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Abstract

Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the
blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a
vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major
approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency
proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus
lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical,
immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12
weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs
expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher
levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs
expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs
expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated
with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and
viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV
DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against
infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results
suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be
considered to reduce EBV infection or virus-associated malignancies in humans.
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Introduction

Epstein-Barr virus (EBV) is a causative agent of infectious

mononucleosis and is associated with a number of malignancies

including lymphomas in immunocompromised persons, Hodgkin

lymphoma, Burkitt lymphoma, and nasopharyngeal carcinoma.

Currently no vaccine has been licensed to prevent EBV infection

or disease.

Most attempts to generate an EBV vaccine have focused on

glycoprotein 350 (gp350) as the immunogen. gp350 is the most

abundant EBV glycoprotein in virions and on the surface of infected

cells. gp350 binds to CD21, the EBV receptor on B cells. EBV gp350

is spliced to form gp220. gp350 is important for virus absorption to B

cells and soluble gp350 can block EBV infection. Antibodies to

gp350 neutralize virus in vitro [1]. EBV gp350 protects cottontop

marmosets from B cell lymphomas when challenged with high titers

of EBV [2]. Numerous studies have shown that gp350 purified from

cells [3,4], expressed as a recombinant protein [5,6], or expressed

from an adenovirus [7] or vaccinia vector [8] can protect marmosets

from EBV lymphomas. Vaccinia virus expressing gp350 induced

EBV neutralizing antibody in seronegative children and a showed a

trend toward protection from EBV infection [9]. Vaccination of

young adults with recombinant gp350 in alum/monophosphoryl

lipid A induced EBV neutralizing antibodies and protected EBV

seronegative volunteers from infectious mononucleosis, but not from

EBV infection [10,11].
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While gp350 is important for protection from infectious

mononucleosis, EBV proteins expressed during latency are

thought to be critical for controlling latent infection. The EBV

nuclear antigen 3 (EBNA-3) latency proteins are the primary

targets of CD8 T cells in the blood of healthy EBV carriers [12].

The success of treating patients with EBV lymphoproliferative

disease with infusions of EBV-specific T cells [13,14], in which the

EBNA-3 proteins represent the immunodominant epitopes,

indicates the critical role of these viral proteins for protection

from EBV disease. The importance of T cell responses to EBNA-

3B was demonstrated in a patient who died from an EBV

lymphoma after the tumor cells developed a large deletion in

EBNA-3B which allowed the malignant cells to escape from EBV-

specific cytotoxic T cells [15]. A peptide corresponding to EBNA-

3A was used in a small vaccine trial in EBV-seronegative human

volunteers [16].

Given the complexities and costs of EBV vaccine trials in

humans, testing vaccines in animal models might allow more

rapid comparison of candidate vaccines. Many animal studies

using gp350 have been performed in cottontop tamarins, which

have several limitations. These animals cannot be infected with

EBV by the oral route, they do not develop a persistent infection

similar to humans, and the animals do not express MHC class I

A, B or C alleles [17] which have been associated with virus-

specific cytotoxic T cells (CTLs). In contrast, rhesus lympho-

cryptovirus (LCV) is naturally endemic in rhesus monkeys and

reproduces most, if not all, of the features of EBV in these

animals [18]. Infection of monkeys with rhesus LCV results in

lymphadenopathy, splenomegaly, and atypical lymphocytes in

some animals, and animals shed the virus from the oropharynx

[19]. Unlike infection of cottontop tamarins with EBV, rhesus

monkeys can be infected orally with rhesus LCV and the animals

develop a persistent infection similar to that which occurs in

humans. When animals are immunosuppressed some develop B

cell lymphomas that contain rhesus LCV [20]. Rhesus LCV has

an ortholog for each of the EBV genes; conversely each EBV

gene has an ortholog in rhesus LCV [21]. The rhesus LCV genes

can complement their human EBV orthologs in nearly all

activities; thus, rhesus LCV should be an excellent model for

studying EBV pathogenesis.

While EBV gp350 has been shown to be protective against

tumors in cottontop tamarins challenged with high titers of EBV

and one study showed that gp350 reduced the incidence of

infectious mononucleosis in humans, no vaccine studies have been

performed using rhesus LCV in monkeys. Furthermore no studies

have been reported involving a direct comparison of different EBV

vaccines, including gp350 versus EBV latency proteins, in the

same trial.

We compared three rhesus LCV vaccines- (a) recombinant

soluble rhesus LCV gp350, (b) rhesus LCV gp350 expressed from

replication-defective, single cycle, virus-like replicon particles

(VRPs) derived from an attenuated strain of Venezuelan equine

encephalitis (VEE), and (c) a combination of rhesus LCV gp350,

EBNA-3A, and EBNA-3B each expressed in separate attenuated

VRPs for their ability to protect rhesus monkeys against infection

with rhesus LCV and to determine their long term effect on rhesus

LCV DNA in the blood after challenge.

Materials and Methods

Ethics statement
These experiments were approved by the Animal Care and Use

Committees of the National Institute of Allergy and Infectious

Diseases and the University of California, Davis. The studies were

carried out in strict accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National

Institutes of Health.

Animals
Rhesus macaques were reared separately from rhesus LCV

seropositive animals beginning at birth and serologic testing

indicated that all animals were seronegative for rhesus LCV. Six to

18 month old animals were housed in pairs during the vaccination

period, and housed separately after challenge. Animals were

vaccinated by inoculation in the triceps muscle, and challenged

with rhesus LCV by inoculation of the back of the throat with

virus in 1 ml of cell culture media using a needleless syringe.

Viruses
Rhesus LCV was isolated from LCL8664 cells (American Type

Culture Collection, Manassas, VA). The cells were derived from a

rhesus monkey with a malignant lymphoma [22]. LCL8664 cells

were transfected with a plasmid expressing EBV BZLF1 using

electroporation as described previously [23], and after 5 days the

cells were pelleted and virus was isolated as reported previously

[24]. Rhesus LCV was titrated as previously described for human

EBV [25]. Briefly, serial dilutions of virus were incubated with

16105 rhesus peripheral blood mononuclear cells (PBMCs) and

the cells were plated into wells of a 96 well plate with 0.5 ug/ml of

cyclosporine A. After 6 weeks the titer of virus was determined by

the method of Reed and Muench [26].

Modified vaccinia Ankara (MVA) expressing rhesus LCV gp350

and green fluorescent protein (GFP) was constructed by cloning

rhesus LCV gp350 into plasmid pLW44 [27]. This plasmid contains

the GFP gene linked to the vaccinia virus p11 promoter to facilitate

screening of recombinant MVA. Due to a vaccinia transcription

termination signal [28] in the rhesus LCV gp350 gene (TTTTTGT,

sequence position 1147 to 1153), the 59 half of the gene (1-1,291)

was amplified by PCR using primers 59-TCCCCCCGGGAA-

CAATGGAAGCGGCTTTTCTG-39 and 59-ATACGCGTCGA

CTCTTCGGGTTGTCTGGTTGGAGC-39 (Xma I and Sal I

sites are underlined), and the PCR product was digested with Xma I

Author Summary

Epstein-Barr virus (EBV) is the primary cause of infectious
mononucleosis and is associated with several cancers.
Presently there is no licensed vaccine to prevent EBV
diseases. Two types of candidate vaccines are under
development; one involves immunization with the major
glycoprotein (gp350) on the outside of the virus, while the
other involves vaccination with EBV proteins expressed
during latency. We compared these two types of candidate
vaccines in a rhesus monkey model of EBV and found that
the gp350 vaccine induced better protection from
infection. In addition, animals that received the rhesus
EBV glycoprotein and became infected had a lower level of
rhesus EBV DNA in the blood at 23 months after challenge
than animals that received the rhesus EBV latency protein
vaccine that subsequently were infected. Since levels of
EBV DNA in the blood have been predictive for EBV
lymphomas in transplant patients, the ability of rhesus EBV
gp350 to reduce levels of rhesus EBV in the blood after
infection suggests the EBV gp350 could have a role in
reducing certain EBV-associated cancers. This is the first
test of candidate vaccines in the rhesus monkey model of
EBV and shows that this model should be useful in further
evaluation of EBV vaccines.
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and Sal I and inserted into the corresponding restriction sites of

plasmid pLW44. The T at nucleotide 1147 was changed to C

(resulting in no change in the amino acid sequence of gp350) using

the Quick Change Site-Directed Mutagenesis kit (Stratagene) and

the resulting plasmid was referred to as pLWrhgp350-mA. After

confirmation of the sequence, the 39 half of the gene was amplified

using primers 59-TCCCCCCGGGGCAGCCACAAATGTCAC-

CGCTGTT-39 and 59-ATACGCGTCGACCTAAACAGCGG-

TTTCAAATTC -39 (Xma I and Sal I sites underlined). The

resulting PCR product was cut with XmaI and Sal I and inserted

into the corresponding site of pLW44 to obtain plasmid

pLWrhgp350-B. pLWrhgp350-mA was cut with Not I and Sex

AI and the 59 end of rhesus LCV gp350 was inserted into the Not I

and Sex AI sites of pLWgp350-B to yield plasmid

pLWrhgp350GFP. DF-1 (a chicken embryo fibroblast cell line) or

primary chicken fibroblasts (a gift from Linda Wyatt, NIH) were

infected with 0.05 plaque forming units (pfu) of MVA per cell and

2 hours later the cells were transfected with plasmid

pLWrhgp350GFP. Plaques expressing GFP and rhesus LCV

gp350 were isolated by successive rounds of plaque purification

by freeze-thawing cells containing GFP-positive plaques and plating

at limiting dilutions. The resulting virus, named MVA-gp350GFP,

was propagated in DF-1 cells. To obtain MVA expressing rhesus

LCV without GFP, plasmid pLWrhgp350GFP was digested with

Kpn I which removes the GFP gene and religated to yield

pLWrhgp350. DF-1 cells were infected with MVA-gp350GFP and

2 hours later were transfected with pLWrhgp350. Plaques that did

not express GFP were isolated by plaque purification and the

resulting virus was named MVA-gp350.

Plasmids
gp350 constructs. The extracellular domain of rhesus LCV

gp350 (amino acids 1–737 [21]) was cloned by PCR amplification

using DNA isolated from LCL8664 cells and primers rhgp350-

Sal (59ATACGCGTCGACAACAATGGAAGCGGCTTTTC-

TG -39) which contains a Sal I site (underlined) and rhgp350-

TM-BglRv (59- GAAGATCTTAGCATGGAGAGATTGGAG-

CCCTC-39) which contains a Bgl II site (underlined). To

construct a plasmid expressing rhesus LCV gp350 in cell

culture, the PCR product containing the extracellular domain

of rhesus LV gp350 was digested with Sal I and Bgl II and used as

part of a three fragment ligation along with the Bgl II-Not I

fragment of human Fc (derived from pDC409 [29]) and the Sal I-

Not I fragment of pDC409. The resulting plasmid, pDCrhgp350-

Fc, expresses the extracellular domain of rhesus LCV gp350 fused

to the Fc domain of human IgG.

To construct pSGrhgp350, the rhesus LCV gp350 gene was

amplified from LCL8664 cell DNA by PCR using primers rhgp350-

F-EcoR containing an EcoR I site (CCGGAATTCAACAATG-

GAAGCGGCTTTTCTG) and rhgp350-BglRv (59- CGCAGAT-

CTCTAAACAGCGGTTTCAAATTCATCATC-39) containing

a Bgl II site (underlined) and inserted into the corresponding sites

of pSG5 vector (Stratagene). To obtain pCIrhgp350, pSGrhgp350

was digested with Bgl II, blunted using T4 DNA polymerase, cut

with EcoR I and the gp350 gene was cloned into the EcoR I-Sma I

sites of pCI (Promega).

To measure antibody to rhesus LCV gp350, a plasmid was

constructed containing the viral gene linked to the Renilla luciferase

gene. The extracellular domain of the rhesus LCV gp350 gene was

amplified by PCR using primers rhgp350-F-EcoR (see above) and

rhgp350-TMR (59- AAAGAATTCTAGCATGGAGAGATTG-

GAGCCCTC -39) with an EcoR I site (underlined). The PCR

product was digested with EcoR I and cloned into the correspond-

ing EcoR I site of pREN3S to generate plasmid pREN3rhgp350.

EBNA-3 constructs. Since Jiang et al. [30] reported that

rhesus LCV EBNA 3A begins at nucleotide 73,492, while Rivailler

et al. [31] stated that the protein starts at nucleotide 73,534, we

produced constructs expressing the former termed rhEBNA3A1

(in which EBNA-3A would start at the first methionine) and the

latter termed rhEBNA3A2 (in which EBNA-3A would start at the

second methionine). Rhesus LCV EBNA-3A1 was amplified from

cDNA (since EBNA-3A mRNA is spliced near its 59end) after

RNA had been isolated from LCL8664 cells and cloned into TA-

cloning vector pCR2.1 using the TOPO TA cloning kit

(Invitrogen) and primers rhEBNA3A-FSal (59- ACCGT-

CGACAAAATGGAGGAAGAAAGGCCG-39) or rhEBNA3A2-

FSal (59-ACCGTCGACAACATGGAAGAAGAGGAGGTT-

CCATCC-39) containing a Sal I site (underlined) and

rhEBNA3A-RPst (59-ACCCTGCAGTTATTCCTCATTATCT-

GGGGGATC-39) with a Pst I site (underlined). Due to mutations

in the 39 portion in the cDNA noted after cloning, rhEBNA-3A1

was also amplified from DNA obtained from LCL8664 cells using

same primers described above. The PCR product was then cut

with Sal I and Pst I and inserted into the corresponding site of

pLW44. To construct EBNA-3A1 and EBNA-3A2 without an

intron, a three-fragment ligation was performed using (a) a Sal I-

Pfo I fragment from the 59 end of the EBNA-3A cDNA, (b) a Pfo I-

Pst I fragment of EBNA-3A DNA, and (c) a Sal I-Pst I fragment

from pLW44. The resulting plasmids were termed pLWrhEBNA-

3A1 and pLWrhEBNA-3A2.

To clone EBNA-3A1 and EBNA-3A2 into an SV40 expression

vector, PCR was performed with primer rhEBNA3A-FBcl 59-

ACCTGATCAAAAATGGAGGAAGAAAGGCCG-39 or rhEB-

NA3A2FBcl 59-ACCTGATCAAACATGGAAGAAGAGGAG-

GTTCCATCC-39 with a Bcl I site (underlined) and rhEB-

NA3A-RBcl 59-ACCTGATCATTATTCCTCATTATCTGGG-

GGATC-39 with a Bcl I site (underlined) using plasmid

pLWrhEBNA-3A as a template. The PCR products were cut

with Bcl I and cloned into the Bam HI site of pSG5 to obtain

pSGrhEBNA3A1 and pSGrhEBNA3A2.

To clone EBNA-3A1 into a CMV expression vector,

pLWrhEBNA3A was digested with Pst I, blunted with T4 DNA

polymerase, digested with Sal I, and the fragment containing

EBNA-3A was inserted into the Sal I-Sma I site of pCI to produce

pCIrhEBNA3A.

Rhesus LCV EBNA-3B was amplified from LCL8664 cell DNA

as two separate fragments using primer pairs rhEBNA3BF-Sal

(59- ACCGTCGACAAAATGAAGAAAGCTTGGCTCGGC-39)

and rhEBNA3B GCR-Pst (59-ACCCTGCAGTGGGGCAGCT-

GATATGGGGCGGCTCGC-39 to generate the 59 end of

EBNA-3B), and primer pairs rhEBNA3B GCF-Sal (59- ACAGTC-

GACACCCCCCGGGCACATATACCCGCCA-39) and rhEB-

NA3BR-Pst (59- ACCCTGCAGTTAGAACTCCTCGTCCGA-

TATTTC-39) to generate the 39 end of EBNA-3B (Sal I and Pst I

sites underlined). The 59 EBNA-3B PCR product was cloned using

the Invitrogen Zero Blunt TOPO PCR Cloning kit to generate

pBluntrhEBNA3B-59 and the 39 EBNA-3B PCR product was

cloned using the Invitrogen TOPO TA PCR Cloning kit to

generate pCRrhEBNA3B-39. The spliced region of rhesus LCV

EBNA3B was amplified from cDNA obtained from RNA of

LCL8664 cells using primers rhEBNA3BF-Sal and rhEB-

NA3BspR-Pst (59- AAACTGCAGTATGACGCACAGTCATG-

CAGAGCC-39; Pst I site underlined) and cloned using the

Invitrogen Zero Blunt TOPO PCR Cloning Kit to obtain

pBluntrhEBNA3B-spA. To produce a full length spliced EBNA-

3B gene, a 3 fragment ligation was performed using (a) the Sal I-

Bsa BI fragment containing the 59 spliced end of EBNA-3B

derived from pBluntrhEBNA3B-spA, (b) the Bsa BI-Xma I

Rhesus LCV Vaccine Protects and Reduces Virus Load
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fragment containing the middle portion of EBNA-3B derived from

pBluntrhEBNA3B-59, and (c) the large Sal I-Xma I fragment

containing the 39 end of EBNA-3B and the plasmid vector derived

from pCRrhEBNA3B-39. The resulting plasmid, pCRrhEBNA3B,

contains the full length spliced form of rhesus LCV EBNA-3B.

To clone EBNA-3B into a SV40 expressing vector, EBNA-3B

was removed from plasmid pCRrhEBNA3B by digestion with Sal

I and Pst I, the ends were blunted using T4 DNA polymerase and

the EBNA-3B gene was inserted into the Bam HI site of plasmid

pSG5 (after blunting with the Klenow fragment of DNA

polymerase I) to obtain pSGrhEBNA3B. To clone EBNA-3B into

a CMV expression vector, EBNA-3B was removed from plasmid

pCRrhEBNA3B by digestion with Sal I and Not I and inserted

into the corresponding sites of pCI to obtain pCIrhEBNA3B.

To remove the RBP-Jk binding sites from rhEBNA-3A1 we

deleted codons 204–207 (TFAC) corresponding to nucleotides

610–621 from pSGrhEBNA3A1. To remove the RBP-Jk binding

sites from rhEBNA-3B, we deleted codons 208 to 211 (TLGC)

corresponding to nucleotides 622–633 from pSGrhEBNA3B using

the Quik Change site-directed Mutagenesis kit (Stratagene). The

resulting plasmids deleted for the EBNA-3 RBP-Jk binding sites,

pSGrhEBNA3A1-del, pSGrhEBNA3A2-del, and pSGrhEB-

NA3B-del, were only used for cloning into the Venezuelan equine

encephalitis vector (see below). All gp350, EBNA-3A, and EBNA-

3B constructs obtained by PCR were sequenced.

Recombinant proteins
To produce rhesus LCV gp350-Fc protein, CV-1/EBNA-1 cells

(ATCC, Manassas, VA) grown in DMEM/F-12 medium (1:1)

with 10% fetal bovine serum, were transfected with plasmid

pDCrhgp350-Fc using DEAE-Dextran. After transfection, the

media was changed to DMEM/F12 medium with 0.5% low

immunoglobulin G fetal bovine sera (HyClone, Logan, UT). One

week after transfection, the media was collected, clarified by low

speed centrifugation, and filtered through a 0.45 um filter.

Recombinant rhesus LCV gp350-Fc was bound to protein A-

Sepharose beads, eluted from the beads with 12.5 mM citric acid

pH 2.2, and collected in tubes containing 500 mM HEPES,

pH 9.0 to neutralize the citric acid.

To produce recombinant rhesus LCV EBNA-3A and EBNA-

3B, Cos cells were transfected with plasmid pSGrhEBNA3A1 or

pSGrhEBNA3B using Lipofectamine 2000 (Invitrogen). Two days

after transfection, lysates were prepared from the cells and proteins

were separated by polyacrylamide gel electrophoresis. Proteins

were stained with Coomassie blue, and bands containing EBNA-

3A and EBNA-3B were excised from the gel. EBNA-3 proteins

were eluted from the gel overnight in PBS and concentrated using

a Centricon YM-100 filter (Millipore).

Antibodies
To produce antibody to rhesus LCV gp350, 2 rabbits were

immunized with 150 ug of rhesus LCV gp350-Fc fusion protein in

complete Freund’s adjuvant (Animal Pharm Service Inc.,

Sausalito, CA). Animals were boosted with 100 ug of gp350-Fc

in incomplete Freund’s adjuvant on days 28, 42, and 86 after the

first vaccination; 2 weeks after the last boost the rabbits were bled

and sera were obtained.

To produce antibody to rhesus LCV EBNA-3A and EBNA-3B,

mice were immunized three times, 3 weeks apart with 100 ug of

pCIrhEBNA3A or pCIrhEBNA3B. Three weeks after the 3rd

DNA immunization, the animals were boosted with 20 ug of

EBNA-3A protein or 15 ug of EBNA-3B protein in complete

Freund’s adjuvant. Serum was collected from the mice 2 weeks

later.

Vaccines
For rhesus monkey vaccinations, rhesus LCV gp350-Fc protein

was incubated with Alhydrogel 2% (Brenntag Biosector, Accurate

Chemical and Scientific Corp) by mixing on a rotating wheel for

30 min at room temperature followed by addition of monopho-

sphoryl lipid A (Avanti Polar Lipids, Inc., Alabaster, AL).

Replication-defective attenuated Venezuelan equine encephali-

tis viruses (VEE) expressing rhesus LCV gp350, EBNA-3A1, or

EBNA-3B were constructed by PCR amplification of the genes

from plasmids pSGrhgp350, pSGrhEBNA3A1-del, pSGrhEB-

NA3B-del and inserting the rhesus LCV genes into a VEE

replicon vector. The replicon vector contains the VEE nsP1, nsP2,

nsP3, and nsP4 genes and an internal ribosome entry site (IRES)

followed by a cloning site into which the rhesus LCV genes were

inserted [32]. RNAs were produced from the replicon and VEE

plasmid vectors using T7 polymerase. Vero cells were co-

transfected with (a) helper RNA expressing VEE capsid, (b) helper

RNA expressing VEE glycoprotein [33], and (c) RNA obtained

from replicon vectors expressing rhesus LCV gp350, EBNA-3A, or

EBNA-3B. The resulting transfections generated replication-

defective, single-cycle, virus-like replicon particles (VRPs) [32,34].

Antibody testing for rhesus LCV and for gp350
Antibody to rhesus LCV viral capsid antigen (VCA) was

determined by immunofluorescence (VRL Laboratories, San

Antonio, Texas).

Antibody to rhesus LCV gp350 was measured using the

luciferase immunoprecipitation system (LIPS) assay [25]. Cos cells

were transfected with pREN3rhgp350 which encodes a fusion

protein containing the rhesus LCV gp350 gene linked to the

Renilla luciferase gene. Activity in transfected Cos cell lysates was

determined by luminometry and expressed as luminometer units

(LU) per ml as described previously [25]. To measure rhesus LCV

gp350 antibody levels in animals, rhesus monkey plasma were

diluted 1:10, and 1 ul was added to 16107 light units (LU) of

transfected Cos cell extract. Immunoprecipitations were per-

formed by addition of protein A/G beads, and LU were

determined by luminometry. A cut-off threshold limit was derived

from the mean value plus 2 standard deviations of the background

LU. All LU data shown represent the average of two independent

experiments.

Real-time PCR to quantify rhesus LCV DNA and RNA
DNA was isolated from 1256106 PBMCs using either a

QIAamp DNA Blood Mini Kit (Qiagen) or an Easy-DNA Kit

(Invitrogen). Real time PCR for rhesus LCV DNA was performed

with primers and probes that amplify rhesus LCV EBER1 [35]

using the following conditions: 94uC for 15 sec, 60uC for 30 sec,

and 72uC for 35 sec for a total of 40 cycles. Real time PCR was

also performed to amplify the internal repeat 1 (IR1) region of

rhesus LCV (which corresponds to the EBV Bam HI W fragments)

with primers 59-AAATCTAAACTTTTGAGGCGATCTG-39

and 59-CCAACCATAGACCCGTTTCCT -39 and probe 59-(6-

Fam)-TCTCCGCGTGCGCATAATGGC-(TAM RA)-39 using

the following conditions: 50uC for 2 min and 94uC for 10 min

for 1 cycle, followed by 94uC for 15 sec, 60uC for 1 min, for 45

cycles. Viral DNA was normalized using GAPDH [31] and results

were expressed as DNA copies per 16106 PBMCs.

Real time reverse-transcriptase PCR was performed for rhesus

LCV EBER1. Total RNA was isolated from 56106 PBMCs using

Trizol (Invitrogen, Calsbad, CA), and reverse transcription and

PCR was performed using primers and probes as described

previously [35] and PCR conditions described above.

Rhesus LCV Vaccine Protects and Reduces Virus Load
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Rhesus LCV-specific CD8 and CD4 T cell responses
Rhesus monkey cell lines were used to present EBNA-3A, EBNA-

3B, and gp350 to rhesus PBMCs. Lymphoblastoid cell lines (LCLs),

which express EBNA-3A and EBNA-3B, were constructed for each

monkey by infecting PBMCs with rhesus LCV in the presence of

cyclosporine A (500 ng/mL, Sigma-Aldrich) and culturing the cells

in RPMI 1640 with GlutaMax (Invitrogen) with 10% FBS and

antibiotics. Cryopreserved PBMCs were thawed and cultured in

RPMI 1640 with GlutaMax with 10% FBS, IL-2 (5 U/mL, from

the National Cancer Institute) and antibiotics in 12-well plates

overnight. The following day, PBMCs were divided into 2 tubes

(1236106 cells per tube) and were cocultured with 26106

autologous LCLs for 5 hours in the presence of 10 mg/mL of

brefeldin A (Sigma-Aldrich) and 10 U/mL of IL-2. The cells were

then washed in PBS with 2% FBS and 2 mM EDTA, incubated

with FITC-conjugated anti-CD8 monoclonal antibody (clone RPA-

T8, BioLegend, San Diego, CA) and APC-conjugated anti-CD4

monoclonal antibody (clone OKT4, BioLegend) for 20 min, washed

with PBS containing 2% FBS and 2 mM EDTA, incubated with

Cytofix/Cytoperm buffer (BD Bioscience, Franklin Lakes, NJ) for

25 min, and washed with Perm wash buffer (BD Bioscience). Cells

were then incubated with PE-conjugated anti-IL-2 monoclonal

antibody (clone MQ1-17H12, BioLegend) and PE-Cy7-conjugated

anti-IFN-c monoclonal antibody (clone B27, BD Bioscience),

washed with Permwash buffer, and resuspended in PBS with 2%

FBS and 2 mM EDTA. As a negative control, PBMCs were

cultured without LCLs, and mixed with LCLs after fixation of

PBMCs with Cytofix/Cytoperm buffer. Data were acquired using a

FACS Caliber (BD Bioscience) and analysis was performed using

Flowjo software 8.8.4 (Tree Star Inc., Ashland, OR). The percent of

rhesus LCV-specific cytokine T cell response was defined as the

percent cytokine (IL-2 or IFN-c, or both) positive CD4 or CD8 cells

in LCL-stimulated PBMCs minus the percent cytokine positive

CD4 or CD8 cells in unstimulated PBMCs. If unstimulated samples

had a higher frequency of cytokine positive cells than stimulated

samples, a value of 0% was assigned, instead of a negative value.

To measure gp350-specific CD8 and CD4 T cell responses,

LCLs were infected with either wild-type MVA, or MVA

expressing rhesus LCV gp350, at 3 TCID50 for 24 hours before

coculture with PBMCs. PBMCs were thawed and cultured

overnight as described above. The following day, PBMCs were

divided into 3 tubes (0.8226106 cells per tube) and cocultured

with LCLs infected with either wild-type or gp350 expressing

MVA for 5 hours in the presence of brefeldin A. As a negative

control, PBMCs were cultured without LCLs and mixed with

LCLs (not infected with MVA) after fixation of PBMCs with

Cytofix/Cytoperm buffer. Staining and flow cytometry were done

as described above. The percent of cytokine producing CD4 or

CD8 cells in unstimulated PBMCs mixed with LCLs (not infected

with MVA) after fixation (negative control) was subtracted from

the percent of CD4 or CD8 cells in PBMCs stimulated with gp350

MVA-infected LCLs or wild-type MVA-infected LCLs. The

percent of rhesus LCV gp350-specific CD4 or CD8 T cell

response was defined as the percent of cytokine producing CD4 or

CD8 cells in PBMCs stimulated with gp350 MVA-infected LCLs

minus the percent of cytokine producing CD4 or CD8 cells in

PBMCs stimulated with wild-type MVA-infected LCLs.

Results

Antibody to rhesus LCV gp350 detects the glycoprotein
in cells infected with MVA-gp350

In order to determine if rhesus LCV encodes gp350 similar to its

human EBV homolog, rabbits were immunized with purified

rhesus LCV gp350-Fc fusion protein and serum was obtained. The

rabbit serum detected proteins from 2002270 kDa in supernatant

from cells transfected with plasmid expressing soluble gp350-Fc,

but not with plasmid expressing GFP (pGL3-GFP) (Fig. 1, lanes
1, 2).

To ensure that the rabbit antibody was specific for rhesus LCV

gp350, we determined that the antibody could detect full length

gp350 in virus-infected cells. Full length rhesus LCV gp350 was

inserted into modified vaccinia Ankara (MVA). DF-1 cells were

infected with MVA-gp350GFP or MVA alone and 16224 hr

later, lysates were prepared, and immunoblotted with the rabbit

serum. Cells infected with MVA-gp350GFP, but not MVA alone

produced a 250 kDa protein that reacted with the antibody

(Fig. 1, lanes 3, 4). Similarly, Cos cells infected with virus-like

replicon particles expressing rhesus LCV gp350 (VRP-gp350), but

not cells expressing GFP (VRP-GFP), expressed proteins of

2202250 kDa that reacted with the antibody (Fig. 1, lanes 5,
6). We were unable to detect rhesus LCV gp350 in LCL8664 cells

Figure 1. Detection of gp350 in supernatant from cells
transfected with a plasmid expressing soluble gp350, lysate
from DF-1 cells infected with MVA-gp350, and lysate from
Vero cells infected with VRP-gp350. Supernatant from cells
transfected with control plasmid pGL3-GFP, or lysates from cells
infected with MVA or VRP-GFP are negative controls.
doi:10.1371/journal.ppat.1002308.g001
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treated with sodium butyrate or transfected with a plasmid

expressing EBV BZLF1 (data not shown), likely due to low levels of

the glycoprotein.

Sequence and expression of rhesus LCV EBNA-3A and
EBNA-3B

In order to express rhesus LCV EBNA-3A and EBNA-3B, we

cloned the genes from LCL8664 cells into expression vectors and

determined the sequence of the viral genes. While the sequence of

rhesus LCV EBNA-3A was identical to the published sequence

[21], the sequence of rhesus LCV EBNA-3B was different. We

found a T deleted at nucleotide 1744 and a C inserted at

nucleotide 2206 of rhesus LCV EBNA-3B. The deletion at

nucleotide 1744 results in a frameshift in the EBNA-3B sequence

beginning at codon 582, and the insertion at nucleotide 2206

restores the open reading frame to the published amino acid

sequence at codon 735 so that the last 193 amino acids of the

protein are unchanged (Fig. 2). This was verified for several PCR

clones from LCL8664 cells and by direct sequencing of DNA from

LCL8664 cells. Comparison of the amino acid sequence of rhesus

LCV EBNA-3B reported here, in the region just prior and after

the frameshift mutation (acids 5772740), with that of EBV AG876

EBNA-3B showed 31% identity, while comparison of the prior

rhesus LCV EBNA-3B sequence [21] with EBV AG876 EBNA-2B

showed only 16% identity. Taken together these findings suggest

that the sequence reported here for rhesus LCV EBNA-3B is more

likely to be the authentic sequence of the protein.

Both EBV EBNA-3A [36] and EBNA-3B bind to RBP-Jk and

stimulate B cell proliferation. Since EBV EBNA-3A is critical for B

cell growth transformation and survival [36] and EBNA-3-induced

B cell proliferation might be problematic for a vaccine, we deleted

the RBP-Jk binding sites in rhesus LCV EBNA-3A and EBNA-3B.

Figure 2. Alignment of amino acids 5772740 of rhesus LCV EBNA-3B from LCL8664 cells (middle lines) with the previously
published sequence ([21], lower lines), and amino acids 5712768 of EBV AG876 EBNA-3B (top lines). Numbers indicate amino acid
positions of rhesus LCV EBNA-3B and arrows indicate where the sequences of rhesus LCV EBNA-3B diverge and then return to identity.
doi:10.1371/journal.ppat.1002308.g002
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Mutation of the EBV EBNA-3A RBP-Jk binding domain, TLGC

(amino acids 1992202), to AAGA results in loss of function of the

protein and reduces its ability to bind to RBP-Jk. Rhesus LCV

EBNA-3A and EBNA-3B also bind to RBP-Jk [30]. Alignment of

the amino acid sequence of rhesus LCV EBNA-3A with its EBV

homolog predicts that the rhesus LCV EBNA-3A RBP-Jk binding

site TFAC (amino acids 204 to 207 based on the sequence of Jiang

et al. [30], or amino acids 1902193 based on the sequence of

Rivailler et al. [31]) are positional homologs of the RBP-Jk binding

site TLGC (amino acids 1992202) of EBV EBNA-3A. Similarly,

alignment of rhesus LCV EBNA-3B with EBV EBNA-3B predicts

that amino acids 208 to 211 (TLGC) of rhesus LCV EBNA-3B are

positional homologs of EBV EBNA-3B amino acids 205 to 208

(TLGC). Therefore, we deleted these four codons from rhesus

LCV EBNA-3A and EBNA-3B in vectors expressing these genes.

Based on the sequence of rhesus LCV EBNA3A (rhEBNA3A),

either of two methionines could be the first amino acid of the

protein [30]. To determine which can be used for EBNA-3A, we

made four EBNA-3A constructs- rhEBNA-3A1 (which starts at the

first methionine), rhEBNA-3A2 (which starts at the second

methionine), rhEBNA-3A1-del and rhEBNA3A2-del (in which

the four amino acid putative RBP-Jk binding site in EBNA-3A was

deleted). Transfection of Cos cells with pSGrhEBNA3A1,

pSGrhEBNA3A2, pSGrhEBNA3A1-del, and rhEBNA3A2-del

followed by Coomassie blue staining of cell lysates in PAGE gels

showed bands of 147 kDa, 145 kDa, 147 kDa, and 144 kDa,

respectively (Fig. 3A, lanes 225). These studies indicate that

either the first or second methionine can be used for producing

EBNA-3A. Transfection of Cos cells with pSGrhEBNA3B or

pSGrhEBNA3B-del (deleted for the four amino acid putative RBJ-

k binding site) yielded a band of 150 kDa (Fig. 3A, lanes 6,7).

Vero cells infected with VRP-EBNA-3A showed predominant

bands of 102 and 88 kDa, while LCL8664 cells and rhesus LCV

LCL-V showed a band of about 102 kDa (Fig. 3B). Vero cells

infected with VRP-EBNA-3B showed an upper band of 145 kDa

and more intense bands from 1052120 kDa while LCL8664 cells

and rhesus LCV LCL-V showed a band of 145 kDa (Fig. 3C).

Recombinant soluble gp350 elicits higher antibody titers
to gp350 than VRP-gp350 in rhesus monkeys

Four rhesus LCV seronegative monkeys each received one of

four inocula intramuscularly: (a) 50 ug of rhesus LCV soluble

gp350-Fc protein (soluble gp350) formulated in 800 ug alum and

50 ug monophosphoryl lipid A, (b) 16108 infectious units (IU) of

virus-like replication-defective VEE particles expressing rhesus

LCV gp350 (VRP-gp350) in 1 ml of DMEM with 10% FBS, (c) a

combination of three separate replication-defective VEE particles

expressing rhesus LCV gp350 (VRP-gp350), EBNA-3A (VRP-

EBNA-3A), and EBNA-3B (VRP-EBNA-3B) each at a titer of

16108 IU in a total of 1 ml of DMEM with 10% FBS, or (d) PBS

control. The rhesus LCV soluble gp350 used in our vaccine

contains the extracellular domain of the glycoprotein fused to the

Fc domain of human IgG, while the vaccine used in the large

human trial [11] has the extracellular domain of EBV gp350 with

a mutation in the gp220 splice site and no Fc protein fused to the

glycoprotein. The alum/monophosphoryl lipid A adjuvant was

chosen for rhesus LCV soluble gp350, since this is the adjuvant

that was used in the large human EBV gp350 study [11]. Animals

were vaccinated at weeks 0, 4, and 12.

Serum antibody responses to gp350 in animals 5 weeks after the

last vaccination showed that all animals vaccinated with soluble

gp350 or VRP-gp350 (alone or in combination with VRPs

expressing EBNA-3A and EBNA-3B) produced antibodies to the

glycoprotein (Fig. 4). The geometric mean antibody level was

significantly higher in animals vaccinated with recombinant

soluble gp350 than in animals receiving VRP-gp350 (p,0.05) or

in animals that had been naturally infected with rhesus LCV

(p,0.05). The geometric mean antibody titer in animals receiving

VRP-gp350 (alone or in combination with VRPs expressing

EBNA-3A and EBNA-3B) was not significantly different than in

animals naturally infected with rhesus LCV.

Immunization of monkeys with VRPs expressing a
combination of EBNA-3A, EBNA-3B, and gp350 induces
rhesus LCV LCL-specific CD4 and CD8 T cell immune
responses

Rhesus LCV LCL-specific CD4 and CD8 T cell immune

responses in monkeys were measured both pre- and post-

vaccination. Rhesus LCV LCLs, which express EBNA-3A and

EBNA-3B (Fig. 3), from each monkey served as antigen presenting

cells. PBMCs from monkeys were incubated with autologous LCLs

and cells were then stained for surface expression of CD4 and CD8

and for intracellular expression of IL-2 and IFN-c. Before

vaccination, the mean percentage of rhesus LCV-specific cytokine

producing CD4 T cells was 0.001460.0013, 0.001360.0014,

0.014360.0135 and 0.007860.0045 (mean 6 SE) for animals

receiving PBS, soluble gp350, VRP-gp350, and combined VRP-

gp350, VRP-EBNA-3A, and VRP-EBNA-3B, respectively (Fig. 5).
The mean percentage of rhesus LCV-specific CD4 T cells after

vaccination was 0.014760.0165, 0.007060.0053, 0.046760.0500

and 0.089460.0516 for animals receiving PBS, soluble gp350,

VRP-gp350, and combined VRP-gp350, VRP-EBNA-3A, and

VRP-EBNA-3B, respectively. The mean percentage of rhesus LCV-

specific cytokine producing CD8 T cells pre-vaccine was

0.011160.0105, 0.014060.0077, 0.033460.0194 and 0.02236

0.0178 for monkeys receiving PBS, soluble gp350, VRP-gp350, and

combined VRP-gp350, VRP-EBNA-3A, and VRP-EBNA-3B,

respectively. Post-vaccination, the mean percentage of rhesus

LCV-specific CD8 T cells was 0.031560.0117, 0.026060.0152,

0.039060.0185 and 0.183460.1059 for PBS, soluble gp350, VRP-

gp350, and combined VRP-gp350, VRP-EBNA-3A, and VRP-

EBNA-3B, respectively. While there was considerable variability

among individual animals, only animals receiving combined VRP-

gp350, VRP-EBNA-3A, and VRP-EBNA-3B had a statistically

significant increase in the percentage of rhesus LCV LCL-specific

CD4 T cells (p = 0.032 by T-test). Animals that received combined

VRP-gp350, VRP-EBNA-3A, and VRP-EBNA-3B had an increase

in the percentage of rhesus LCV LCL-specific CD8 T cells after

vaccination, but the difference did not reach statistical significance

(p = 0.065 by T-test).

We did not observe CD4 or CD8 T cell responses to rhesus

LCV gp350 in monkeys after vaccination using LCLs as antigen

presenting cells, except for one animal that had an increase in

rhesus LCV LCL-specific cytokine positive CD4 T cell response

after vaccination with VRP-gp350 (Fig. 5). This is not surprising

since we were unable to detect rhesus LCV gp350 in LCLs by

immunoblot (data not shown). Therefore, we looked for T cells

responses to rhesus LCV gp350 by infecting LCLs with either

MVA-gp350 (which expresses rhesus LCV gp350) or wild-type

MVA and used these LCLs as antigen presenting cells. We did not

detect an increase in rhesus LCV gp350-specific PBMCs from

animals vaccinated with soluble gp350 or VRP-gp350 (data not

shown), even though MVA-gp350 expresses the glycoprotein

(Fig. 1). It is possible that a different method to present gp350 to

PBMCs would have been more effective; nonetheless, these data

suggest that soluble gp350 or VRP-gp350 did not induce a

significant increase in cellular immune responses in monkeys.
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Recombinant soluble gp350 protects against challenge
from rhesus LCV better than VRP-gp350, or the
combination of VRP-gp350, VRP-EBNA-3A, and VRP-
EBNA-3B

A challenge inoculum of rhesus LCV was titered in LCV

seronegative rhesus monkeys. Five animals were initially given 14

TID50 (infectious dose of virus needed to transform 50% of wells of

cells in vitro) of rhesus LCV by application of virus to the throat

and all animals seroconverted. Based on these results, 10 weeks

after the last vaccination, animals were challenged by the oral

route with 50 TID50 of rhesus LCV.

Antibody to rhesus LCV viral capsid antigen (VCA) was detected

after challenge with rhesus LCV in all 4 animals that received PBS

Figure 3. Expression of EBNA-3A and EBNA-3B in transfected and latently infected cells. (A) Cos cells transfected with pSGrhEBNA3A1
and pSGrhEBNA3A1-del express EBNA-3A beginning at the first methionine without (lane 2) or with (lane 3) a deletion in the putative RBP-Jk binding
site, respectively. Cos cells transfected with pSGrhEBNA3A2 and pSGrhEBNA3A2-del express EBNA-3A beginning at the second methionine without
(lane 4) or with (lane 5) a deletion in the putative RBP-Jk binding site, respectively. Cos cells were transfected with pSGrhEBNA3B and pSGrhEBNA3B-
del, with a deletion in the putative RBP-Jk binding site (lanes 6 and 7, respectively). Cos cells were transfected with empty vector (pSG5, lane 8). (B)
Detection of EBNA-3A in Vero cells infected with VRP-EBNA-3A, or in LCL8664 cells and in a rhesus monkey LCL (LCL-V). Arrow indicates location of
EBNA-3A. (C) Detection of EBNA-3B in Vero cells infected with VRP-EBNA-3B, or in LCL8664 cells and LCL-V. Arrow indicates location of EBNA-3B.
Additional bands noted in cells infected with VRP expressing EBNA-3A or -3B are likely due to overexpression of the protein.
doi:10.1371/journal.ppat.1002308.g003
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and all 4 that received VRP-gp350. In contrast, 2 of 4 that received

soluble gp350 and 3 of 4 animals that received a combination of VRP-

gp350, VRP-EBNA-3A, and VRP-EBNA-3B developed antibody to

rhesus LCV VCA after challenge (Fig. 6). Interestingly, seroconver-

sion was delayed to week 10 after challenge in the 2 animals that

received soluble gp350 that became infected, while seroconversion

occurred in weeks 3 to 8 in most of the other vaccine groups.

Like EBV, rhesus LCV DNA is present at very low or

undetectable copy numbers in PBMCs of healthy animals infected

in the past, but is usually detected in the blood after initial infection

[31]. Within 6 weeks after challenge, rhesus LCV DNA was

detected in PBMCs in 2 of 4 animals that received soluble gp350

and in 3 of 4 animals that received a combination of VRP-gp350,

VRP-EBNA-3A, and VRP-EBNA-3B or PBS (Fig. 7). All 4 animals

that received VRP-gp350 had detectable rhesus LCV DNA.

To further verify that animals were protected from infection after

challenge we tested PBMCs from animals for rhesus LCV EBER1.

EBER1 is present in thousands of copies in virus-infected B cells and

is usually detected in the blood for life after infection of rhesus

monkeys [35]. After challenge, rhesus LCV EBER1 was detected in

PBMCs in 2 of 4 animals that received soluble gp350 and in 3 of 4

animals that received the combination of VRP-gp350, VRP-EBNA-

3A, and VRP-EBNA-3B (Fig. 8). One animal that received the

VRP-gp350, VRP-EBNA-3A, and VRP-EBNA-3B combination

had a single positive level of EBER1 in the blood at 3 weeks after

challenge and subsequently remained EBER1 negative. In contrast,

all 4 animals that received VRP-gp350 or PBS had detectable

EBER1 in the blood after challenge. Thus, all animals that

seroconverted were positive for LCV EBER1.

In summary, animals receiving soluble gp350 had the best level

of protection after challenge with the fewest numbers of animals

with rhesus LCV DNA or rhesus LCV RNA in the blood and the

lowest rate of seroconversion after challenge, while animals that

received the combination of VRP-gp350, VRP-EBNA-3A, and

VRP-EBNA-3B had the next best level of protection.

Analysis of fever, lymph node swelling, liver function tests, and

CD4 to CD8 ratios after challenge did not show discernable

differences in animals that received different vaccines or control PBS

Figure 4. Detection of gp350 antibody by luciferase immunoprecipitation assay in rhesus monkeys immunized with soluble gp350,
VRP-gp350, a combination of VRP-350, VRP-EBNA-3A, and VRP-EBNA-3B, or PBS before challenge with wild-type virus. gp350
antibody levels in naturally infected monkeys are shown. Antibody levels are measured as luminometer units. Cut off value is shown as horizontal
dotted line, which was determined as the mean +2 standard deviations of the blank signal (open circles). Horizontal bars indicate geometric mean,
asterisks indicate p,0.05 (Mann-Whitney’s U-test), NS indicates not significant.
doi:10.1371/journal.ppat.1002308.g004
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(data not shown). This may not be surprising since there were small

numbers of animals, all animals were all ,3 years old (and EBV

infectious mononucleosis is rare in young children), and variability in

animals after infection has been reported previously [19].

Animals vaccinated with recombinant soluble gp350
have the lowest rhesus LCV loads at 23 months after
infection with rhesus LCV compared with the other
vaccines, and comparable viral loads to those vaccinated
with the combination of VRP-gp350, VRP-EBNA-3A, and
VRP-EBNA-3B at 34 months

PBMCs were obtained from each of the vaccinated animals at

23 and 34 months after challenge. Using real time PCR with the

rhesus LCV DNA EBER1 probe, we were only able to detect

rhesus LCV DNA in PBMCs from 1 of the 16 animals 23 months

after challenge (data not shown). Therefore, we developed a more

sensitive real time PCR assay using IR1 DNA (corresponding to

the Bam HI W repeats of EBV) that are present at 5.7 copies in the

rhesus LCV genome [21]. Using the more sensitive real time PCR

assay we were able to detect rhesus LCV DNA in 5 of 5 monkeys

that had been naturally infected (data not shown). As expected we

were unable to detect rhesus LCV DNA in animals that had been

protected from challenge, therefore those animals were excluded

from further analyses to avoid skewing the results. At 23 months

after challenge, using the more sensitive real time PCR test, the

mean rhesus LCV DNA copy number was 15 copies per 106 cells

for animals vaccinated with soluble gp350, 3,986 for animals that

Figure 5. Detection of rhesus LCV-specific CD4 and CD8 T cell responses to gp350 or EBNA-3A and EBNA-3B in rhesus monkeys.
Animals were immunized with soluble gp350, VRP-gp350, a combination of VRP-gp350, VRP-EBNA-3A, and VRP-EBNA-3B, or PBS before challenge
with wild-type virus. Pre indicates PBMCs obtained before vaccination; post indicates PBMCs obtained after vaccination.
doi:10.1371/journal.ppat.1002308.g005
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received the combination of VRP-gp350, VRP-EBNA-3A, and

VRP-EBNA-3B, 3,663 for animals receiving VRP-gp350, and

1,504 for animals that received PBS (Fig. 9A). At 34 months after

challenge, the mean rhesus LCV DNA copy number was 120

copies per 106 cells for animals vaccinated with soluble gp350, 0

for animals that received the combination of VRP-gp350, VRP-

EBNA-3A, and VRP-EBNA-3B, 3,605 for animals receiving

VRP-gp350, and 9,271 for animals that received PBS (Fig. 9B).

Thus, the rhesus LCV DNA copy number was lowest in animals

vaccinated with soluble gp350 at 23 months after challenge, and

was similar to the copy number in animals that received the

combination of VRP-gp350, VRP-EBNA-3A, and VRP-EBNA-

Figure 6. Detection of antibody to rhesus LCV VCA in monkeys immunized with soluble gp350, VRP-gp350, a combination of VRP-
350, VRP-EBNA-3A, and VRP-EBNA-3B, or PBS.
doi:10.1371/journal.ppat.1002308.g006

Figure 7. Detection of rhesus LCV DNA in the blood of monkeys immunized with soluble gp350, VRP-gp350, a combination of VRP-
350, VRP-EBNA-3A, and VRP-EBNA-3B, or PBS. Real time PCR was performed using a probe that detects EBER1 DNA.
doi:10.1371/journal.ppat.1002308.g007
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3B at 34 months. Analysis of seropositive animals showed that

rhesus LCV DNA was detected 23 or 34 months after challenge in

1 of 2 animals that received soluble gp350, 2 of 3 animals that

received the combination of VRP-gp350, VRP-EBNA-3A, and

VRP-EBNA-3B, 4 of 4 animals that received VRP-gp350, and 3 of

4 animals that received PBS.

Discussion

Two different types of vaccines have been developed to prevent

disease and limit primary infection with EBV. Soluble EBV gp350

reduced the rate of infectious mononucleosis by 78% in young

adults [11]. Alternatively, induction of cellular immunity to

EBNA-3 has been proposed to limit the events occurring

immediately after primary infection including virus replication in

the throat and the expansion of virus-infected B cells [37]. Prior

studies have shown that EBNA-3 epitopes are primary targets for

EBV-specific CTLs in healthy persons, and therefore an EBV

vaccine containing EBNA-3 epitopes has been proposed [38,39].

A peptide corresponding to EBNA-3A elicited peptide-specific T

cell responses in EBV-seronegative human volunteers; 4 of 4

seronegative volunteers seroconverted to EBV asymptomatically,

while 1 of 2 placebo recipients infected with EBV developed

infectious mononucleosis [16]. Since rhesus LCV is considered one

of the best animal models for EBV infection, we compared rhesus

LCV soluble gp350 with VRPs expressing gp350 or VRPs

expressing a combination of gp350, EBNA-3A and EBNA-3B.

Animals received three doses of the vaccines at 0, 4, and 12 weeks.

We found that rhesus LCV soluble gp350 induced better

protection against challenge virus than VRPs expressing a

combination of gp350, EBNA-3A and EBNA-3B.

Animals vaccinated with soluble gp350 produced the highest

levels of antibody to the glycoprotein and these levels were higher

than those seen in monkeys naturally infected with rhesus LCV.

Prior studies have shown that antibody to gp350 is likely the

predominant component of neutralizing antibody to EBV

[40,41,42]. In addition gp350 induces antibody-dependent cellular

cytotoxicity which may also be important in controlling EBV

infection [43]. Animals vaccinated with VRP expressing gp350, or

VRPs expressing gp350, EBNA-3A, and EBNA-3B developed

lower levels of antibody to gp350 and had less protection against

acute infection than animals that received soluble gp350. Thus,

the high levels of antibody to gp350 are likely important for

protection against acute infection with rhesus LCV.

We compared soluble rhesus LCV gp350 with VRPs expressing

gp350 with the expectation that expression of the viral

glycoprotein in cells infected with VRPs might enhance the

immunogenicity of gp350 beyond its ability to induce antibody.

Animal studies have shown that neutralizing antibody to gp350

alone does not always correlate with protection from disease.

When cottontop tamarins were vaccinated with replication-

defective adenovirus expressing gp350, non-neutralizing antibody

to gp350 was induced, but the animals were protected against

lymphoma [7]. In contrast, when cottontop tamarins were

vaccinated with gp350 in liposomes, high titers of neutralizing

antibodies were induced, but the animals were not always

Figure 8. Detection of rhesus LCV EBER1 in the blood of monkeys immunized with soluble gp350, VRP-gp350, a combination of
VRP-350, VRP-EBNA-3A, and VRP-EBNA-3B, or PBS. RNA was isolated from PBMCs and reverse transcription was performed followed by real
time PCR with a probe that detects EBER1 DNA.
doi:10.1371/journal.ppat.1002308.g008
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protected from lymphoma [44]. These studies showed protection

from development of lymphoma, rather than protection from

infection. Immunization of common marmosets with gp350 in

alum resulted in neutralizing antibodies in some animals, but

protection from infection (defined by absence of seroconversion

after challenge) did not correlate with the presence of neutralizing

antibodies [45]. Somewhat surprisingly we found that rhesus LCV

soluble gp350 induced better protection against challenge virus

than VRP expressing gp350. Animals vaccinated with VRP

expressing gp350 had antibody to the glycoprotein at levels

comparable to animals naturally infected with rhesus LCV;

however, the levels were significantly lower than in animals

vaccinated with soluble gp350.

Animals vaccinated with alphavirus VRPs expressing EBNA-3A

and EBNA-3B developed CD4 and CD8 cell responses to these

proteins, while those vaccinated with VRPs expressing gp350 did

not have detectable cellular responses to the glycoprotein. It is

possible that the different methods used to present these antigens

(LCLs naturally expressing EBNA-3A and EBNA-3B versus cells

infected with MVA expressing gp350) could be responsible for

these differences. Alphavirus VRPs target dendritic cells, which

are highly efficient antigen presenting cells, and are effective for

Figure 9. Detection of rhesus LCV DNA in the blood of monkeys immunized with soluble gp350, VRP-gp350, a combination of VRP-
350, VRP-EBNA-3A, and VRP-EBNA-3B, or PBS and challenged with rhesus LCV. Blood was obtained 23 (A) and 34 months (B) after
challenge. Real time PCR was performed using a probe that detects rhesus LCV IR1 (corresponding to the EBV Bam HI W repeat) DNA. Horizontal lines
indicate mean values.
doi:10.1371/journal.ppat.1002308.g009
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inducing cellular immunity [46]. Prior studies in humans show

that EBV EBNA-3A, EBNA-3B, and EBNA-3C are the main

targets of CD8 T cells in humans, while EBV EBNA-1 is the

principal target of CD4 T cells (reviewed in [12]). While EBV

gp350-specific CD8 T cells have been detected in patients during

infectious mononucleosis [47] and gp350-specific CD4 T cells

have been detected in healthy EBV carriers [48,49], the level of

these T cells has not been quantified relative to those against

EBNA-3. In general, the level of T responses to structural proteins

is generally lower than that to latent proteins in healthy EBV

carriers (reviewed in [12]).

After challenge of animals with rhesus LCV, animals vaccinated

with soluble rhesus LCV gp350 had the best level of protection

based on levels of rhesus LCV DNA or RNA in the blood and

lower rates of seroconversion. While animals that received VRP-

gp350, VRP-EBNA-3A, and VRP-EBNA-3B had the next best

level of protection from challenge and might have better

protection from reactivation, than those receiving the other

vaccine candidates, we could not test for protection against

reactivation with the small number of animals in the current study.

Although soluble gp350 induced the highest levels of antibody to

gp350 and the best protection from acute infection, addition of

potent EBV-specific T cell responses in combination with high

levels of antibody might enhance the effectiveness of an EBV

vaccine.

Although an ideal vaccine would protect from infection with

EBV, a vaccine that reduces the EBV DNA load might also be

useful. The EBV DNA load is a predictor for development of

certain EBV-associated malignancies [50]. EBV DNA is increased

in the blood of transplant recipients prior to the development of

EBV post-transplant lymphoproliferative disease [51], and ritux-

imab which lowers the viral load in the blood likely reduces the

rate of post-transplant lymphoproliferative disease [52]. Patients

with primary EBV infection after transplantation have high viral

loads, and a 24-fold increased risk of post-transplant lymphopro-

liferative disease compared with seropositive transplant recipients

[53]. Similarly, patients with HIV who progressed to B cell

lymphoma had elevated levels of EBV in PBMCs and the level

increased several months before developing lymphoma [54]. In

order to determine if our vaccine reduced the level of rhesus LCV

DNA in the blood, we developed a more sensitive assay for

detection of viral DNA. With this assay we found that animals

vaccinated with soluble gp350 that became infected with rhesus

LCV after challenge had lower levels of rhesus LCV DNA in

PBMCs at 23 and 34 months compared with animals that received

vaccine control (PBS). Taken together these finding suggest that an

EBV vaccine that reduces the viral load after infection might also

reduce the risk for development of certain EBV-associated

malignancies.

In summary, our findings indicate that a subunit vaccine that

induces primarily humoral, rather than cellular immunity can

result in a low virus load in animals that develop breakthrough

infection after challenge with wild-type virus. At 23 months after

challenge, animals vaccinated with soluble gp350 that became

infected with rhesus LCV had $100-fold lower levels of rhesus

LCV DNA in PBMCs than those vaccinated with VRP-gp350, or

the combination of VRP-gp350, VRP-EBNA-3A, and VRP-

EBNA-3B. Rhesus LCV DNA was still lower in PBMCs from

animals vaccinated with soluble gp350 at 34 months after

challenge compared with animals that received PBS. Thus,

antibodies to a viral glycoprotein before challenge likely alter the

primary infection in such a way as to result in a lower viral load

years later. While the largest EBV subunit vaccine study

performed to date showed that soluble gp350 protected against

infectious mononucleosis, breakthrough infection still occurred;

however, the authors did not report on the level of EBV DNA in

the blood after breakthrough infection [11]. Based on our data, as

well as observations of EBV DNA in PBMCs in certain

malignancies, future EBV vaccine studies should test the ability

of the vaccine to reduce viral loads in persons that become

infected.
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