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† Background and Aims The major objective was to identify plant traits functionally important for optimization of
shoot growth and nitrogen (N) economy under drought. Although increased leaf N content (area basis) has been
observed in dry environments and theory predicts increased leaf N to be an acclimation to drought, experimental
evidence for the prediction is rare.
† Methods A pedigree of 200 full-sibling hybrid willows was pot-grown in a glasshouse in three replicate blocks
and exposed to two water regimes for 3 weeks. Drought conditions were simulated as repeated periods of water
shortage. The total leaf mass and area, leaf area efficiency (shoot growth per unit leaf area, EA), area-based leaf N
content (NA), total leaf N pool (NL) and leaf N efficiency (shoot growth per unit leaf N, EN) were assessed.
† Key Results In the water-stress treatment, shoot biomass growth was N limited in the genotypes with low NL,
but increasingly limited by other factors in the genotypes with greatest NL. The NA was increased by drought, and
drought-induced shift in NA varied between genotypes (significant G × E). Judged from the EA–NA relationship,
optimal NA was 16 % higher in the water-stress compared with the well-watered treatment. Biomass allocation to
leaves and shoots varied between treatments, but the treatment response of the leaf : shoot ratio was similar across
all genotypes.
† Conclusions It is concluded that N-uptake efficiency and leaf N efficiency are important traits to improve
growth under drought. Increased leaf N content (area basis) is an acclimation to optimize N economy under
drought. The leaf N content is an interesting trait for breeding of willow bioenergy crops in a climate change
future. In contrast, leaf biomass allocation is a less interesting breeding target to improve yield under drought.
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INTRODUCTION

Knowledge on the functionality of plant traits affecting growth
and resource economy is important for the basic understanding
of plants, and relevant for breeding research. The availability
of water and mineral nutrients, among them nitrogen (N), are
important determinants of plant growth, and crop breeding pro-
grammes frequently target water and N use efficiency along with
drought resistance. Water and N use are interrelated, and it is
often unclear to what extent growth reduction under drought is
a consequence of reduced stomatal conductance and CO2

uptake, or reduced N uptake and accumulation in dry soils
(Chaves et al., 2003). In a field survey performed in areas receiv-
ing different amounts of precipitation, low-rainfall species have
been observed to operate with higher leaf N content (area basis)
than species grown in high-rainfall environments (Wright et al.,
2003). In a theoretical approach, total assimilation was
suggested to be a scaled linear sum of total N and total transpira-
tion (Farquhar et al., 2002). Hence, limited water supply is
expected to go along with reduced leaf area to lower transpira-
tion, and optimization of N economy under limited water
supply may be accomplished by increased leaf N content per
area (Farquhar et al., 2002). The prediction has rarely been

evidenced experimentally, but could be tested by using the defi-
nition of optimal leaf N content suggested by Hirose (1984).

Functional adaptation to the availability of growth-limiting
resources frequently implies changed biomass allocation. For
example, ‘functional equilibrium’ or ‘resource balancing’
theory predicts that plants invest abundant resources in order
to increase the gain of scarcer resources, and thus reduce the
risk of being growth-limited by a single resource (Brouwer,
1962; Bloom et al., 1985; Ericsson, 1995). Assuming resource
balancing to be an adaptive mechanism for growth under
strong water limitation, plants should allocate biomass predo-
minantly to roots (to counteract water/nutrient limitation), at
the cost of reduced biomass allocation to leaves. Biomass allo-
cation to different plant organs is affected by a combination of
environmental factors, such as resource availability, ontogeny/
plant size and genotype (Poorter and Nagel, 2000). Reduced
leaf biomass allocation in response to limited water supply,
as reported in many studies (review by Poorter and Nagel,
2000), could therefore reflect functional optimization indepen-
dent of plant ontogeny/size and/or the outcome of drought-
induced size difference. This distinction is important when
functional adaptation of plants is discussed in the context of
plant breeding. Reduced leaf biomass allocation in response
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to drought is interesting for breeding only if it is the result of
optimized plant function and independent of plant size. In this
case, an allometric analysis using log–log relations between
biomass of different plant organs is an appropriate analysis
(Farrar and Gunn, 1998; Poorter and Nagel, 2000). Theory
and also experimental evidence indicate a linear log–log
relationship between leaf, stem and root biomass across a
broad range of taxa inhabiting diverse ecological habitats
including dry sites (Enquist and Niklas, 2002). If the
biomass allocation rule reported by Enquist and Niklas
(2002) applies for intraspecific comparisons within, for
example breeding populations, drought-induced differences
in biomass allocation cannot be interpreted by means of func-
tional optimization independent of plant size, and are thus less
relevant for plant breeding. ‘Resource balancing’ might apply
for the allocation of biomass and also mineral nutrients within
plants. In that case, we expect that plants predominantly
growth-limited by water (rather than N) would allocate more
N per unit leaf area to increase assimilation at reduced total
leaf area and stomatal conductance (Farquhar et al., 2002).
High N accumulation capacity under drought and optimized
leaf N per unit area in response to drought would then be desir-
able traits for plant breeding.

Many species of the genus Salix are fast growing, easy to
propagate vegetatively and commercially used for biomass
production (Kuzovkina et al., 2008). Breeding programmes for
Salix have been established (Gullberg, 1993; Karp et al., 2011),
linkage maps are available (Rönnberg-Wästljung et al., 2003;
Hanley et al., 2006; Berlin et al., 2010) and candidate genetic
markers have been identified for various traits, among them
growth performance under drought (Rönnberg-Wästljung et al.,
2005; Weih et al., 2006). Breeding populations are available
and allow the comparison of a range of genotypes that may vary
in the traits of interest, but are similar in confounding attributes
associated with, for example, leaf longevity and functional type.
A mapping population, here of Salix, grown under suboptimal
conditions, offers an opportunity to test hypotheses regarding
the functionality of traits thought to be adaptive.

The objective here was to identify plant traits functionally
important for optimization of shoot growth and N economy
under drought. Several hypotheses were tested: (1) plant
growth is N-limited under drought, and N-uptake efficiency is
a critical trait for growth both under well-watered and
water-stress conditions; (2) biomass allocation to leaves and
shoots across a range of closely related genotypes grown in well-
watered and water-stressed conditions, follows a linear log–log
relationship similar to the relationship reported by Enquist and
Niklas (2002); and (3) optimal leaf N content (area basis;
sensu Hirose, 1984) is higher in drought-treated compared
with well-watered plants. These hypotheses were tested by
using a pedigree of 200 full-sibling willow (Salix) genotypes
exposed to two contrasting environments differing in irrigation.

MATERIALS AND METHODS

Plant material, growth conditions and harvest procedure

A subset of 200 genotypes from a mapping population with, in
total, 463 F1 offspring originating from a cross between a male
diploid hybrid Salix viminalis × S. schwerinii variety (‘Björn’)

and a female diploid S. viminalis variety (‘L78183’) was used.
The subset of 200 genotypes included the parents of the pedigree.
The hybrid variety ‘Björn’, as well as its full-sib ‘Tora’, was bred
for high productivity under favourable growth conditions, while
the natural variety ‘L78183’ was collected in southern Sweden.
Based on the results from previous studies comparing the parental
genotypes or their full-sib relative [e.g. ‘Tora’ and ‘L78183’ com-
pared by Weih (2001) and Weih and Nordh (2002)], we expected
great variation in drought tolerance across the F1 offspring. The
parents and 198 F1 offspring genotypes were vegetatively propa-
gated using 5-cm cuttings.

The cuttings were planted in 2-L plastic pots filled with a
mixture of two-thirds of the growth medium Weibulls ‘Kron
Mull’ (organic matter 95 %; pH 5.5–6.5; 180 g m23 N, 110 g
m23 P, 195 g m23 K, 260 g m23 Mg, 100 g m23 S, 2000 g m23

Ca) and one-third of perlite in mid-April 2009. All plants were
grown in a ventilated glasshouse in Uppsala, central Sweden, at
slightly (approx. 2–6 K) above-ambient temperature (mean temp-
erature 21.8 8C during the treatment period) and ambient light
conditions (.12 h photoperiod). During daytime photosyntheti-
cally active radiation (400–700 nm) at plant height varied
between 280 and 350 mmol m22 s21 during the treatment. The
pots were arranged in three blocks and individual genotypes
(2 × 200 in each block) were positioned randomly within two ran-
domly assigned treatments in each block. During the first 5 weeks
all plants were watered daily to field capacity of the substrate
(‘well-watered’). Competing shoots were regularly removed
before they reached 1 cm length to keep shoot numbers similar
and reduce effects on shoot number caused by heterogeneous
bud development from cuttings. After 5 weeks of growth initial
non-destructive assessments of stem height and leaf chlorophyll
content (SPAD-502 leaf chlorophyll meter; Konica Minolta
Sensing, Japan) were carried out and two experimental treatments
(well-watered, WW; water-stress, WS) were started. Plants in the
WW treatment received about 120 mL water per pot per day. In
the WS treatment the plants were exposed to repeated periods
of water shortage. Thus, the plants in the WS treatment were
watered to field capacity of the soil (approx. 120 mL per pot) on
days 8, 14, 15 and 19 from the start of the experimental treatments.
Individual plants were supplied with a complete fertilizer solution
(12.6 mg N per pot) on days 0 and 14 from the start of the exper-
imental period. The number of leaves abscised during the treat-
ment was recorded. The final harvest of leaves and shoots, in
total 1200 individuals, began after 20 d of treatment, and blocks
containing plants from both treatments were harvested succes-
sively during a period of 2 weeks.

Harvested plant parts were separated into shoots and leaves.
For all individuals, leaf area and leaf chlorophyll content
(measured as SPAD units) were determined on three samples
of fresh leaves (top, middle and bottom of canopy) with a
LI-COR LI-3100 leaf area meter (Lambda Instruments,
Nebraska, USA). The sample leaves were dried to constant
weight, and specific leaf area (SLA) was calculated as mean
for the three sample leaves of individual plants. All leaves
and shoots were dried at 70 8C for 48 h and weighed. Total
leaf area of individual plants was estimated by multiplying
the SLA of sample leaves with the total leaf biomass of indi-
vidual plants. In general, the SPAD value can be used as an
estimate of leaf N content [Weih and Rönnberg-Wästljung
(2007) for Salix]. The N content of a subset of sample
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leaves was determined with a mass spectrometer (ANCA-MS,
Europe Scientific Ltd, Crewe, UK) to establish the relationship
between area-based leaf N content (NA) and SPAD in this
study. A significant relationship between SPAD values and
NA was confirmed on a subset of 108 sample leaves selected
randomly among all genotypes and representing the whole
range of observed SPAD values (logarithmic regression, P ,
0.001). The relationship was used to estimate the NA of
sample leaves for all individuals. The total leaf N pool (NL)
of individual plants was calculated by multiplying the NA

with the total leaf area (AL).

Analysis of growth and N economy

Growth and N economy analysis involved the assessment of
shoot and leaf biomass (BS and BL, respectively), leaf area effi-
ciency (shoot biomass per unit of mean leaf area during the
experiment, EA), N-uptake efficiency (here equivalent to N
accumulation in leaves at final harvest, NL) and leaf N effi-
ciency (shoot biomass per unit mean leaf N during the exper-
iment, EN) according to the general concept by Weih et al.
(2011). The relationship between EA and NA was analysed to
evaluate optimum NA according to the concept of Hirose

(1984). Plant growth and N economy of the 1200 plants
(200 genotypes × 3 replicates × 2 treatments) were assessed
by means of the accumulation of biomass (shoots and
leaves), leaf area and leaf N through the experiment.

Statistical analysis

Regression analysis was performed to assess the relation-
ships between various traits separately for the two treatments.
Analysis of covariance (ANCOVA) was used to assess the
effects of treatment, genotype and block (covariate), and the
treatment × genotype interaction, on the various traits
recorded. The shoot height at the beginning of the experimen-
tal treatment period was used as an additional covariate in
ANCOVA on BS and NL in order to statistically consider the
effects of initial plant size on the two traits. Shoot biomass
and leaf N pool were loge transformed prior to ANCOVA to
ensure homogeneity of variances. The number of leaves
abscised during the experiment was used as a covariate in
ANCOVA on leaf : shoot biomass ratio. All statistics was com-
puted using the SPSS statistical software package (Release
17.0; SPSS Inc., Chicago, IL, USA).

RESULTS

Parental genotypes

The natural female variety ‘L78183’ had higher leaf N content
(NA), similar leaf N pool (NL), but lower shoot biomass (BS),
leaf area (AL) and N efficiency (EN) than the hybrid male
variety ‘Björn’ (Table 1). Treatment (WS and WW) responses
ranged from strongly negative (BS, AL, EN) through neutral
(SLA) to positive (NA) and varied between the two genotypes
(ANOVA P ≤ 0.05 not shown). For example, ‘Björn’ showed
stronger reduction of AL, NL and EN in response to water
stress compared with ‘L78183’.

Growth and N economy under well-watered and water-stressed
conditions

Shoot biomass (BS) was an almost linear function (slope
close to 1.0) of the leaf N pool (NL) in the WW treatment, indi-
cating that N accumulation was the major determinant of shoot
growth in these plants (Fig. 1A). In the WS treatment, BS

TABLE 1. Abbreviations of the phenotypic traits measured and the mean values (+ s.d.) for the two parents of the F1 pedigree
exposed to two different water regimes (well-watered and water-stressed) in a glasshouse for 3 weeks

Abbreviation Trait (unit)

Well-watered (mean) Water-stressed (mean)

Female* Male† Female* Male†

BS Shoot biomass at final harvest (g) 2.34+0.39 2.93+0.87 1.16+0.35 1.49+0.14
NL Total leaf N pool at final harvest (mmol) 3.67+0.66 3.80+0.87 2.61+0.43 2.41+0.01
AL Total leaf area at final harvest (m2) 0.088+0.011 0.108+0.026 0.056+0.015 0.062+0.002
SLA Specific leaf area (m2 kg21) 35.8+2.3 37.8+1.8 33.1+1.5 36.5+0.3
NA Area-based leaf N content (mmol m22) 42.4+4.8 35.7+1.3 47.6+3.9 39.3+1.2
EN Leaf N efficiency (g mmol21) 1.29+0.15 1.51+0.13 0.88+0.16 1.27+0.14

* Salix viminalis (‘L78183’), † S. viminalis × S. schwerinii (‘Björn’).
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FI G. 1. Relationships between final shoot biomass (BS) and leaf N pool (NL)
of 200 willow genotypes (means of three replicates) grown experimentally in a
glasshouse under well-watered (A) and water-stressed (B) conditions. For ease
of comparison, the regression lines for the two water regimes are shown in the
same figure in the inset. Broken lines indicate slope of 1, i.e. a hypothetically
constant leaf N efficiency (g mmol21) across all genotypes and treatments.
Quadratic regressions: (A) loge y ¼ 1.192 loge x – 0.056 (loge x)2 – 0.597,
r2 ¼ 0.92, P , 0.001, n ¼ 200; (B) loge y ¼ 1.410 loge x – 0.480 (loge x)2

– 0.715, r2 ¼ 0.71, P , 0.001, n ¼ 200. Note the loge scales.
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increased with NL in a similar relationship compared with the
WW treatment up to an NL of around 2 mmol (Fig. 1B). At
greater values of NL, diminishing slope indicated that the
shoot biomass growth of the WS plants was increasingly
limited by factors other than N accumulation. The pattern in
shoot biomass was similar to the pattern in total above-ground
biomass (not shown). The BS, SLA, NL and NA were all signifi-
cantly affected by treatment and genotype (Tables 2 and 3).
Also block affected these traits (Table 3): The BS, SLA and
NL increased from the first to the least-harvested block,
whereas NA decreased. The reduction in BS by water stress
was the result of a greater reduction in NL than EN

(Table 2). The effect of water availability on BS and NA

varied between genotypes (Table 3, interaction effects).
The BL increased proportional to BS (Fig. 2A). When

assessed across both treatments, the slope of the linear log–
log relationship between BL and BS was 0.77 and similar to
the predicted slope of 0.75 by Enquist and Niklas (2002).
Separate regressions within the two treatments, and consider-
ing only data in the plant-size range common to the two treat-
ments, resulted in a significantly reduced slope in the
WS compared with the WW treatment (t-test of slopes;
Fig. 2B–C). In addition, water stress and genotype signifi-
cantly affected loge-transformed leaf : shoot biomass ratio,
but the treatment response was similar across genotypes

(ANCOVA with covariate number of abscised leaves, P ,
0.001 irrigation, P , 0.001 genotype, P ¼ 0.973 genotype ×
irrigation).

The leaf area efficiency (EA) increased with NA, but the curve
levelled off at higher NA in the WS treatment compared with the
WW treatment (Fig. 3). In Fig. 3, the tangent from the origin to
the curve indicates the transition from being N-limited to
C-limited and, in that sense, optimal N concentration according
to Hirose (1984). Applying this definition, optimal NA was 16 %
higher in the WS (37 mmol m22) compared with the WW treat-
ment (32 mmol m22) (Fig. 3). Increasing NA was generally
associated with decreasing leaf N efficiency (EN) (Pearson cor-
relation r ¼ – 0.39, P , 0.001, n ¼ 386). Despite lower NL in
WS plants, mean NA was greater than in the WW plants
(Tables 2 and 3).

DISCUSSION

Using 200 different Salix genotypes, this study shows how the
functionality of key adaptive plant leaf traits varies according
to water-stress. The large number of plants included, made it
unfeasible to harvest below-ground plant parts. The lack of
root data certainly is a limitation, but it should not have
affected the general conclusions on allocation pattern made
only with respect to the leaf-to-shoot allocation. Leaf N
content (area basis) was generally low compared with
willows grown outdoors (cf. Weih, 2001), which reflects
acclimation to relatively low irradiance in the glasshouse (cf.
Niinemets, 1997). A general pattern of increased leaf N
content (area basis) in response to water shortage was also
found in full-sib parental relatives of the same willow pedigree
as was used here when grown outdoors at ambient temperature
(Weih, 2001). We therefore believe that the conclusions made
here with respect to the leaf N content and N economy under
drought are relevant for field conditions.

Optimization of N economy under drought

The fact that nitrogen was a major determinant of shoot
growth for the majority of genotypes grown under water

TABLE 2. Means (+ s.d.) of major growth and N economy traits
for 200 willow genotypes (three replicates) grown in two water

regimes (well-watered and water-stressed)

Trait Unit Well-watered Water-stressed

BS g 1.67+0.77 0.92+0.29
NL mmol 2.62+1.07 1.75+0.52
AL m2 0.072+0.025 0.042+0.011
SLA m2 kg21 41.0+5.9 36.3+5.5
NA mmol m22 35.8+6.9 41.4+8.5
EN g mmol21 1.25+0.19 1.05+0.18

The plants were grown in a glasshouse and exposed to the treatments for
3 weeks.

TABLE 3. Analysis of covariance for the fixed effects of genotype and irrigation, and the interactions between them, on shoot
biomass (BS), leaf N pool (NL), leaf N content (NA) and specific leaf area (SLA) assessed in 200 willow genotypes pot-grown in the

glasshouse

Source of variation d.f.

BS (g) NL (mmol) NA (mmol m22) SLA (m2 kg21)

MS P MS P MS P MS P

Block 1 0.49 0.019 0.37 0.019 3888 <0.001 1375 <0.001
Initial shoot height 1 70.34 <0.001 48.36 <0.001 – – – –
Genotype (G) 199 0.11 0.034 0.10 <0.001 101 <0.001 45 <0.001
Irrigation (I) 1 88.76 <0.001 31.40 <0.001 9150 <0.001 7093 <0.001
G × I 199 0.12 0.049 0.07 0.185 57 0.003 24 0.150
Error 780* 0.09 0.07 42 22

Block and initial shoot height (cm) at the start of the treatments were used as covariates. BS and NL were loge transformed prior to analysis.
Significant differences (P , 0.05) are highlighted in bold.
d.f., Degrees of freedom; MS, mean squares (variance).
* d.f. ¼ 718 for the analyses of NA and SLA, in which no covariate was used and individuals with BS , 0.5 g were excluded.
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stress supports our first hypothesis. The N-uptake efficiency is
therefore a critical trait for these plants, at least when grown
with moderate N availability as in this study. Contrary to our
initial hypothesis, the shoot growth of some genotypes, i.e.
the ones with greatest N accumulation in the WS treatment,
was increasingly limited by factor(s) other than N, likely
CO2 through reduced stomatal conductance (e.g. Chaves
et al., 2003; Wikberg and Ögren, 2007). A slope of around
1.0 in the BS vs. NL relationship indicates similar leaf N effi-
ciency (EN), and the diminishing slope for the genotypes
with the greatest N accumulation in the WS treatment indicates
decreased EN (Fig. 1). The EN values reported here are gener-
ally lower than the EN of field-grown willow stands reported
by Weih et al. (2011), probably due to the juvenile stage
and the short experimental period in this study compared

with the adult plants and whole growing season used for the
assessment of EN in the field-grown willow.

The leaf area efficiency (EA) is an approximation of the net
assimilation rate by Hirose (1984) and indicates a net photosyn-
thesis minus respiration loss. Light-saturated photosynthesis is
N-limited at low leaf N content and becomes C-limited at
higher leaf-nitrogen (Hirose, 1984). When stomatal conduc-
tance is reduced, such as under drought conditions, light-
saturated photosynthesis should become C-limited at a higher
leaf N content than when stomatal conductance is higher.
Furthermore under drought, optimal leaf N content should
increase in association with the decreased slope of the photosyn-
thesis–leaf-N relationship (Schieving, 1998). We found a
decreased slope of the EA–NA relationship when 200 taxonomi-
cally closely related willow genotypes with variable NA were
exposed to a water-stress treatment. Our results support the
view that the high leaf N frequently observed in drought-exposed
plants is an acclimation to water stress (Hirose, 1984; Schieving,
1998; Farquhar et al., 2002). The decrease in leaf N after termin-
ation of treatments and from early- to late-harvested plants indi-
cates that the acclimation is probably an opportunistic short-term
event in these plants. The acclimation enables plants to make
better use of the available N resources when leaf area and stoma-
tal conductance are greatly reduced (Farquhar et al., 2002;
Wright et al., 2003). The results confirm our third hypothesis
and are in line with the model predictions by Farquhar et al.
(2002). Increased leaf N content (area basis) is therefore con-
cluded to be a functional adaptation to, and not a passive conse-
quence of, water shortage and therefore potentially relevant as a
breeding target for crops to be grown in a climate change future
with increased risk of drought.

Drought-induced shift in biomass allocation to shoots and leaves

Drought-induced differences in biomass allocation to shoots
and leaves of the 200 genotypes assessed here closely followed
the corresponding general allometric rule predicted by Enquist
and Niklas (2002), which is in support of our second hypoth-
esis. In a separate analysis for the two irrigation treatments
(Fig. 2B, C) we followed Poorter and Nagel (2000) and con-
sidered only data for plants of common plant size range in
the two treatments. The separate analysis resulted in different
biomass allocation between leaves and shoots in the two irriga-
tion treatments, which means that the allocational shift in
response to drought is a functional adaptation to drought inde-
pendent of plant size (Poorter and Nagel, 2002). The results
are in line with the ‘functional equilibrium’ (or ‘resource bal-
ancing’) theory (Brouwer, 1962; Bloom et al., 1985; Ericsson,
1995), but partly conflict with some studies on forest trees and
at stand level (Coyle et al., 2008).

In summary, the major effects of decreased water supply on
plant function include decreased shoot growth due to
decreased leaf biomass and leaf area allocation, and increased
leaf N content (area basis). In a study on birch, similar effects
on growth, leaf allocation and leaf N content were observed in
response to decreased air temperature (Weih and Karlsson
2001). It is also well known that leaf N content is higher in
sunny than shady environments (Field et al., 1983;
Niinemets, 1997). In natural environments, decreased water
supply usually occurs in combination with increased air
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200 willow genotypes (means of three replicates) grown experimentally in a glass-
house in two water regimes (WS, water stress; WW, well-watered). (A) The BL vs.
BS relationship across all treatments, genotypes and plant sizes. Linear regression:
loge y ¼ 0.76 loge x + 0.217, r2 ¼ 0.91, P , 0.001, n ¼ 400. The broken line in
(A) indicates a slope of 0.75, which was predicted by Enquist and Niklas
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of comparison, the regression lines for the two water regimes (B, C) are shown
in the same figure in the inset in (C). t-test of slopes (B) vs. (C): t ¼ –4.39, P ,

0.001. Note the loge scales.
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temperature and irradiance. In those circumstances, the overall
effects of decreased water supply, elevated air temperature and
increased irradiance on plant function might greatly interact.
Such interaction might explain the shifting results in drought
responses observed in natural environments (Chaves et al.,
2003).

Implications for breeding

Crop breeding research often focuses on improved yield
under drought and drought resistance (Monclus et al., 2005;
Davies et al., 2010). The parental genotypes in this study
varied considerably in many traits relevant for N economy
under drought, indicating a potential for plant breeding when
crossed. Historically, a changed biomass-allocation pattern
has been a most successful breeding strategy (Khush, 2001).
In general, decreased leaf biomass allocation in response to
water shortage is an adjustment to limit transpiration and
water loss. However, within the two treatments of our study,
all genotypes allocated biomass to leaves and shoots according
to similar rules determined by plant size, and genotype × irri-
gation interaction on the leaf : shoot ratio was far from signifi-
cant. Based on the results, leaf biomass allocation per se can
hardly be considered as an interesting breeding target to
improve yield under drought. We have currently not analysed
genetic markers (QTL) in this study, but it is interesting in
this context that Weih et al. (2006) did not identify any signifi-
cant QTL for leaf biomass allocation in Salix grown in an irri-
gation contrast.

The N-uptake efficiency and leaf N efficiency are both rel-
evant breeding targets to improve growth under drought, and
optimized leaf N content (area basis) can improve leaf N effi-
ciency. We show here that increased leaf N content under
drought is a functional optimization of N economy and poss-
ibly relevant for breeding. However, high leaf N under
drought is apparently not enough to maximize growth per-
formance under drought. The female parent ‘L78183’ had
very high NA in the WS treatment, but was clearly outper-
formed in terms of growth by the male parent ‘Björn’ that
had lower NA (Table 1). A high leaf N under drought needs
to be combined with other plant characteristics to make use
of the high photosynthetic capacity it is associated with,
which needs to be considered in any plant breeding approach

targeting growth improvement under drought. For example,
N distribution in canopies can be optimized to increase
canopy N use efficiency (Hikosaka, 2003; Weih and
Rönnberg-Wästljung, 2007), and canopy N distribution
varies between plants exposed to different water regimes
(Bonosi et al., 2010). We found significant G × E interaction
for NA in this study, and several significant QTL for NA

were identified in another study on Salix grown in an irrigation
contrast (Rönnberg-Wästljung et al., 2005; Weih et al., 2006).
The results are promising, and further confirm that the leaf N
content probably is an interesting trait for breeding of willow
bioenergy crops in a future of climate change. In contrast,
our results indicate that leaf biomass allocation is a less inter-
esting breeding target to improve yield under drought.
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