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Abstract

Pyrene-containing compounds are commonly used in a number of fluorescence-based applications because they can form
excited-state dimers (excimers) by stacking interaction between excited-state and ground-state monomers. Their usefulness
arises from the facts that excimer formation requires close proximity between the pyrenes and that the excimer emission
spectrum is very different from that of the monomers. One of many applications is to assess proximity between specific sites
of macromolecules labeled with pyrenes. This has been done using pyrene maleimide, a reagent that reacts with reduced
thiols of cysteines, but its use for structural studies of proteins has been rather limited. This is because the introduction of
two cysteines at sufficiently close distance from each other to obtain excimer fluorescence upon labeling with pyrene
maleimide requires detailed knowledge of the protein structure or extensive site-directed mutagenesis trials. We
synthesized and tested a new compound with a 4-carbon methylene linker placed between the maleimide and the pyrene
(pyrene-4-maleimide), with the aim of increasing the sampling distance for excimer formation and making the use of
excimer fluorescence simpler and more widespread. We tested the new compound on thiol-modified oligonucleotides and
showed that it can detect proximity between thiols beyond the reach of pyrene maleimide. Based on its spectroscopic and
chemical properties, we suggest that pyrene-4-maleimide is an excellent probe to assess proximities between cysteines in
proteins and thiols in other macromolecules, as well as to follow conformational changes.
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Introduction

Pyrenes can form an excited-state dimer (excimer) by stacking

interaction between the excited monomer and ground-state

monomer [1]. Compared with the monomer emission, the excimer

emission is significantly red-shifted, which facilitates its detection

[1]. During the last few years, this property has been used in the

development of nanosensors based on nucleic acids (molecular

beacons, aptamer sensors) [2–6]. Other applications include

studies of lipid membranes, membrane fusion and protein

structural studies [7–14]. One obvious application of the excimer

formation is to assess proximity between specific sites of

macromolecules labeled with pyrenes as well as to determine

conformational changes that will affect pyrene stacking due to

movements in macromolecules parts (changes in distances,

rotations). With this idea in mind, cysteine residues in proteins

were used as targets for the first time in 1973, using N-(1-pyrene)

maleimide (pyrene maleimide) [15]. The use of pyrene maleimides

for covalent linkage to proteins is particularly advantageous

because the olefinic double bond of the maleimide reduces the

fluorophore quantum yield, and therefore the reaction with the

thiols can be followed by the increase in fluorescence [15], and

removal of the unreacted reagent is not necessary. In spite of these

advantages, the number of studies using pyrene maleimide for

protein structural studies has been rather limited [8–13,16–21].

One reason is that stacking of the pyrenes has a very limited

distance range (usually the pyrenes have to be within 3 to 5 Å of

each other for excimer formation). Therefore, introduction of two

cysteines at sufficiently close distance from each other to obtain

excimer fluorescence upon labeling with pyrene maleimide

requires detailed knowledge of the structure or extensive site-

directed mutagenesis trials. Tracking protein-protein associations

using excimer fluorescence is not very practical for the same

reason (i.e., thiols in interacting proteins have to be very close to

each other).

Although the discussion above centered on the distance

between labeling sites, flexibility of the pyrene probe is as

important as distance because excimer fluorescence occurs only

with the correct stacking orientation. In addition, if the stacked

pyrenes cannot reorient on excitation, emission will be

quenched. Therefore, the absence of excimer emission in

macromolecules labeled with pyrene maleimide can be a

consequence of long inter-thiol distance and/or its relatively

rigid structure. Here, we synthesized and tested a new

compound with a 4-carbon methylene linker between the imide

nitrogen of the maleimide and the pyrene (N-pyrenylbutyl

maleimide), which we refer to as pyrene-4-maleimide. Our aim

was to increase the sampling distance and efficiency of excimer

formation, making the use of excimer fluorescence simpler and

more widespread.
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Results and Discussion

Pyrene-4-maleimide was synthesized from commercially avail-

able 1-pyrenebutanol and maleimide by the modified Mitsunobu

reaction reported by Walker [22] (Fig. 1).

Fig. 2 compares the effects on pyrene maleimide and pyrene-4-

maleimide fluorescence emission of organic compounds previously

tested on the former [15]. Buffer alone (not shown) or addition of

1 mM ethanol or glycine elicited little emission due to a very low

fluorescence quantum yield (Fig. 2A and 2B). Addition of 1 mM

mercaptoethanol or butanethiol to pyrene maleimide in buffer

resulted in a significant increase in emission. However, the effects

of these organic compounds on the emission spectra were very

different. With mercaptoethanol, the emission is highly structured,

with three major peaks of decreasing intensity at the longer

wavelengths (labeled 1–3 in Fig. 2A). With butanethiol, the

emission is largely unstructured and the main peak (labeled 4 in

Fig. 2A) is red-shifted from the third peak with mercaptoethanol

by ,40 nm (Fig. 2A). These results are similar to those previously

described [15], and the ‘‘mercaptoethanol’’ and ‘‘butanethiol’’

peaks have been ascribed to emission from monomers and

excimers, respectively [1]. The differences between the monomer

and excimer emission spectra occur because the excimer emission

originates from a lower energy state than the excited monomer.

The emission spectra of pyrene-4-maleimide after addition of

ethanol, glycine, mercaptoethanol and butanethiol (Fig. 2B), were

generally similar to those of pyrene maleimide. However, there

were significant differences. Compared to pyrene maleimide, with

mercaptoethanol there is a small but significant red shift of the

emission peaks (D= 2.360.3 nm, P,0.05, Fig. 2C). More

noticeable, with butanethiol the excimer peak is ,20 nm red-

shifted compared to the pyrene maleimide peak (D= 2361 nm,

P,0.05, Fig. 2D). The intensities of the monomer structured peaks

in butanethiol (peaks 1 and 2, the major peaks with mercaptoeth-

anol) were significantly reduced compared to the values of pyrene

maleimide. In butanethiol, the relative intensity of pyrene

maleimide peaks 1 and 2 (normalized to peak 1 in mercaptoeth-

anol) were 2166 and 1263%, respectively. The corresponding

pyrene-4-maleimide peaks displayed smaller intensities of 461 and

260.2, respectively (P,0.05 compared to the corresponding

pyrene maleimide peaks, Fig. 2D). The intensities of the excimer

emission peaks (also normalized to peak 1 in mercaptoethanol)

were similar, at 2266% (pyrene maleimide) and 1865% (pyrene-

4-maleimide). The red shift of the excimer peak and the decreased

intensity of the remaining ‘‘monomer’’ peaks are advantages of

pyrene-4-maleimide over pyrene maleimide because they make

detection of the excimer emission easier and more sensitive. The

integrated emission of pyrene-4-maleimide in mercaptoethanol

was slightly less (D= 21967%, P,0.05) than that of pyrene

maleimide, but there were no significant differences between the

integrated emission between mercaptoethanol and butanethiol

(not shown).

Since the emission intensities of pyrene maleimide and pyrene-

4-maleimide were very similar (see above), no differences in

absorption and quantum yield of the reacted compounds were

expected. However, we found that the equivalent emission of the

two compounds is the result of the combination of a decreased

absorption and increased fluorescence quantum yield of pyrene-4-

maleimide vs. pyrene maleimide. The pyrene maleimide and

pyrene-4-maleimide extinction coefficients (e) measured in stan-

dard buffer with 1 mM mercaptoethanol were 28,5646480 and

7,8586474 M21 cm21, respectively (P,0.05), whereas the fluo-

rescence quantum yield values (Wf), were 0.04060.002 and

0.13160.006, respectively (P,0.05). We do not know the reason

for these changes, but preliminary data (not shown) with other

compounds where the pyrene and maleimide are separated by

other linkers produce similar results.

The results presented above showed a number of potential

advantages of pyrene-4-maleimide vs. pyrene maleimide for

structural studies of macromolecules. To test the usefulness of

pyrene-4-maleimide on an experimental system, we used thiol-

modified double-stranded DNAs where one DNA strand was 14

bases long and had a thiol group at the 59 end (DNA14, see

Materials and Methods), whereas the complementary strand was

either 14 (DNA14c), 12 (DNA12c) or 10 (DNA10c) bases long, and

had a thiol group on the 39 end. Fig. 3A shows that the increase in

‘‘monomer’’ emission that results from the reaction with reduced

single-stranded DNA (DNA14) is due to specific reaction with the

thiol group. Emissions with buffer alone or buffer plus non-

reduced DNA were negligible and indistinguishable from each

other. Fig. 3C shows that pyrene-4-maleimide-reacted DNA14-14c

displays significant excimer emission, which is not the case for the

probe reacted with DNA14-12c (Fig. 3C), or the pyrene maleimide-

reacted DNA14-14c, DNA14-12c or DNA14-10c (Fig. 3B). The results

are summarized in Fig. 3D, which displays the data as the ratio of

the excimer/monomer peak intensities. The results in Fig. 3 show

that pyrene-4-maleimide can sample a longer inter-thiol distance

than pyrene maleimide. This could result from the length of the

linker, which allows for increased excimer formation at longer

inter-thiol distances, and/or its flexibility, which will facilitate

pyrene stacking in the correct orientation for excimer emission.

Fig. 4 displays results from simple models, where the double-

stranded DNAs were fixed, and the thiol modifiers and fluorescent

probes were energy-minimized. Fig. 4A shows a view along the

long DNA axis, whereas the view in Fig. 4B is perpendicular to

that in Fig. 4A, and displays only the pyrenes (color-coded as in

Fig. 4A). The modeling results show that the pyrenes are in a

conformation that can allow excimer formation (on top of each

other and ,5 Å apart) only in the pyrene-4-maleimide DNA14-14c

adduct (pyrene-4-maleimide in green). The pyrene-4-maleimide

DNA14-12c adduct (pyrene-4-maleimide in red) shows that the

increased separation resulting from the shorter 39-modified DNA

strand keeps the pyrenes from stacking on top of each other and

,10 A apart. In the case of the pyrene maleimide DNA14-14c

adduct (pyrene maleimide in blue), the pyrenes are on top of each

other, but ,11 Å apart. They cannot approach each other

sufficiently because the fluorescent probe is shorter and more rigid

Figure 1. Schematic representation of the pyrene-4-maleimide
synthesis and structure. A. Pyrene maleimide structure. B. Pyrene-4-
maleimide synthesis route and structure. Ph3P: triphenylphosphine;
DIAD: diisopropyl azodicarboxylate.
doi:10.1371/journal.pone.0026691.g001

Pyrene-4-Maleimide Excimer Probe
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than pyrene-4-maleimide. The modeling data are consistent with

the experimental results in Fig. 3, where only the pyrene-4-

maleimide DNA14-14c adduct displays significant excimer emis-

sion. Compared to the emission in butanethiol, reaction of pyrene-

4-maleimide with double-stranded DNA14-14c showed the same

peaks, but with a red shift, smaller for the monomer

(D= 2.760.1 nm) than for the excimer peak. The excimer

emission of pyrene-4-maleimide bound to DNA14-14c (Fig. 3C)

peaked at 48961 nm (compared to 47060.2 nm for the excimer

peak in butanethiol, P,0.05, Fig. 2D). This spectral shift is a

favorable effect that makes pyrene-4-maleimide easier to detect.

Reaction of macromolecule thiols with maleimides depends on

the accessibility of the reactive groups and reactivity in the

medium in which the thiols are located. The data presented so far

show that pyrene maleimide and pyrene-4-maleimide react well

with thiols in water. We also tested the reaction of these two

maleimide derivatives (5 mM) with dithiothreitol (5 mM) in

dimethylsulfoxide. The reaction, followed by the increase in

fluorescence at 370 nm (340 nm excitation), was complete after

mixing (,5 s). Even though accessibility of the maleimides will

always be a potential problem, our data show that pyrene-4-

maleimide reacts well with thiols in a solvent with lower dielectric

constant than water.

Fig. 5 shows typical emission lifetimes of single-stranded

(DNA14) and double-stranded DNA (DNA14-14c) reacted with

pyrene-4-maleimide. The lifetime of the DNA14 monomer

emission was significantly shorter than that of the excimer from

the DNA14-14c. Exponential fits of the DNA14-pyrene-4-malei-

mide intensity decays (labeled DNA14) showed the presence of

three lifetimes of 0.860.1 (1365%), 2.760.5 (5161%) and

10.761.3 ns (3766%). The DNA14-14c-pyrene-4-maleimide de-

cay (labeled DNA14-14c) consisted of a main component (9363%)

of longer lifetime (33.661.0 ns, P,0.05, n = 4, compared to the

longest lifetime in DNA14), and a small faster component

(2.360.04 ns, 763%). Long pyrene excimer lifetimes have been

previously reported [2,5,15]. The clear difference between

monomer and excimer emission decays of pyrene-4-maleimide

and the relatively long lifetime of the excimer emission allows for

easy identification of excimer emission independent of the sample

intensity.

In summary, the results show a number of advantages of

pyrene-4-maleimide over pyrene maleimide: 1) It can detect

proximity between thiols that are beyond the reach of pyrene

maleimide. This property makes pyrene-4-maleimide a better

probe for most applications, and constitutes an excellent

complement of pyrene maleimide to detect conformational

changes in proteins. For example, if pyrene maleimide excimers

are lost as a result of a conformational change, the continuous

presence of pyrene-4-maleimide excimers will suggest that the

increased distance between the thiols changed by ,12 Å (twice the

average distance of the pyrene-4-maleimide linker). 2) The

flexibility of the linker between the pyrene and the maleimide

can increase the efficiency of excimer emission. It can allow for

better alignment of the pyrenes to form excimers, and facilitate

reorientation during excitation to reduce quenching. 3) The

increased red shift of the excimer peak makes detection of excimer

Figure 2. Monomer and excimer emission in the presence of organic compounds. A. Pyrene maleimide. B. Pyrene-4-maleimide. C. Pyrene
maleimide vs. pyrene-4-maleimide in mercaptoethanol. D. Pyrene maleimide vs. pyrene-4-maleimide in butanethiol. The concentrations of the
fluorescent probes and organic compounds were 3 mM and 1 mM, respectively. The labels in panels A and C also apply to panels B and D,
respectively. Peaks 1–4 are indicated (see text). Data in panels A–C were normalized to peak 1 intensity in mercaptoethanol. Data in panel D were
normalized to peak 4 intensity in butanethiol.
doi:10.1371/journal.pone.0026691.g002

Pyrene-4-Maleimide Excimer Probe

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e26691



fluorescence simpler and more sensitive because it moves the

excimer peak away from the shorter wavelength ‘‘monomer’’

peaks. 4) The long excited-state lifetime of the pyrene-4-maleimide

excimers vs. monomers emission, make the use of pyrene-4-

maleimide lifetime excimer detection possible and relatively

simple. Intensity-independent excimer detection is very useful in

cases where background complicates measurements of intensities.

From the properties described above, we suggest that pyrene-4-

maleimide is an excellent probe to assess proximities between

cysteine in proteins and thiols in other macromolecules, and to

follow conformational changes.

Materials and Methods

Reagents
All reagents used were of the highest available quality. Pyrene

maleimide (Invitrogen, Carlsbad, CA) and pyrene-4-maleimide

stock solutions (25 mM) were prepared in dimetylsulfoxide.

Mercaptoethanol and butanethiol were purchased from Sigma-

Aldrich (St. Louis, MO). When used, the concentration of these

organic compounds, as well as that of ethanol and glycine, was

1 mM in our ‘‘standard’’ buffer: 200 mM KCl and 20 mM Tris/

HCl, pH 7.5.

Modified DNA oligonucleotides
We used a sense oligonucleotide of the following sequence: 59-

CATCGTAGAGGCAG-39, with a 59 thiol modifier C6 S-S

(DNA14). The fully complementary oligonucleotide sequence 59-

CTGCCTCTACGATG-39 had a thiol group at the 39 end (39

thiol modifier C3 S-S, DNA14c). We also used two additional

DNA14 complementary oligonucleotides that lacked the first two

(DNA12c) and four (DNA10c) bases at the 39 end. Assuming an

ideal double-stranded helix, the DNA12c and DNA10c strands are

6.6 and 13.2 Å shorter, respectively, than the DNA14c strand. The

oligonucleotides purified by HPLC were purchased from Inte-

grated DNA Technologies (Coralville, IA), and were dissolved in

our standard buffer. After reduction of the thiols with tris(2-

carboxyethyl)phosphine (TCEP, 1 or 5 mM for 1 h at room

temperature), TCEP was removed by gel filtration on Illustra G-25

mini-columns (GE Healthcare, Piscataway, NJ). The reduced

single-stranded DNAs were quantified by absorbance, mixed at a

1:1 molar ratio, and annealed by heating to 94uC for 20 min, with

a subsequent slow cool down to room temperature. Hybridization

was checked on 5% agarose gels. One advantage of the pyrene

maleimides is that they display very low fluorescence in water-

based solvents, but experience a dramatic increase in fluorescence

quantum yield upon reaction with thiols. In most experiments,

Figure 3. Emission of pyrene compounds reacted with thiol-modified DNA. A. Emission spectra of single-stranded DNA containing a 59 end
thiol group (DNA14) reacted with pyrene-4-maleimide. Data were normalized to peak 1 intensity from reduced DNA14. [DNA14] was 0.5 mM, and
[pyrene-4-maleimide] was 2 mM. B. Emission spectra of double-stranded DNA reacted with pyrene maleimide. DNA14-14c: DNA14 annealed to fully
complementary DNA with a 39 end thiol group (DNA14c). DNA14-12c: DNA14 annealed to a 39 end two-base shorter complementary oligonucleotide
with a 39 end thiol group. DNA14-10c: DNA14 annealed to a 39 end four-base shorter complementary oligonucleotide with a 39 end thiol group. C.
Emission spectra of double-stranded DNA reacted with pyrene-4-maleimide. Insert: schematic representation of the experimental system showing the
double-stranded DNAs labeled with pyrene-4-maleimide. The pyrenes are represented by green rhomboids. Data in panels B and C were normalized
to peak 1 intensity. The labels in panel B also apply to panel C. D. Excimer/monomer emission ratio. The values were calculated as: excimer/
monomer = Ipeak 4/Ipeak 1, where I is the highest intensity of the peak, and peak 1 and peak 4 correspond to the excimer and monomer emission
peaks. Averages 6 SEM from experiments such as those shown in panels B and C (n = 3 for pyrene maleimide, and n = 4 for pyrene-4-maleimide). The
asterisk denotes P,0.05 for the pyrene-4-maleimide DNA14-14c adduct vs. each of the other adducts presented in panel D. The concentrations of the
fluorescent probes and double-stranded DNA were 4 mM and 0.5 mM, respectively.
doi:10.1371/journal.pone.0026691.g003

Pyrene-4-Maleimide Excimer Probe
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pyrene maleimide and pyrene-4-maleimide were added to the

DNA solutions and measurements were performed after the

increase in fluorescence reached stable values (,10 min). The

results were similar to those in experiments where the unreacted

probes where removed by gel filtration after labeling (not shown).

The fluorescent probes were used at an 8-to-1 molar ratio;

generally 4 mM fluorescent probe and 0.5 mM double-stranded

DNA.

Synthesis of pyrene-4-maleimide
Synthesis was performed as follows: A 25 mL round bottom

flask was charged with triphenylphosphine (Ph3P) (86.8 mg,

0.331 mmol) and tetrahydrofuran (2.24 mL), and the resulting

clear solution was cooled to 278uC in a dry ice-acetone bath.

Diisopropyl azodicarboxylate (DIAD) (66.9 mg, 0.331 mmol) was

added to this mixture over 2–3 min, and the resulting yellow

mixture was stirred for 5 min. Then, 1-pyrenebutanol (100 mg,

0.364 mmol) was added over 1 min and stirred for 5 min.

Maleimide (32.1 mg, 0.331 mmol) and neopentyl alcohol

(16 mg, 0.182 mmol) were then added to the reaction mixture,

and the resulting suspension was maintained at 278uC for 5 min,

a time during which most maleimide was dissolved. The reaction

mixture was removed from the cooling bath and stirred overnight

at room temperature. The resulting clear solution was concen-

trated under vacuum, and the residue was purified by silica-gel

column chromatography (hexane:ethyl acetate, 12:1), followed by

preparative TLC to obtain pure N-pyrenylbutyl maleimide

(12.3 mg, 0.035 mmol).

N-pyrenylbutyl maleimide (pyrene-4-maleimide) yield and

properties were as follows: yield 10.6%. Mp 97–98uC. 1H NMR

(500 MHz, CDCl3): d 1.74–1.81 (m, 2H), 1.81–1.89 (m, 2H), 3.37

(t, 2H), 3.60 (t, 2H), 6.65 (s, 2H), 7.85 (d, 1H), 7.96–8.20 (m, 7H),

8.25 (d, 1H). 13C NMR (125 MHz, CDCl3): d 28.52, 28.79, 32.90,

37.67, 123.31, 124.70, 124.81, 124.86, 125.00, 125.07, 125.80,

126.62, 127.28, 127.29, 127.49, 128.58, 129.86, 130.88, 131.41,

Figure 4. Double-stranded DNA models with pyrene maleimides attached via thiol linkers. A. Stick representation view along the DNA
long axis. Pyrene-4-maleimide attached to DNA14-14c and DNA14-12c is shown in green and red, respectively. Pyrene maleimide attached to DNA14-14c

is shown in blue. The 59 thiol was present in the 14-bp long strand in all cases. The 39 thiol was present in the 14-bp or 12-bp long complementary
strands. B. Stick representation view perpendicular to that in panel A. Only the pyrenes are shown for clarity. Color coding as in panel A. See Materials
and Methods for details.
doi:10.1371/journal.pone.0026691.g004

Figure 5. Long lifetime of pyrene-4-maleimide excimer emis-
sion. DNA14: reduced single-stranded DNA14 adduct. DNA14-14c:
double-stranded DNA14-14c adduct. IRF: instrument response function.
The red lines are fits of the data to multi-exponential functions, with the
two weighted residuals (Ri) vs. time plots corresponding to the double-
stranded (top) and single-stranded (bottom) data fits.
doi:10.1371/journal.pone.0026691.g005

Pyrene-4-Maleimide Excimer Probe
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134.02, 136.18, 170.85. HRMS m/z calculated for C24H19NO2

(M)+ 353.1416, found 353.1410.

Spectrophotometry and steady-state fluorescence
measurements

Excitation and emission fluorescence spectra were measured on

a Hitachi F-7000 (Tokyo, Japan) or Photon Technology

International QM3SS (London, Ontario) spectrofluorometers.

Generally, excitation and emission slits were 1.5 nm. Absorbance

was measured on a Shimadzu spectrophotometer UV160 (Kyoto,

Japan).

Quantum yield measurements
Fluorescence quantum yields (Wf) were determined relative to

anthracene in methanol. This compound was chosen because it

absorbs well at the pyrene maleimide and pyrene-4-maleimide

excitation wavelength (340 nm) and emits in the same wavelength

range as the pyrene fluorophores [23]. Generally, we prepared

four different concentrations of anthracene in methanol, and

pyrene maleimide and pyrene-4-maleimide (in standard buffer

with 1 mM mercaptoethanol), keeping absorbance at 340 nm

lower than 0.1. Under these conditions, there was a linear

relationship between absorbance and total integrated emission,

and therefore no corrections for inner filter effects were

performed. The relative quantum yields were taken as the slopes

of the linear absorbance vs. emission integrals, and converted to

fluorescence quantum yields using an anthracene Wf of 0.3 [23].

Fluorescence lifetime measurements
Lifetimes were measured in the time-domain with an ISS

ChronosBH lifetime spectrometer (Champaign, IL). Excitation

was from a 335 nm pulsed LED (5 MHz) and single-photon

counting detection was through a 440-nm short-pass filter (FF01-

440/SP, Semrock, Lake Forest, IL) for monomer emission, or a

450-nm long-pass filter (450LP, Newport, Irvine, CA) for excimer

emission, with the excitation polarizer at 0u and the emission

polarizer at the magic angle (54.7u). Anthracene in methanol, 9-

anthracenecarbonitrile (9-cyanoanthracene) in methanol, and 10-

(3-sulfopropyl)acridinium betaine in water were used as instrument

test compounds because they give essentially single-exponential

decays with lifetimes that cover the range of those measured with

pyrene-4-maleimide [23]. The instrument response function was

measured with Ludox in water as a scatterer, and multi-

exponential curve fitting was done with the Vinci Analysis

software.

Modeling of modified DNAs
DNA models were constructed using 3D-DART [24], and the

pyrene maleimide and pyrene-4-maleimide adducts were gener-

ated in Avogadro. Each of the resulting hybrid models was energy-

minimized in Avogadro using the Ghemical force field, with the

atoms in the DNA fixed to avoid distortion of the bases. Figure 4

was rendered with PyMol.
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