltration [42].

Finally, we also found that the targets of miR199A and B were

enriched in the DEGs, including BCAM, NCOA2 and NPAS2, all of

which were up-regulated in HCC compared to adjacent tissues.

The role of the three up-regulated genes in HCC remains to be

studied. Recently, Yeligar et al. [43] showed that miR199 was

inducible by ethanol and that its down-regulation may contribute

to augmented HIF-1alpha and ET-1 expression. Taking together,

RNA-seq analysis revealed that malignant transformation of

hepatocytes might involve the perturbation of multiple important

cellular pathways including cell growth-related pathways, metab-

olism-related processes, immune-related and micro-RNA regulat-

ed pathways.

Accumulated somatic genetic alteration is a hallmark of cancer

genome and a variety of chromosome aberrations have been

identified in HCC tissues through traditional CGH and array-

CGH methods with limited resolutions [2]. Microarray-based

expression profiling data were also intended to use for the

screening of genetic aberrations at the level of chromosome [44].

Several published array CGH data and comparative genomic

microarray analysis (CGMA) have identified the amplification of

chromosomal 8q, 1q, 20q, 17q and the deletion of chromosome

4q, 8p, 13q, 16q, 17p as frequently events in HCC [32,33,45]. In

the present study, we for first time attempted to make full use of

RNA-seq data for the screening of chromosomal aberrations in

HCC. Our data indicated that many of chromosomal aberrations

predicted in our study were almost identical to what was

previously reported [2], such as the amplification of 8q24. The

chromosome region of 8q24 harbors a number of potential onco-

genes, including c-Myc [46], CCNE2 [47], and RIPK2 [48].

Another chromosomal segment 1q22 was found to be enriched

by many genes that were up-regulated in HCC compared with

adjacent tissues. Wong et al. [49] identified that this segment was

amplified in HCC tissues. In contrast, chromosomal regions 4q12,

4q23 and 4q32 were enriched by genes that were down-regulated

in HCC when compared with adjacent tissues. These regions were

loci with loss of heterozygosity (LOH) in HCC [44]. These results

suggested that the deep sequencing might be feasible and reliable

for screening of chromosome aberrations with higher resolution

and sensitivity. Except for the findings as previously reported, we

also predicted several novel potential chromosome aberrations,

which were not found in previous array-based studies. Among

them, a representative chromosome regions were located on the

chromosome 15.1, which were enriched by a number of up-

regulated carcinogenesis-related genes, such as OIP5, a potential

cancer therapeutic target [50], and PAK6, a member of the p21-

activated kinase (PAK) family of serine/threonine kinases, may

play roles in the regulation of cell motility and in stress responses

[51]. Our findings gave a deep insight into the HCC pathogenesis

at the level of chromosome. Further studies are still needed for the

detailed explanation of chromosome aberrations in hepatocarcin-

ogenesis.

Alternative splicing is a process in which cells can selectively

include different regions of pre-mRNA during RNA processing

and it was found to be implicated in carcinogenesis [52]. However,

the complex nature of alternative splicing makes its discovery not

easy. Previous efforts using exon arrays have achieved only limited

success [53]. Taking advantage of the RNA-seq technology, we

were able to analyze differential expression at the exon levels,

providing a way to understand fine scale regulation of gene

expression at alternative transcript level for the same gene. We first

characterized in detail three patterns of regulation and confirmed

the existence of all these three patterns (Fig. 6). Made possible due

to the power of the RNA-seq technology, our database provides

the most comprehensive characterization of relationship between

gene regulation at gene and exon levels. It will become an

important resource for the scientific community to understand the

complex molecular mechanism of hepatocarcinogenesis.

Our data set also allows us to identify novel splicing events (Fig. 7)

that are not previously annotated or reported even by the huge EST

sequencing efforts. For example, we identified a novel splicing

variant for ATAD2 (ATPase family, AAA domain containing 2) that

was over expressed in HCC samples. ATAD2 is a very important

molecule as it is a cofactor for MYC, AR (androgen receptor) and

ERalpha and the gene itself is regulated by both estrogens and

androgens [54,55]. ATAD2 maps to chromosome 8q24, a region

that is frequently found to be amplified in cancers including in HCC

as we described above. It has 28 exons and the splicing events would

create a transcript lacking exon 6–8 and result in a protein isoform

that misses 136 amino acids from the original ATAD2 protein. A

functional domain search using the InterPro scan program (http://

www.ebi.ac.uk/Tools/pfa/iprscan/) revealed that the skipping

region matches to the pfam domain PF05764 (YL1 nuclear protein),

which has DNA-binding properties. However, the ATP binding

domain (at amino acid position 467–474) of the ATAD2 protein was

not affected by this exon skipping event. In addition, we found that

this skipping region contains a trinucleotide repeat that translates

into a peptide sequence characterized by 24 aspartic acids (D) and

15 glutamic acids (E), both of which are negatively charged amino

acids (Fig. 7D). To date, the biological significance of skipping this

repeat sequence and the functional of the novel ATAD2 isoform

remains to be determined, and further investigation is warranted.

A limitation of our dataset in analyzing splicing events is that we

only used 36-nucleotide sequence reads for the alignment. In the

analysis pipeline, only tags with more than 8 nucleotides (nt)

spanning each of the two joining exons were considered as

evidence for a putative splicing event. Although this approach

could be highly sensitive, it also results in high false positive rate.

Future work using longer sequencing reads or using paired-end

sequencing will help to alleviate the problem.

In conclusion, this study for the first time utilized next

generation sequencing platform to comprehensively characterize

the HBV-related HCC transcriptome. The full characteriztion of

the landscapes of the HCC transctiptome provides the basis for an

understanding of the molecular mechanisms of HCC pathogenesis

at system-wide levels. Future research works based on our findings

may speed up the discovery of novel biomarkers and drug targets

for improving diagnosis and therapy of HCC.
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