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Abstract

Control strategies enforced by health agencies are a major type of practice to contain influenza outbreaks. Another type of
practice is the voluntary preventive behavior of individuals, such as receiving vaccination, taking antiviral drugs, and
wearing face masks. These two types of practices take effects concurrently in influenza containment, but little attention has
been paid to their combined effectiveness. This article estimates this combined effectiveness using established simulation
models in the urbanized area of Buffalo, NY, USA. Three control strategies are investigated, including: Targeted Antiviral
Prophylaxis (TAP), workplace/school closure, community travel restriction, as well as the combination of the three. All
control strategies are simulated with and without regard to individual preventive behavior, and the resulting effectiveness
are compared. The simulation outcomes suggest that weaker control strategies could suffice to contain influenza epidemics,
because individuals voluntarily adopt preventive behavior, rendering these weaker strategies more effective than would
otherwise have been expected. The preventive behavior of individuals could save medical resources for control strategies
and avoid unnecessary socio-economic interruptions. This research adds a human behavioral dimension into the simulation
of control strategies and offers new insights into disease containment. Health policy makers are recommended to review
current control strategies and comprehend preventive behavior patterns of local populations before making decisions on
influenza containment.
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Introduction

During the past decade, influenza has obtained unprecedented

attention due to widespread occurrence of novel viruses, such as

the bird flu in 2003 and the swine flu in 2009 [1,2]. Recent

estimates by the Center of Disease Control and Prevention (CDC)

indicated that the 2009 swine flu is responsible for 274,000

hospitalizations and 12,470 deaths in the United States [3]. These

staggering health burdens call for effective measures to control and

prevent future outbreaks. The control of influenza primarily

involves applying health resources to affected people, known as

control strategies, for example, medical treatment for infected

individuals, closure of affected workplaces/schools, and travel

restriction to affected communities [4]. The prevention of

influenza emphasizes healthy people and depends on their

voluntary behavior against the disease, referred to as the

preventive behavior. As recommended by CDC, the preventive

behavior against influenza include receiving vaccination, wearing

facemasks, washing hands frequently, taking antiviral drugs, and

others [5].

While devising various control strategies and evaluating their

effectiveness, few studies have incorporated the preventive

behavior of individuals [6,7]. In most cases, individuals are often

assumed to passively comply with control strategies, but their

active prevention against the disease has been overlooked. In

reality, the preventive behavior of individuals also reduces

infections and takes effect concurrently with typical control

strategies. For instance, individuals may voluntarily protect

themselves from infection, once they realize some control

strategies being applied to their family members, colleagues, or

communities [8,9,10]. By far, the combined effectiveness of control

strategies and individuals’ preventive behavior remains unclear,

and little attention has been paid to this issue. Lack of such

knowledge may bias estimation of health resources needed to

suppress an outbreak, and mislead the real practice of influenza

containment.

The purpose of this article is to evaluate the combined

effectiveness of control strategies and individual preventive

behavior. Agent-based stochastic simulations are used to investi-

gate three control strategies, including the Targeted Antiviral

Prophylaxis (TAP), workplace/school closure, and travel restric-

tion, as well as combinations of all three. The urbanized area of

Buffalo, New York, USA, is taken as a study area. The control

effectiveness with and without considering individual preventive

behavior is compared to indicate if there exists a significant

difference. Cost-effective strategies are suggested based on the

comparison analysis. The remainder of this article is organized as

follows. The method section that follows reviews two established

influenza models for simulation and describes the design of control

strategies being simulated. The result section presents and

compares the simulation results. The discussion section concludes

this article with implications.
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Materials and Methods

Epidemic models, including mathematical and computer

models, have been extensively used to investigate disease control

strategies, because of their ease and flexibility to deal with different

scenarios. The classic mathematical model, the SIR model, and its

variants employ differential equations to describe continuous

variations between three subpopulations, i.e., the susceptible,

infectious and recovered [11,12]. Various control strategies are

often expressed as different initial conditions (e.g., the size of

susceptible population) or parameter settings (e.g., the infection

rate) of differential equations. The computer-based simulation

models have recently gained their impetus in epidemiology

[13,14,15,16]. These models study population-level health out-

comes through the simulation of individuals and their micro-

interactions. Control strategies can be represented by altering

individuals’ health status and their behavior, such as endowing

them immunity against infection and prohibiting their out-of-

home activities. All of these epidemic models provide solid

platforms to evaluate and compare alternative strategies, thus

informing health policy making [17,18].

Epidemic models with and without individual preventive
behavior

Epidemic models without considering individual preventive

behavior are widely seen in the literature and hereinafter referred

to as ‘influenza-only’ models, because they primarily focus on

influenza transmission. In this research, an influenza-only model

is implemented in the study area, which includes a total number

of 985,001 individuals. These individuals live in 967 census block

groups and 400,870 households according to US census 2000

[19], and carry out daily activities in 36,839 business locations

[20]. The model involves an agent-based stochastic simulation,

discrete time steps, and spatially explicit representation of

individuals. Each individual is a modeling unit with a set of

characteristics (e.g., age, occupation, infection status, location and

time of daily activities) and behaviors (e.g., traveling between

locations for activities and having contact with other individuals)

[21,22]. Individuals and households are simulated under the

constraints of census data so that the modeled population

matches the age and household structure of the real study area.

Individuals are also assigned to business locations to represent

their daily activities, such as working, shopping, eating out, etc.

(Figure S1). The contacts between individuals take place when

individuals meet at the same time and location, such as homes,

workplaces, shops, and restaurants. Because individuals travel

over time and location, their mobility weaves a spatio-temporally

varying contact network (See Text S1 Section 1.1). Through such

a network, influenza viruses diffuse from one individual to

another. Each individual is allowed to take one of four infection

status during a time period, i.e. susceptible, latent, infectious, and

recovered. The progress of infection status follows the natural

history of influenza, including the latent, incubation, and

infectious periods (Table S1). During the infectious period,

individuals may manifest symptoms and become symptomatic.

To initiate the disease transmission, five infectious individuals are

randomly seeded into the study area at the first day of simulation,

which then lasts for 150 days. In each day, the model traces

susceptible contacts of infectious individuals, and stochastically

identifies the next generation of infections using the Monte-Carlo

method (See Text S1 Section 1.2).

In order to further consider individual preventive behavior, this

research employs an agent-based ‘dual-diffusion’ stochastic model

that simulates the concurrent diffusion of both influenza and

individual preventive behavior [23]. The preventive behavior is

considered as a practice or information that also diffuses over

contact networks through inter-personal influence. These two

diffusion processes interact with one another, i.e., the diffusion of

influenza motivates the propagation of preventive behavior, which

in turn limits the influenza diffusion [24,25,26]. In the model, the

diffusion of influenza is simulated similarly to the influenza-only

model aforementioned. The diffusion of individual preventive

behavior is propelled by two types of inter-personal influence

through the contact network: one is the perceived infection risk

and the other is the perceived social standard. The former is

represented as the proportion of influenza cases among an

individual’s contacts, while the latter is expressed as the proportion

of behavioral adopters among the contacts [23]. Individuals are

simulated to evaluate these two proportions every day through the

contact network. Once either proportion exceeds a corresponding

threshold, an individual will be convinced to adopt and practice

preventive behavior [27,28]. The estimation of individualized

thresholds toward adoption is based on a health behavioral survey

approved by the Social and Behavioral Sciences Institutional

Review Board, University at Buffalo, State University of New

York. The waiver of informed consent was obtained from the

university review board for this research (See Text S1 Section 2

and Figures S2–S3). Compared to the influenza-only model,

individuals in the dual-diffusion model have additional character-

istics, such as their adoption status of preventive behavior and

thresholds toward adoption. Individuals also have more behaviors,

for example, evaluating infection risks and social standards from

their contacts, making decision to adopt, and carrying out

preventive behavior against influenza. For illustrative purposes,

the use of flu antiviral drugs (e.g., Tamiflu) is taken as an example

of preventive behavior in the simulation, because its clinical

efficacy is more conclusive than other behaviors, for instance,

washing hand and wearing facemasks. Specifically, if an individual

uses antiviral drugs, the chance of being infected and infecting

others can be reduced by 70% and 40%, respectively [14,29].

Implementation details of these two models are not the focus of

this article, and readers could refer to Text S1 Section 1.3 and

Table S2.

Influenza control strategies
Influenza control strategies are mostly applied at three levels:

the individual level, group level, and community level. For each

level, one strategy is selected for subsequent investigation, namely,

a Targeted Antiviral Prophylaxis (TAP) strategy at the individual

level, a workplace closure strategy at the group level, and a travel

restriction strategy at the community level, as shown in Table 1.

Detailed descriptions of the three strategies are provided below.

First, the TAP strategy identifies symptomatic individuals

(influenza cases), searches their household members, and then

targets antiviral drugs to all these individuals [13,30]. This strategy

has been recommended to be quite effective if stockpiles of

antiviral drugs are sufficient and infections can be quickly detected

[4]. To account for limited health personnel, this research assumes

that only a proportion of influenza cases, 60% (60%TAP) and

80% (80%TAP), can be identified during a day, following the

design by Germann et al. [13]. Second, the workplace closure

strategy shuts down a proportion of workplaces/schools where

influenza cases are identified [31]. This strategy has been

suggested to be useful to socially distance individuals, delay the

disease spread, and win time for developing vaccines and antiviral

drugs [32]. Following the work by Ferguson et al. [33], a low-level

scenario (10%WC) closes 10% affected workplaces and 100%

affected schools during a day, while a high-level scenario

Combined Control Effects for Influenza
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(33%WC) closes 33% affected workplaces and 100% affected

schools. Third, the travel restriction strategy aims to reduce the

trips into and out of affected communities [33,34]. Each of the 967

census block groups in the study area is treated as a community.

Following the project by Germann et al. [13], a low-level scenario

(10% TR) restricts 10% trips into and out of all affected

communities, while a high-level scenario prohibits 50% trips

(50% TR). In addition to testing the three control strategies

individually, the combinations of all three are also evaluated. A

low-level combination scenario (referred to as the Combined-Low)

includes all three strategies at their respective low levels. Likewise,

a high-level combination (referred to as Combined-High) contains

all three single strategies at high levels.

The three control strategies and their combinations in Table 1

are simulated by the influenza-only model and the dual-diffusion

model, respectively. Results from the influenza-only model

indicate the effectiveness of control strategies without individual

preventive behavior. Meanwhile, outcomes from the dual-diffusion

model show the combined effectiveness of both control strategies

and individual preventive behavior. These two modeled effective-

ness are compared to a baseline epidemic scenario, which

represents a worst situation of no control strategies and no

preventive behavior. All strategies are assumed to be implemented

at the time when the cumulative number of influenza cases

exceeds 1,000 (1% of the population), and last until the end of the

epidemic. Individuals having or having not adopted preventive

behavior are treated the same by all control strategies, so that the

control effectiveness from two models are comparable.

For each model and each strategy scenario in Table 1, the

simulation is performed 50 realizations to reduce randomness,

resulting in a total of 1,000 realizations (5 strategies62

scenarios62 models650 realizations). Each simulation records

the time and location of every infection event during a 150-day

period. For each strategy scenario, the control effectiveness is

measured by an epidemic curve that depicts the number of daily

new influenza cases from Day 1 to Day 150. The number of daily

new cases is averaged from 50 model realizations, and then plotted

against time to form an averaged epidemic curve (Figure 1).

Associated characteristics of this epidemic curve are also derived,

including an overall attack rate (the percentage of influenza cases

in the population) and epidemic peak time (Table 2). For the ease

of comparison, a relative effectiveness of a control strategy is also

calculated as an index ranging from 0 to 1. The relative

effectiveness is defined as a ratio of the attack rate reduced by a

strategy from the baseline to the baseline attack rate, i.e., (Baseline

attack rate2Attack rate under a strategy)/Baseline attack rate. A

zero value represents the baseline scenario without any control

strategy (the attack rate under non-strategy = the baseline rate),

while a higher value close to 1 indicates that a control strategy

produces a smaller attack rate. An effective strategy is expected to

produce a low epidemic curve, small attack rate, and high relative

effectiveness. In this research, an epidemic is assumed to be

successfully contained, if the overall attack rate is below 5%. This

is because reported influenza epidemics often have a 5% or higher

attack rate [35,36].

The spatial effectiveness of control strategies is also of interest,

and thus a series of infection intensity maps are displayed in

Figure 2. The infection intensity represents the density of total

infections as points occurring within every geographic unit

(50 m650 m) during the entire 150-day epidemic. The intensity

value at each cell location is also the average from 50 model

realizations and is converted to a unit of infections per sq km2 for

the ease of comparison. An effective strategy is expected to reduce

infection intensity at every location, and meanwhile confine the

spatial extent of affected areas.

Results

Targeted Antiviral Prophylaxis (TAP) strategy at the
individual level

On average, the baseline epidemic scenario (red curves in

Figure 1) causes an 18.6% of the population developing influenza

symptoms (Table 2). The epidemic peaks at Day 77 with

approximately 6,000 new cases occurring at the peak time. The

application of 60% TAP and 80% TAP scenario (blue curves in

Figure 1A–B) significantly reduces the overall attack rate to 6.87%

and 4.74%, respectively. These two TAP scenarios also postpone

the peak time by 5–13 days. Without considering preventive

behavior, the 80% TAP scenario seems effective to contain the

epidemic, because it manages to lessen the overall attack rate

under the 5% epidemic criterion.

By further adding the preventive behavior (hereinafter abbre-

viated as PB), both 60%TAP+PB and 80%TAP+PB scenarios

(green curves in Figure 1A–B) result in even lower attack rates

around 4.3% (Table 2). The epidemic peaks can be limited around

1,000 daily new cases, while the peak time remains similar to the

baseline scenario. This is because the diffusion of preventive

behavior quickly exhausts the pool of susceptible individuals, and

Table 1. Design and simulation of control scenarios.

Epidemic Models

Strategies

Influenza-only model
(without preventive behavior, PB)

Dual-diffusion model
(with preventive behavior)

Baseline scenario No control strategies
No preventive behavior

N/A

#1: TAP Low: 60% cases Low: 60% cases+PB

High: 80% cases High: 80% cases+PB

#2: School/workplace closure (WC) Low: 100% schools+10% workplaces Low: 100% schools+10% workplaces+PB

High:100% schools+33% workplaces High: 100% schools+33% workplaces+PB

#3: Travel restriction (TR) Low: 10% trips Low: 10% trips+PB

High: 50% trips High: 50% trips+PB

#1+#2+#3 Low: combined by all ‘‘lows’’ above Low: combined by all ‘‘lows’’ above+PB

High: combined by all ‘‘highs’’ above High: combined by all ‘‘highs’’ above+PB

doi:10.1371/journal.pone.0024706.t001
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thus fewer individuals can be infected. The results indicate that if

the preventive behavior of individuals is considered, both the 60%

TAP+PB and 80% TAP+PB achieve a similar control effectiveness

( = 0.77), leading to mild attack rates that may not qualify as an

epidemic. The 60% TAP, rather than the 80% TAP, would be

sufficient enough to contain the epidemic. Health agencies only

Figure 1. Simulated epidemic curves resulting from control scenarios with/without considering preventive behavior (PB). The curve
depicts the number of daily new influenza cases during the course of an epidemic. (A) 60%TAP; (B) 80% TAP; (C) 10% WC; (D) 33% WC; (E) 10% TR; (F)
50% TR; (G) Combined-Low; (H) Combined-High.
doi:10.1371/journal.pone.0024706.g001
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need to prepare a smaller stockpile of antiviral drugs than would

otherwise being expected.

Workplace closure (WC) strategy at the group level
Turning to the workplace closure strategies (blue curve in

Figure 1C), the 10% WC scenario slightly reduces the overall

attack rates to 11.87%, and delays the peak time only a little

(Table 2). In contrast, the 33% WC scenario ((blue curve in

Figure 1D) lessens the attack rate to a much lower level of 4.86%,

and advances the peak time by approximately 1 week. For the

purpose of containing the epidemic, the 33% WC scenario, i.e.,

the closure of 33% affected workplaces, is needed to achieve an

attack rate under 5%.

By further including the individual preventive behavior (green

curves in Figure 1C–D), the 10% WC+PB and 33%WC+PB

scenarios produce a much smaller attack rate of 3.99% and 1.83%,

respectively (Table 2). The time to reach epidemic peaks is shortened

to 61–66 days, roughly 2 weeks earlier than the baseline scenario.

The relative effectiveness of 10% WC scenario is doubled by

considering preventive behavior. A primary reason is that a number

of susceptible individuals voluntary protect themselves from infection.

These individuals, therefore, cannot be infected or infect others at

workplaces and schools, largely limiting the disease transmission. The

comparison suggests that given the preventive behavior of individuals

is counted, a 10% workplace closure strategy, instead of the 33% one,

would be adequate to contain an influenza epidemic.

Travel restriction (TR) at the community level
Surprisingly, the 10% TR scenario (Figure 1E) alone causes an

even worse situation than the baseline scenario. The overall attack

rate reaches 20%, and is 1.4% higher than the baseline rate,

leading to a negative effectiveness ( = 20.07 in Table 2). A possible

reason is that the travel restriction strategy extends the time of

individuals spent at home, thereby intensifying the within-home

transmission. Since only 10% of trips into and out of affected

communities are restricted, the disease can still be easily

transported from one affected community to another through

the 90% unrestricted trips. The epidemic thus develops faster and

affects more individuals. As the travel restriction level elevates to

50% (the 50% TR in Figure 1F), much more trips into and out of

affected communities are restricted. Although the infections at

homes are intensified, most infections can only take place within

communities, instead of between communities. As a result, the

overall attack rate drops to 5.91% and the epidemic peak is greatly

mitigated. Nevertheless, the 50% TR does not suffice to contain

the epidemic, because the attack rate remains above 5%.

The simulation results are distinctly different if adding

individual preventive behavior (green curves in Figure 1E–F).

The 10%TR+PB scenario produces a much better outcome than

that from the 10% TR alone, because the relative effectiveness

jumps from 20.07 to 0.62. The overall attack rate and epidemic

peak size are remarkably reduced, although the attack rate

remains above 5% (Table 2). The 50%TR+PB scenario turns out

to be effective for influenza containment, because the overall

attack rate can be lowered to 1.65%, much less than the 5%

epidemic criterion.

Combined control strategies
The combined strategies (the blue curves in Figure 1G–H)

outperform each of the three single strategies. The total infections

can be contained far below 5% of the population, with a small

peak size under 1,000 cases. Particularly, the Combined-High

scenario is capable of preventing the epidemic, given only 0.68%

of the population being infected (Table 2). Among the three single

strategies, the TAP strategy reduces infections within households,

the workplace closure strategy tends to prevent infections at

Table 2. Control effectiveness of scenarios with/without preventive behavior (PB).

Scenarios Overall attack rate (%) Epidemic peak time (Days) Relative Effectivenessb

Baseline 18.60 [18.52, 18.74]a 77 [64, 92] 0.00

60% TAP 6.87 [0.00, 8.89] 90 [3,136] 0.63

80% TAP 4.74 [0.00, 7.49] 82 [3,145] 0.75

60% TAP+PB 4.31 [0.00, 5.20] 71 [3,104] 0.77

80% TAP+PB 4.30 [0.00, 4.96] 76 [5,102] 0.77

10% WC 11.87 [11.36, 11.90] 80 [64,71] 0.36

33% WC 4.86 [0.00, 5.42] 69 [4, 94] 0.74

10% WC+PB 3.95 [0.00, 4.99] 66 [3, 98] 0.79

33% WC+PB 1.83 [0.00, 2.46] 61 [3, 103] 0.90

10% TR 20.00 [19.91,20.11] 74 [64, 85] 20.07

50% TR 5.91 [0.00, 6.61] 65 [6, 89] 0.68

10% TR+PB 7.10 [0.00, 8.70] 67 [3, 97] 0.62

50% TR+PB 1.65 [0.00, 2.11] 60 [3, 89] 0.91

Combined Low 5.00 [4.33, 5.73] 86 [72, 103] 0.73

Combined High 0.72 [0.00, 0.94] 60 [5, 108] 0.96

Combined Low+PB 1.95 [0.32, 2.34] 75 [7, 108] 0.90

Combined High+PB 0.68 [0.00, 0.91] 52 [4, 102] 0.96

aAll measures are the averages of 50 model runs, and 95% confidence intervals are shown in brackets.
bRelative effectiveness = (Baseline attack rate- Attack rate under a strategy)/Baseline attack rate.
T-test shows that the relative effectiveness with and without PB is significantly different (p-value = 0.043).
doi:10.1371/journal.pone.0024706.t002
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workplaces, and the travel restriction limits the disease transmis-

sion between communities. These three single strategies work

together as complements, leading to a significant improvement in

control effectiveness (relative effectiveness.0.9). Without consid-

ering preventive behavior, the Combined-High scenario seems

necessary to contain the epidemic, while the Combined-Low

scenario is insufficient. This argument, however, may be changed

by incorporating individual preventive behavior (green curves in

Figure 1G–H). The Combined-Low+PB scenario now is adequate

to reduce the overall attack rate below 5% and thus contain the

epidemic, while the high-level scenario is no longer a necessity.

Spatial effectiveness of control strategies and preventive
behavior

Based on the comparison analysis above, the TAP 60%+PB,

10% WC+PB, 50% TR+PB, and the Combined-Low+PB

scenarios are suggested to be cost-effective in controlling influenza

epidemics. Therefore, their spatial effectiveness is further exam-

ined and compared through infection intensity maps (Figure 2).

For description purposes, the mapped infection intensity is further

categorized into 6 levels, i.e., very low (0–50 infections/km2), low

(50–100), moderate (100–200), high (200–500), very high (500–

1,000), and extremely high (.1,000).

Figure 2. Intensity maps of cumulative infections for the entire epidemic. (A) Baseline scenario, (B) 60% TAP+PB, (C) 10% WC+PB, (D) 50%
TR+PB, and (E) Combined Low+PB. The color ramp represents the 150-day cumulative number of infections per sq km2 at a 50 m650 m cell location.
The infection intensity is further categorized into 6 levels, i.e., very low (0–50 infections/km2), low (50–100), moderate (100–200), high (200–500), very
high (500–1,000), and extremely high (.1,000).
doi:10.1371/journal.pone.0024706.g002

Combined Control Effects for Influenza
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The baseline scenario (Figure 2A) induces an extremely high

intensity of infections in the central business district of the study area.

The infection intensity decreases in an outward direction to suburbs.

This is because the central business district has the densest residential

population and highly concentrated business locations. Compared to

the baseline map, the 60% TAP+PB scenario (Figure 2B) greatly

reduces the infection intensities all around the study area, although the

central business district retains a high-level intensity. The spatial

effectiveness of 10%WC+PB (Figure 2C) is similar to the 60%

TAP+PB, but moderate infections are more scattered in the suburban

areas. The 50% TR+PB is capable of confining the wide spread of

influenza over the study area (Figure 2D), leaving only a small number

of separated areas with high infection intensity. These hotspots are

most located within CBD, university campuses, and large industrial

plants, where a large number of people work and live. This is probably

because the city-wide travels of individuals are partially prohibited,

and hence disease can only develop locally. Finally, the Combined

low+PB scenario not only reduces the intensity of the infections at all

locations, but also confines spatial extent of disease spread (Figure 2E).

The infections in the central business district are reduced to a

moderate level, while a vast proportion of the study area has only a

small number of infections.

Discussion

In summary, previous studies on influenza containment have only

considered the effectiveness of applying control strategies, while

overlooking the effectiveness from individuals’ preventive behavior.

This research estimates the combined effectiveness of both control

strategies and individual preventive behavior. The results imply that

previous studies on control strategies are incomplete, and the control

effectiveness might be under-estimated. The comparison between

two model results indicates that preventive behavior of individuals

has an extra effectiveness, in addition to the effectiveness from typical

control strategies alone. This extra effectiveness produces an even

smaller attack rate of influenza, lower epidemic peak, and earlier

peak time. By considering the combined effectiveness, the control of

influenza epidemics may not require as much health resources as

estimated in previous studies. For example, the 80% TAP strategy

could be replaced by the 60% one, reducing the burden of local

agencies to prepare health resources. Likewise, the 10% workplace

closure strategy, rather than the 33% strategy, would be sufficient to

control the seasonal influenza epidemic in the study area. Enormous

socio-economic disruptions could be possibly avoided. A low-level

combination of the three strategies is recommended to suppress

influenza epidemic in the study area, while a high-level combination

is no longer a must. Particularly, with the help of individual

preventive behavior, the 50% travel restriction strategy and the low-

level combined strategy can successfully confines the spatial

dispersion of influenza in the study area.

Similar to any modeling analysis, this research has a number of

limitations. First, the simulation models focus on one US

metropolitan area, one influenza virus strain, and one preventive

behavior. It is possible that the model outcomes vary in different

cities and different disease parameters, such as a pandemic influenza

virus. The interpretation of model outcomes should be limited to

seasonal influenza and in the study area. Although the use of

antiviral drugs is taken as an example in this research, the

methodology can be easily extended to other preventive behavior,

such as washing hands and wearing facemasks, once their

preventive efficacy is conclusively quantified. Second, the mass

media also influences people’s decision to adopt preventive

behavior, especially for diseases that are highly infectious or pose

severe health risks, such as the severe acute respiratory syndrome

(SARS). This research has not modeled the mass media because its

effects on flu-related preventive behavior remain inconclusive. In

addition, the seasonal influenza simulated in this research has a

relatively mild infectivity and limited risks, thus is usually not a focus

of mass media attention. Third, the model assumes that individuals

adopt preventive behavior immediately after the threshold effects

happen. In reality, individuals’ adoption of a behavior may take a

relatively longer period as it may involve a number of psychological

steps [37]. A more sophisticated behavioral approach may improve

the modeling reality, but also increase the complexity of model

structure. A trade-off between model performance and detail levels

is always a challenge for modelers [38]. Ongoing research is

intended to address these limitations and challenges.

Control strategies enforced by health agencies and preventive

behavior voluntarily practiced by the public are two intertwined

components of disease containment. Ignoring either component may

prevent us from effectively mitigating burdens of influenza on public

health. It is hard to resist citing and rephrasing the argument by

Funk et al. [26] that ‘‘individual self-initiated behavior can change

the fate of an outbreak, and its combined effectiveness with control

strategies requires proper understanding if we are to fully

comprehend how these control measures work’’. This research

attempts to fuse the human behavioral dimension into the study of

control strategies, and thus offers more comprehensive understand-

ings on disease containment. Health agencies are recommended to

gain prior knowledge about behavioral patterns of local people

before choosing influenza control strategies. The findings of this

research call for a review of current control strategies and re-estimate

the health resources that are necessary to contain epidemics. It is

believed that such a review would shed new insights on improving

control effectiveness for looming influenza pandemics.

Supporting Information

Figure S1 The simulation of contact network. The

assignment of individuals to households, workplaces, service places

and neighbor households based on the attribute and spatial

information of individuals.

(TIF)

Figure S2 Estimated distribution of the threshold of
infection risks by gender. The X axis indicates the proportion

of influenza cases in the contacts of a participant that is needed to

convince the participant to adopt. The Y axis shows the frequency

of such proportion occurring in the survey results.

(TIF)

Figure S3 Estimated threshold distribution of adoption
pressure by gender. The X axis indicates the proportion of

adopters in the contacts of a participant that is needed to convince

the participant to adopt. The Y axis shows the frequency of such

proportion occurring in the survey results.

(TIF)

Table S1 Model parameters for simulating influenza.
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Table S2 Model parameters for simulating preventive
behavior.
(DOCX)

Text S1
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