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Abstract

The field of evolutionary medicine examines the possibility that some diseases are the result of trade-offs made in human
evolution. Spinal fractures are the most common osteoporosis-related fracture in humans, but are not observed in apes,
even in cases of severe osteopenia. In humans, the development of osteoporosis is influenced by peak bone mass and
strength in early adulthood as well as age-related bone loss. Here, we examine the structural differences in the vertebral
bodies (the portion of the vertebra most commonly involved in osteoporosis-related fractures) between humans and apes
before age-related bone loss occurs. Vertebrae from young adult humans and chimpanzees, gorillas, orangutans, and
gibbons (T8 vertebrae, n = 8–14 per species, male and female, humans: 20–40 years of age) were examined to determine
bone strength (using finite element models), bone morphology (external shape), and trabecular microarchitecture (micro-
computed tomography). The vertebrae of young adult humans are not as strong as those from apes after accounting for
body mass (p,0.01). Human vertebrae are larger in size (volume, cross-sectional area, height) than in apes with a similar
body mass. Young adult human vertebrae have significantly lower trabecular bone volume fraction (0.2660.04 in humans
and 0.3760.07 in apes, mean 6 SD, p,0.01) and thinner vertebral shells than apes (after accounting for body mass,
p,0.01). Since human vertebrae are more porous and weaker than those in apes in young adulthood (after accounting for
bone mass), even modest amounts of age-related bone loss may lead to vertebral fracture in humans, while in apes, larger
amounts of bone loss would be required before a vertebral fracture becomes likely. We present arguments that differences
in vertebral bone size and shape associated with reduced bone strength in humans is linked to evolutionary adaptations
associated with bipedalism.
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Introduction

Evolutionary medicine is a valuable perspective that utilizes

evolutionary theory to understand the ultimate causation of disease

[1]. While medical research concentrates on understanding the

biomolecular cascade of events resulting in disease, a major goal of

evolutionary medicine is to understand the occurrence, prevalence,

and distribution of pathology by considering the balance between

natural selection, the natural history of the disease and other needs

for survival. A common theme in evolutionary medicine is that

susceptibility to disease is an unintended consequence of otherwise

advantageous evolutionary adaptations. Spontaneous fractures of

the vertebral body (referred to here as vertebral fractures) are the

most common osteoporosis-related fracture in humans [2]. In

contrast, spontaneous vertebral fractures have not been reported in

either wild or captive apes, even in individuals with severe osteopenia

[3–7]. Based on this observation, it has been proposed that humans

are susceptible to osteoporosis and osteoporosis-related fractures as a

result of evolutionary adaptations [8–10], although it is not clear

what aspects of vertebral structure differ between humans and apes.

Whether or not an individual develops osteoporosis is determined

by peak bone mass at skeletal maturity and the amount of bone loss

in later adulthood. While age-related bone loss and its causes

(menopause, etc.) have been well described in humans, wild apes

have also been shown to develop severe age-related bone loss, as

indicated by low bone mineral density in femora and lumbar vertebrae

(t-scores as low as -6.0, far below the t-score of -2.5 used in the

diagnosis of osteoporosis in humans) [3,6,11], suggesting that

differences in age-related bone loss alone may not explain differences

in susceptibility to spinal fracture between humans and apes.

Furthermore, the development of osteoporosis in humans is believed

to be sensitive to peak bone mass at skeletal maturity, a trait that has a

strong inheritable component in humans [12–14]. The current study

therefore addresses the idea that spinal fracture is a consequence of

evolutionary adaptations by examining bone morphology and strength

in young adult humans and apes (referred to together as ‘‘hominoids’’).

The extant hominoids are useful for examining the role of

evolution in osteoporosis and osteoporosis-related fractures in that

they are phylogenetically similar yet diverse in size and habitual

locomotion. Hominoids all display primarily orthograde posture
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although locomotory habits are quite different; gibbons (Hylobates

lar) exhibit brachiation, orangutans (Pongo pygmaeus) exhibit careful

quadrumanus climbing and brachiation, chimpanzees (Pan

troglodytes) and gorillas (Gorilla gorilla) exhibit knuckle-walking and

humans (Homo sapiens) exhibit obligate bipedalism [15]. Addition-

ally, the body mass range within hominoids is large, from 6–7 kg

(Hylobates) to more than 150 kg (male Gorilla).

In humans, vertebral fractures associated with aging and

osteoporosis are often not associated with falls or identifiable

trauma and are highly correlated with vertebral bone strength

[16,17]. Since tissue material properties of bone are similar in

closely related species, bone mass and structure are more likely to

explain differences in bone strength among these species [18]. A

number of characteristics of the vertebral body have been associated

with fracture risk within humans including reduced bone volume

fraction, increased degree of trabecular anisotropy [19], reduced

vertebral shell thickness [20], and variability in bone density within

the vertebral body [19,21,22]. While structural aspects of the

vertebral body associated with fracture risk within humans have

been well documented, only a few studies have examined those

structural aspects across species. In our prior work we used

rudimentary biomechanical modeling techniques to estimate

differences in bone strength among these genera [23] and examined

small regions of trabecular microarchitecture in human and ape

vertebrae [24]. Here, we combine these two approaches to

document biomechanics, size, and shape of vertebral bodies in

humans and apes, using a more precise biomechanical modeling

approach (finite element modeling) and examination of the internal

microstructure of the entire vertebral body. The long-term goal of

this research is to understand how susceptibility to musculoskeletal

disorders has been influenced by human evolutionary history. In

this work we use comparative analysis of bone strength and

structure between young adult humans and apes. Specifically we: 1)

determine differences in vertebral compressive strength among the

species using quantitative computed tomography (QCT)-based

finite element modeling; and 2) determine if differences in

microarchitectural structure of the vertebral body explain any

differences in whole bone strength among species.

Materials and Methods

Specimen Collection and Gross Morphology
The study examined the eighth thoracic vertebra (T8) from young

adult male and female wild-shot gibbons (Hylobates lar, n = 10),

orangutans (Pongo pygmaeus and Pongo abelii, n = 8), western lowland

gorillas (Gorilla gorilla, n = 10), chimpanzees (Pan troglodytes, n = 10) and

modern humans (Homo sapiens, n = 14, 6 male, age 31.367.3 years,

mean 6 SD, range 20–40 years) (see Table 1, Figure 1). Specimens

were from the Cleveland Museum of Natural History (Cleveland,

OH, USA), the Field Museum of Natural History (Chicago, IL, USA)

or the National Museum of Natural History (Washington D.C., USA)

(the same study group was also examined in prior work [23]). Apes

were confirmed as young adult if all epiphyses in the skeleton were

closed and fused and by examination of tooth wear (all teeth emerged

and molar wear was limited). Human specimens were selected from

those with a sudden cause of death and known age at death to avoid

individuals with altered bone morphology associated with chronic

disease or age-related osteopenia. Individual body mass was estimated

from measures of the femoral head (apes [25], humans [26], see [23]

for details of body mass estimates). The T8 vertebra was chosen

because it is one of the most common vertebrae to experience fracture

in humans and it occupies the central kyphotic region of the thoracic

spine in all of the species [27,28]. Measures of vertebral body height

(cranial-caudal distance on ventral surface), vertebral body width and

depth (measured on the cranial endplate) were made of each

specimen using calipers.

Quantitative Computed Tomography and Biomechanical
Modeling

Quantitative computed tomography scans were taken of all

specimens along with a liquid calibration phantom (K2HPO4

calibration phantom, Mindways Software Inc.). Images were ob-

tained with a 140 kV, 120 mA, signal with 0.75 mm slice thickness

(Siemens Somatom 16, Malvern, PA, USA) or 0.625 mm slice

thickness (Philips Brilliance 64, Andover, MA, USA, used on the two

specimens from the Field Museum of Natural History). Two sample

vertebrae, unaffiliated with the study, were scanned at both locations

to ensure compatibility between scanners. Bones were submerged in

a 20% ethanol solution to improve accuracy of QCT density values.

A vacuum was applied at 30 in. Hg for 30 minutes prior to scanning

to remove any air bubbles present in the bone cavities.

Computed tomography images were analyzed using custom

software written for use with MATLAB (version 7.8.0, Mathworks

Inc., Natick, MA, USA). Background signal associated with the ethanol

solution was removed by subtracting a grayscale density value com-

parable to one standard deviation below the mean fluid value [29].

Images underwent Gaussian filtering to remove additional background

noise. Neural arches were manually removed from images. The cranial

and caudal endplates were identified and manually attenuated.

To ensure that analyses were not biased due to differences in

voxel size relative to bone size, image resolution was modified using

integer coarsening to reduce variability in voxel aspect ratio and

total number of voxels per specimen. For example, gibbon

specimens were analyzed with a voxel size of 0.38 mm 60.38 mm

60.375 mm and human specimens were analyzed with a voxel size

of 0.94 mm 60.94 mm 61.5 mm. A total of 11,53564,348 voxels

(mean 6 SD) were used for each vertebral body and the aspect ratio

(largest voxel dimension/smallest voxel dimension) ranged from

1.0–1.6. Finite element analyses of vertebral bones are not sensitive

to voxel size across this range (assuming the aspect ratio remains

small) [30]. The mineral density calibration phantom scanned with

each specimen included five different solutions of known mineral

density that are used to convert voxel brightness into mineral density

(grams). Measures of bone mineral content (BMC, grams) and

volumetric bone mineral density (vBMD, mg/cm3), vertebral body

cross-sectional area (on the superior surface) and vertebral body

volume were determined from the QCT scans as well.

Finite element models of each vertebra were generated using a

technique pioneered by Crawford and colleagues [29] (Please see

[23] for a comparison of finite element modeling and previously

used approaches). Briefly, each voxel in the image was represented

in the finite element model as a transversely isotropic linear elastic

8-node brick element (Figure 2B). The elastic modulus of each

voxel was determined by converting voxel brightness into mineral

density using the mineral calibration phantom and subsequently

converting mineral density to elastic modulus using an empirical

relationship determined from human trabecular bone [23,31].

The resulting elastic modulus values were binned into 50 different

material properties to simplify finite element modeling. The

superior surface of the model was assigned a uniform axial

displacement corresponding to 3% deflection. A linear analysis

using ABAQUS 6.8-3 (Dassault Systèmes Simulia Corp, Provi-

dence, Rhode Island, USA) was completed on 3.40 GHz Pentium

4 CPU with 2.0 GB of RAM. The compressive strength was

derived from the whole bone stiffness determined in the finite

element model using a simple column model as described by

Crawford and colleagues [29]. Estimates of human vertebral bone

compressive strength using this finite element modeling approach
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Table 1. Details of specimens used in finite element modeling and micro-computed tomography experiments are shown (All
specimens used in finite element modeling, subset of specimens used in micro-computed tomography analysis noted in table).

Specimen ID* Species Sex Ancestry Age
Body
Mass (kg)

Vertebra
Height (mm)

Vertebra Cranial
Cross-Sectional
Area (mm2)

Bone
Volume (cm3)

Trabecular
BV/TV

Mean Shell
Thickness
(mm)

HTB3883 Hylobates lar 7.31 8.25 82.57 0.93 NM NM

HTB3884 Hylobates lar 6.65 8.54 87.44 0.95 NM NM

HTB3885 Hylobates lar 7.42 8.50 82.98 0.89 NM NM

HTB3887 Hylobates lar 7.24 8.57 72.25 0.92 0.34 0.21

HTB3889 Hylobates lar 6.81 8.53 72.44 0.74 0.41 0.33

HTB3893 Hylobates lar 6.96 8.86 68.28 0.71 0.44 0.21

HTB3902 Hylobates lar 6.81 8.21 58.04 0.57 0.50 0.23

HTB3903 Hylobates lar 5.23 8.63 81.06 1.19 0.63 0.33

HTB3906 Hylobates lar 7.50 9.06 103.02 0.79 NM NM

HTB3911 Hylobates lar 7.15 7.89 71.46 0.76 0.28 0.25

HTB1055 Pongo pygmaeus F 47.83 14.52 350.02 6.33 0.29 0.61

FMNH33533 Pongo pygmaeus F 49.83 16.12 465.20 8.90 NM NM

FMNH33536 Pongo pygmaeus F 41.58 15.33 273.56 5.81 NM NM

NMNH49855 Pongo abelii M 66.85 17.12 420.33 9.52 0.32 0.95

NMNH49859 Pongo abelii M 59.96 17.31 518.62 9.31 0.28 1.01

NMNH145301 Pongo pygmaeus M 86.08 17.60 467.96 12.09 0.31 0.93

NMNH145304 Pongo pygmaeus M 73.53 17.42 651.25 13.26 0.31 1.02

NMNH145308 Pongo pygmaeus F 44.75 15.39 537.21 8.88 0.31 0.70

HTB1710 Gorilla gorilla F 80.91 15.48 394.42 8.03 0.38 0.75

HTB1765 Gorilla gorilla F 79.39 15.77 548.65 8.83 0.28 0.63

HTB1797 Gorilla gorilla M 172.77 18.45 891.47 20.61 0.39 0.76

HTB1798 Gorilla gorilla F 88.83 15.26 532.38 8.95 0.30 0.96

HTB1859 Gorilla gorilla M 163.05 20.72 784.51 21.77 0.27 1.04

HTB1992 Gorilla gorilla F 94.59 14.63 475.98 8.66 0.35 0.76

HTB1997 Gorilla gorilla F 77.35 15.39 483.89 8.92 0.40 0.78

HTB2741 Gorilla gorilla M 201.40 19.95 979.69 23.74 0.399 1.12

HTB3391 Gorilla gorilla M 140.50 18.21 678.19 14.15 0.45 0.87

HTB3404 Gorilla gorilla M 141.13 19.64 857.27 19.20 0.41 0.92

HTB1719 Pan troglodytes F 51.30 13.75 296.41 5.05 0.38 0.45

HTB1720 Pan troglodytes F 36.32 14.24 328.87 4.75 0.35 0.57

HTB1722 Pan troglodytes M 66.14 13.80 306.19 5.64 0.39 0.59

HTB1758 Pan troglodytes M 61.86 14.91 383.96 7.47 0.35 0.78

HTB1766 Pan troglodytes F 68.56 16.84 412.74 7.36 0.34 0.48

HTB1770 Pan troglodytes F 37.55 13.54 284.18 4.48 0.41 0.53

HTB1880 Pan troglodytes F 64.45 14.82 361.54 5.89 0.38 0.72

HTB2027 Pan troglodytes M 51.91 14.79 370.51 6.53 0.34 0.57

HTB2072 Pan troglodytes M 60.12 18.94 546.44 11.05 NM NM

HTB3552 Pan troglodytes M 54.37 15.42 345.13 6.42 0.39 0.69

HTH0074 Homo sapiens M B 35 63.90 19.69 781.40 16.82 NM NM

HTH0243 Homo sapiens F W 40 56.67 18.64 637.43 13.08 NM NM

HTH0249 Homo sapiens F W 40 56.60 20.06 494.89 11.95 0.21 0.38

HTH0339 Homo sapiens F W 38 70.59 19.76 553.72 12.87 0.24 0.54

HTH0439 Homo sapiens F B 35 58.31 17.50 523.11 8.95 NM NM

HTH0561 Homo sapiens F B 25 56.36 18.79 424.31 10.08 0.27 0.64

HTH1208 Homo sapiens F B 23 57.39 18.45 426.86 9.76 NM NM

HTH1785 Homo sapiens F B 32 58.19 19.15 544.60 12.38 0.24 0.44

HTH1787 Homo sapiens F B 40 58.30 18.89 520.16 10.57 NM NM

HTH2085 Homo sapiens M B 23 70.31 21.13 646.05 14.87 0.34 0.62
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are highly correlated with compressive strength determined

experimentally (r2.0.80) [29,32].

Trabecular Microarchitecture and Vertebral Shell
Thickness

Microcomputed tomography images of vertebral bodies were

collected for a subset of the specimens (n = 8–10 per species,

Table 1). Images of the specimens were collected using a GE

Locus eXplore RS micro-computed tomography machine (GE

Healthcare, Milwaukee, WI, USA). Three-dimensional images of

the each vertebra were collected with a voxel size of 46 mm. The

vertebral shell and endplates were dissected digitally from each

grayscale image by manual tracing in transverse slices (Spline ROI

function in Microview Analysis+ 2.2, GE Healthcare, Milwaukee,

WI, USA). The shell of the vertebral body is considered cortical

bone; however, it is discontinuous (due to nutrient foramina) and

can be similar in thickness to trabecular bone. Therefore, the

vertebral shell was identified in transverse sections as the

outermost, circumferentially oriented bone that demonstrated an

increased density (Figure 3). To reduce labor associated with

tracing, boundaries of the vertebral shell were made in slices one

millimeter apart and the points between the slices were

interpolated (Spline ROI function in Microview). Following

interpolation, the images were checked for consistency and

adjusted where appropriate. The whole vertebral body images

were than separated to create two new images: one displaying only

the shell only and the other displaying only trabecular bone.

A custom program was written to threshold the images (separate

bone from non-bone in a grayscale image) [24]. In addition to

Figure 1. Specimens examined in the study. The study included thoracic vertebrae from five genera including Hylobates (gibbons), Pongo
(orangutan), Gorilla, Pan (chimpanzee) and Homo (humans). The scale bar next to each representative specimen is one centimeter in length.
doi:10.1371/journal.pone.0026658.g001

Specimen ID* Species Sex Ancestry Age
Body
Mass (kg)

Vertebra
Height (mm)

Vertebra Cranial
Cross-Sectional
Area (mm2)

Bone
Volume (cm3)

Trabecular
BV/TV

Mean Shell
Thickness
(mm)

HTH2104 Homo sapiens M B 20 69.81 21.80 495.61 11.63 0.27 0.66

HTH2169 Homo sapiens F B 24 67.25 21.15 563.96 13.63 0.26 0.55

HTH2193 Homo sapiens M A 25 65.66 19.10 557.91 11.76 0.20 0.36

HTH2206 Homo sapiens M W 31 80.41 21.53 618.83 16.33 0.27 0.53

HTH2831 Homo sapiens M W 38 73.18 21.36 712.03 16.33 0.23 0.53

*Specimens indicated by HTB or HTH are from the Physical Anthropology Collection at the Cleveland Museum of Natural History, Cleveland, Ohio. Specimens indicated
by FMNH are from the Field Museum of Natural History, Chicago, Illinois. Specimens indicated by NMNH are from the Mammal Collection at the Smithsonian National
Museum of Natural History, Washington, DC. Sex of Hylobates specimens was not available in museum records and could not be determined from skeletal analysis.
Ancestry characterized at time of death (B - Black, W – White, A – Asian). NM – Not Measured because micro-computed tomography images were not taken of this
specimen.
doi:10.1371/journal.pone.0026658.t001

Table 1. Cont.
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examining trabecular microarchitecture in the entire vertebral

body, patterns in microarchitecture were explored by comparing

microarchitecture in dorsal-ventral (two subregions), cranial-

caudal (5 transverse subregions) and throughout the vertebra (12

subregions (Figure 4).

Traditional three-dimensional measures of trabecular microarch-

itecture (trabecular thickness, trabecular number, and degree of

anisotropy) were achieved for the entire bone as well as each of the

subregions using Quant3D (University of Texas-Austin) [33].

Trabecular thickness and number are determined using the distance

transform method [34]. Degree of anisotropy describes the degree to

which the trabecular structure has a preferential orientation and is

determined using the mean intercept length method. Variability in

trabecular bone density within vertebrae was measured as the inter-

quartile range of bone volume fraction across entire vertebrae (using

the 12 anatomically defined subregions). The inter-quartile range

(IQR) across the 12 subregions was calculated as the difference

between the third and first quartiles in each individual (the difference

between the 4th and 9th most dense subregions). The inter-quartile

Figure 3. Delineation of vertebral shell and trabecular bone
boundary. In transverse cross-sectional slices of the vertebrae, the
boundary between the vertebral shell and the trabecular bone was
traced. Here, an orange line denotes that boundary in a human
vertebral body. Characteristics of the bone such as orientation of the
bone and relative thickness of the shell and trabecular bone helped
determine the placement of the boundary.
doi:10.1371/journal.pone.0026658.g003

Figure 4. Analysis of trabecular microarchitecture. A micro-
computed tomography image of a human vertebral body is shown.
Images were divided into (A) trabecular bone and (B) vertebral shell.
Variation in trabecular microarchitecture within the vertebral body was
examined by considering variation in microarchitecture in (C) dorsal-
ventral subregions, (D) transverse subregions and (E) across 12
anatomically determined subregions.
doi:10.1371/journal.pone.0026658.g004

Figure 2. Biomechanical modeling to determine bone strength. (A) Three-dimensional images of vertebral bodies (a chimpanzee vertebra
shown) were converted into finite element models for biomechanical analysis. (B) Finite element models were loaded in compression (arrows).
Differences in the color of the bone elements represent different regional density and elastic modulus.
doi:10.1371/journal.pone.0026658.g002
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ranges of the species were then compared using analysis of variance.

The thickness of the vertebral shell was measured using measure-

ment lines radiating from the dorsal center of the vertebral body

[35]. One hundred lines were generated for each 0.046 mm thick

slice. The mean of the thickness measurements was then determined

for the entire shell and for each transverse subregion.

Statistical analyses were performed using MINITAB 15

(Minitab, Inc. State College, PA) with a significance threshold of

a= 0.05. Analysis of variance was used to identify any differences

in bone volume fraction and degree of anisotropy within species

and among species. Regression analyses were performed to

identify relationships between body mass and trabecular micro-

architecture parameters, vertebral shell thickness, and/or vertebral

body height. Regressions using body mass were performed using

reduced major axis (RMA) to adjust for imprecision in body mass

estimation [36]. For measures that were correlated with body

mass, analysis of covariance implemented with a generalized least

squares model was used to compare humans to apes including

body mass as a covariate [37]. Post hoc Tukey multiple

comparisons tests were used to determine any differences between

species. No significant differences between the sexes were found

after accounting for body mass, and consequently, all parameters

were sex-pooled for analysis. The effects of phylogeny (evolution-

ary relationships among species) were not included in regression

models as prior analyses of these species did not detect a significant

effect of phylogeny and only extremely large phylogenetic

influences can be observed in cohorts with fewer than seven

species [23,38].

Results

Average T8 density and size are shown in Table 2. After

accounting for body mass human T8 vertebral bodies were

significantly larger than those of apes in terms of vertebral height,

cross-sectional area and volume (Table 3, p,0.05). Multiple

comparisons among the species also support the idea that the

human T8 is larger than each other species after accounting for

body mass (no difference in cross-sectional area was observed

between humans and orangutans, most likely due to the small

sample size of orangutans and the conservative nature of the

Tukey multiple comparisons test). Humans and apes have similar

amounts of vertebral body bone mass relative to overall body mass

(Figure 5A). However, vertebral body compressive strength

relative to bone mass is less in humans than in the apes

(p,0.01, Figure 5B). Additionally, humans display a reduced

vertebral body compressive strength relative to body mass

(p = 0.04 from ANCOVA, Figure 5C), indicating that human

vertebrae are weaker (,1.75 kN weaker) than those in apes with

similar body mass. That humans have disproportionately low bone

strength relative to bone mass, suggesting that fundamental

differences in bone structure exist between humans and apes.

With regard to internal structure, trabecular bone volume

fraction (BV/TV) was significantly lower in humans (Table 4,

p,0.05). Thus, human vertebrae are more porous than ape

vertebrae in this young age group. Among the apes, gibbons,

gorillas and chimpanzees have a significantly higher bone volume

fraction than orangutans (Figure 6A, p,0.05). No other significant

Table 2. Measures of young adult vertebral body dimensions and density in humans and apes are shown (n = 8–14 per species,
Mean 6 SD).

Gibbon Orangutan Gorilla Chimpanzee Human

Body Mass (kg) 6.9160.65 58.80615.68 123.99645.44 55.26611.29 64.2067.52

Bone Mineral Density (from QCT scan, g/cm3) 360.10643.25 340.53649.21 368.20642.33 386.24627.07 279.33643.57*

Bone Mineral Content (from QCT scan, g) 0.3060.06 3.1660.95 5.2862.40 2.4960.71 3.5961.05

Vertebral Body Height (mm)+ 8.5160.35 16.3561.17 17.0162.22 14.3461.07 19.861.27

Vertebral Body Cross-sectional area (cranial
endplate, mm2)+

79.30612.10 460.526116.18 692.806222.80 355.50649.70 566.72695.24

Vertebral Body Volume (mm3)+ 677.006121.00 7599.6262232.45 12147.0065093.00 5137.0061054.00 12735.8862394.19

+See Table 3 for analysis of covariance accounting for differences in body mass.
*Significantly different from all other species (p,0.05).
doi:10.1371/journal.pone.0026658.t002

Table 3. Analysis of covariance is used to compare measures of vertebral bodies with body mass as a covariate (n = 8–14 per
species).

Vertebral Body Height (mm)
Vertebral Body Cross-
sectional Area (mm2) Vertebral Body Volume (mm3)

Human v. Non-Human p,0.01 p,0.01 p,0.01

Multiple Comparisons* Hylobates A A A B

Pongo B B C A

Gorilla C A B B

Pan B C A B B

Homo D C C

*Multiple comparisons among all species are shown such that species that do not share a letter are significantly different from one another (p,0.05, Tukey post-hoc).
doi:10.1371/journal.pone.0026658.t003
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differences in trabecular microarchitecture of the whole vertebra

were observed among species (Table 4). Trabecular bone volume

fraction was not significantly related to body mass. Trabecular

thickness (Tb.Th) was correlated with bone strength among species

(p,0.05). No other measures of trabecular microarchitecture were

correlated with bone strength.

Only subtle differences in distribution of trabecular bone mass

were present among species. No difference in bone volume

fraction was found between ventral and dorsal subregions among

species; however, within species, differences in the orientation of

the trabecular microarchitecture were observed between the

ventral and dorsal subregions. With the exception of orangutans,

hominoids possessed a significantly higher degree of anisotropy in

the ventral subregions than in the dorsal subregions (orangutans,

p = 0.60, all others, p,0.05). Among the transverse subregions, all

species displayed a trend with greater trabecular bone volume

fraction closer to the endplates and lower trabecular bone volume

fraction near the center of the vertebral body (Figure 6A). Shell

thickness appeared to increase toward the midtransverse plane of

the vertebral body (Figure 6B), presumably compensating for the

decrease in trabecular bone volume fraction. No differences in

inter-quartile range in bone volume fraction were observed among

species (Table 4). Among species, no other significant differences

or obvious trends in variability in microarchitecture within

vertebrae were observed. No significant relationships between

bone strength and within-vertebra variability in microarchitecture

were observed.

Mean thickness of the vertebral shell was positively correlated

with body mass; however, humans have thinner vertebral shells

than would be expected for their body mass (p,0.01) (Figure 7A).

Vertebral shell thickness was positively correlated with compres-

sive strength across all species (p,0.01), and the relationship

between shell thickness and compressive strength was similar

among all species (Figure 7B).

Discussion

While age-related bone loss is a major factor determining risk of

spinal fracture in older humans, the development of osteoporosis is

more sensitive to peak bone mass and strength achieved at

adulthood [14]. We found that young adult human vertebrae have

reduced strength as compared to young adult apes with similar

bone mass and body mass. The relatively low bone strength in

human vertebral bodies is caused by reduced vertebral trabecular

bone volume fraction and a thinner vertebral shell. Our findings

demonstrate biomechanical and structural differences in vertebrae

between humans and apes are present prior to the onset of age-

related bone loss; given the association between peak bone mass

and risk of osteoporosis mentioned above, the observed differences

among species likely contribute to the unique susceptibility of

humans to vertebral fractures later in life.

The distribution and orientation of trabecular bone within the

vertebral bodies was more similar among the extant hominoids

than was expected given the differences in primary locomotor

repertoires of the apes (brachiation, careful-climbing, knuckle-

walking). The increased degree of anisotropy and cranio-caudal

Figure 5. The relationships between body mass, bone mass
and bone strength. (A) A positive correlation between body mass
and bone mass (measured as bone mineral content) of the T8 vertebral

body was observed that was similar in all species. (B) A positive
correlation between bone mass and compressive strength of the T8
vertebral body was observed. Vertebrae from humans displayed
reduced strength relative to bone mass (ANCOVA: p,0.01). (C)
Although body mass was positively correlated with bone strength
across species, vertebrae from humans showed reduced strength as
compared to apes with similar body mass (ANCOVA: p = 0.04).
doi:10.1371/journal.pone.0026658.g005
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orientation of the trabecular bone in the ventral subregions of the

vertebral bodies reflects ventral and dorsoventral flexion and

extension of the thoracic spine seen in primates [39,40]. Additionally,

the trabecular alignment is consistent with electromyography studies

of ape back muscles that indicate that the kinematics and loading of

the spinal column is similar among these species [41].

Humans have a thinner vertebral shell than apes after

accounting for body mass. The thickness of the vertebral shell

has been shown to play an important role in determining vertebral

bone strength within humans [42]. When age-related bone loss

occurs, the load sharing relationship between the shell and

cancellous bone is altered such that more load is carried by the

vertebral shell, possibly influencing fracture risk within humans

[43]. The thicker shells in ape vertebrae may make the bones more

resistant to fracture even after age-related bone loss.

The current study is the first that we are aware of to combine

morphological descriptions of human and ape vertebrae with both

finite element modeling and analysis of internal microarchitecture.

The biomechanical and microstructural modeling techniques are

commonly applied to human bones in the medical literature and

provide new ways of contrasting human and ape vertebrae.

Additionally, the study included a relatively large number of rare,

complete ape and human skeletons, allowing confirmation of

adulthood and estimation of body mass from non-vertebral bones.

There are some limitations that must be considered while

interpreting our findings. First, the goal of the study was to

understand differences in susceptibility to fracture among species

and not fracture risk within individuals. It is important to keep in

mind that traits differing among species are not necessarily traits

that would indicate fracture risk within a species. That being said,

humans have reduced bone volume fraction and reduced vertebral

shell thickness as compared to apes and those traits are believed to

influence fracture risk within humans. Second, the biomechanical

analysis assumed that the relationship between trabecular bone

density and Young’s modulus was the same among species, an

assumption that is reasonable given the close phylogenetic

relationship among the species examined [18] and the similar

microstructure reported in the current study. Third, the current

study addressed humans and apes due to their close phylogenetic

relationships and it is unclear to what degree our findings may be

applied to other primates. While small numbers of vertebral

fractures of unknown etiology have been observed in a free-

ranging colony of rhesus macaques, the fractures were not

associated with osteopenia and further research is needed to

determine if these fractures were caused by traumatic falls from

trees in this partially arboreal species [44].

Prior work has suggested that contemporary humans are not as

physically active as wild apes (or early hominids) and that humans

have reduced bone density and strength as a result of inactivity

[45]. Habitual loading on vertebrae is difficult to compare among

species; however, reduced physical activity is not required to

explain the reduced bone volume fraction and strength we

observed in human vertebrae. The increased cross-sectional area

of human vertebral bodies allows load to be distributed across a

larger area, leading to a reduction in habitual tissue stress of the

underlying bone, a condition that would be expected to cause

bone loss due to reduced tissue stress. Hence, even if the amount of

physical activity and magnitude of habitual loading in humans

were the same as that in wild apes (relative to body mass), humans

would still be expected to have reduced vertebral bone volume

fraction (i.e. more porous vertebrae) because the habitual loading

is distributed across a larger vertebral bone surface area. Given the

more pronounced thoracic kyphosis in humans, we speculate that

habitual loading on the 8th thoracic vertebra is actually greater

(relative to body mass) than in apes, suggesting that reduced

vertebral bone volume fraction may be caused by factors other

than functional adaptation. Additionally, while contemporary

humans may be less active than past populations, osteopenia has

been found in medieval skeletal populations that were presumably

more active than individuals in industrialized societies [46–48].

Lastly, nutritional history plays an important role in the

development of osteoporosis within humans and food intake

differs considerably among the species examined. While it is

unlikely that apes in the wild receive better nutrition than the

modern human population, aspects of agricultural-based diet of

contemporary humans have been implicated as a factor contrib-

uting to the reduced bone mass in modern humans [49]. While

nutrition may contribute to differences among species, it is unlikely

to explain the increased volume, height and cross-sectional area of

the human vertebral bodies as compared to apes as these traits are

part of a suite of musculoskeletal adaptations to bipedalism [9,50–

52]. Recent studies suggest that early hominins (Australopithecus and

Neanderthals) also display disproportionately large vertebral

bodies as compared to extant apes [53], suggesting that other

bipedal primates that did not enjoy contemporary human diets

also display the observed trends in external vertebral structure.

Clearly the increased vertebral cross-sectional area in humans

cannot be explained by differences in nutrition alone nor can

Table 4. Measures of trabecular microarchitecture in the young adult vertebral body are shown for humans and apes (n = 8–10 per
species, Mean 6 SD).

Gibbon Orangutan Gorilla Chimpanzee Human

Bone Volume Fraction (BV/TV) 0.4360.12 0.3060.01 0.3660.06 0.3760.02 0.2560.04*

Degree of Anisotropy 1.7660.11 1.5460.10 1.5860.19 1.7360.14 1.7860.20

Trabecular Thickness (Tb.Th) 0.1660.02 0.2160.03 0.2260.05 0.1860.03 0.1760.02

Trabecular Number (Tb.N) 2.8761.09 1.4760.19 1.6660.30 2.1360.35 1.5260.13

Inter-Quartile Range in Bone Volume Fraction (61022)+ 4.8060.70 5.2163.60 5.2063.50 4.4361.20 3.0660.80

Differences in Degree of Anisotropy (Dorsal-Ventral) 0.3360.18# 0.0460.21 0.1460.32# 0.3760.23# 0.4560.31#

Mean Vertebral Shell Thickness 0.2660.05 0.8760.17 0.8660.15 0.6060.11 0.5260.10

+ Inter-quartile range is determined using measures of bone volume fraction in the 12 anatomically defined subregions shown in Figure 3E.
*Significantly different from all other species (p,0.05).
#Significantly greater than zero (p,0.05).
doi:10.1371/journal.pone.0026658.t004
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nutrition explain the observed differences in vertebral bone

strength and morphology between modern humans and apes.

We propose instead that the increase in volume and reduction

in bone volume fraction and shell thickness of the human vertebral

body is a byproduct of the evolutionary development of habitual

bipedalism. The adoption of bipedality in the human lineage

required a systemic reorganization of the musculoskeletal system

from a quadrupedal ancestor. While there are substantial benefits

to bipedality that improve Darwinian fitness, this reorganization

resulted in novel upright postures and striding gait that could

compromise the functioning of the locomotor skeleton. In human

bipedalism, the calcaneus and lower limb joints experience

relatively high impact loads during the heel strike phase of the

gait cycle as compared to quadrupedal primates [54]. The joint

surfaces of the human lower limb therefore display an increase in

size that allows for forces during heel strike to be distributed across

a larger area, maintaining a healthy distribution of mechanical

stress within the cartilage and bone [18,50]. Additionally it has

been proposed that increased porosity in the calcaneus, distal

femur and proximal tibia in humans can increase energy

absorption by these bones [9,18]. The increase of the cranial

and caudal surfaces of the vertebral body is likely analogous to the

disproportionate increase in size of the synovial joints of the

human hindlimb due to bipedalism, and may very well be

secondary to the evolutionary adaptations in the lower limbs. It

has been shown that joint development in the limbs and the spine

is controlled by many of the same developmental signaling factors

[51,55,56]. We speculate that increased vertebral body size and

Figure 6. Cranial-Caudal variation in trabecular bone volume fraction and shell thickness. Interval plots displaying mean (filled circle) and
95% confidence interval (bars) of (A) bone volume fraction and (B) vertebral shell thickness corresponding to the five transverse subregions of the
vertebral bodies are shown. A line connects the means symbols to better visualize the trend in bone volume fraction within the vertebral bodies of
each species. Stars indicate subregions that are significantly different within species (p,0.05). Humans displayed a reduced overall bone volume
fraction as compared to apes (p,0.01).
doi:10.1371/journal.pone.0026658.g006
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porosity may very well be a systemic adaptation to bipedalism as

evidenced by increased joint size of the distal femur and proximal

tibia and the increased size and porosity of the human calcaneus

(as compared to apes) [9,18,50,52,57,58].

As with many other age-related maladies in humans, the reduced

strength of the vertebrae was not subjected to negative selection

pressure in ancient hominins because it had relatively little effect on

reproduction, since spinal fractures do not develop until well past

the child-rearing years [10]. Contemporary humans have a longer

lifespan, however, such that age-related bone loss exacerbates the

already more porous human vertebrae enough to make humans

susceptible to vertebral fracture. While apes exhibit age-related

bone loss, they do not experience spontaneous vertebral fractures

because their bone strength in early adulthood is much greater,

theoretically requiring more bone loss before spinal fragility

fractures would be observed. While there are many different

contributors to the development of osteoporosis within individuals,

the capacity of humans to experience vertebral fracture appears to

be a byproduct of our unique systemic adaptations to bipedality.
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